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Abstract

For a large part of the past 1Ma, the southern andes have been
consistently eroding under the weight of the Patagonian ice
sheet, which is still present today in the form of the northern
and southern Patagonian ice fields. This paper presents a 1-
Dimensional Quasi-steady state glacier model, which we have
used to determine the change in the topographic profile of the
Andes due to glacial erosion. Simulations are then generated
along an W-E cross-section of the region, using an Equilibrium
Line Altitude based reconstruction of paleoclimate. The spe-
cific features of the model will be described, including isostatic
flexure, oceanic calving, and ice divide determination. Fur-
ther, we will demonstrate that glaciers respond quickly enough
to small changes in climate that they can be modeled in the
steady state over geologic time scales.

1 Context

This paper develops a novel glacial model, which is applied to
the Patagonian Andes. By using a Quasi-Steady state approx-
imation to calculate the glacier’s profile, we are able to reverse
the erosion that has occurred over the past 1Ma.

There are two main approaches to glacial modeling. In the first,
glaciologists develop precise and computationally intensive de-
scriptions of ice flow, in order to determine as accurately as
possible how the glacier has developed into its present state and
will continue to develop. In the second approach, the model is
as simplified as possible. By comparing both kinds of models,
we are able to develop a better physical understanding of the
factors which are actually important to the development of a
glacier. The model developed in this paper is one of the latter.
The purpose of the model is to determine the general struc-
ture of Andes prior to recent glaciation: have the peaks grown
sharper or dulled over time?

The primary way in which this model differs from most other
glacial models is that it is designed to be run in reverse. In-
stead of being given a predefined input state and iterating for-
wards in time, the model is designed to run backwards from
the current state. This is simplified greatly by the steady state
approximation. Instead of modeling the exact amount of ice
at any given time, based on the changing thickness of the ice,
we instead assume that the ice reaches a steady state at which
the accumulation and melting are balanced.

The region of study for this paper is an W-E cross-section
of the Andes, ranging from 76W to 69.5W at a latitude of
46.6S. For all experiments below, we use a one-dimensional
grid of 1000 points, which corresponds to a grid spacing of
Az = 496m(3S.F.). The majority of the figures in this paper
use 5000yr timesteps through 1ma. However, the bifurcation
figures use a 100yr timestep over 10000yrs to capture the effect,
which occurs only for a short period of time.

2 Steady State

We conducted experiments with the diffusion model described
in Oerlemans 2001 and Veen 2013 to prove that using the
steady state model is valid. Using the same input criteria as
the steady-state model, the diffusion model shows how the ice
moves to balance the system before it reaches steady state.
The complete system is characterised completely in equations
1l and 2.
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From figure 1 we can see that the diffusion system reaches a
stable equilibrium over the course of about 2ka. This is much
smaller than the timescale of the study, and of a similar size to
the timesteps used. This means that small changes in the ELA
will be quickly reflected by the height of the glacier, and so ap-
proximating it with the steady state is perfectly valid.
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Figure 1: This graph shows the progression of the diffusion
model towards a steady state in 50yr steps up to 1ka.

3 Computational Model

3.1 General Principle

The
ples

computational model is founded on four main princi-

1. Glaciers have no slope at their highest point, such that
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2. Above some altitude, which we will call the Equilibrium
Line Altitude (ELA), snow precipitates onto the glacier.
Below this line, snow melts. However, the ELA may not
be constant, and the ice flux may vary non-linearly with
the height of the surface above or below the ELA.

3. The toe of the glacier follows some common shape.
4. Ice mass is conserved.

From these principles the rest of the model can be derived. In
addition to these constraints, there are modifications to the



model that allow it to account for flexure, calving and up-
lift.

The biggest limitation of this method is that it only works on
one half of the glacier’s profile at a time. In order to form
the complete profile of a glacier, the point at which the two
profiles split on the landscape has to be found. This point is
known as the ice divide, and is where the slope of the glacier
goes flat.

All of the calculations in this paper assume a fixed one dimen-
sional spatial grid, such that Ax = x;41 — z;Vi.

3.2 Equilibrium Line Altitude (ELA)

The ice flux is calculated in this model using the equations
determined empirically by Hubbard et al. 2005. These calcu-
lations are based on the height of the uppermost surface with
respect to the ELA.

The biggest variable controlling the ice flux is the ELA, which
varies non-linearly along x in the modeled region. In the west-
ernmost marine region, the ELA is determined by a boltzmann
sigmoidal function. This is then replaced by a linear increase
up to a capped maximum. This is stated concisely in equation
3.
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Using the following table of constants, defined in Hubbard et
al. 2005:

a 774

b 2572

c 272

d 64

ELA, .. | 2800 m
Tis 280 | km
Tie 330 | km

The ELA at a given point of time in the past can be found
by shifting the ELA up or down according to the change
in temperature given by climate proxies Ma and Brandon
2016.
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Figure 2: This graph shows the height of the ELA without any
shifting, as well as the various balance rate regions regions.
The flux balance rate slowly transitions between the blue dotted
lines, while the ELA gradient changes at the orange dotted line
from a Boltzmann sigmoidal equation to a linear increase to a
flat value.

3.3 Ice flux

Once the ELA at a given grid point is known, the surface ice
flux (B,) can be found by passing the difference in height be-
tween the ELA (FLA,) and the surface (S,) through a balance
rate function. However, this balance rate function varies across
the spatial grid as conditions shift from marine to coastal. A
complete description of how this function varies across x is
given in equation 4.
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Using the following table of constants, defined in Hubbard et
al. 2005:

Tmarine | 17D km
Tcoastal 285 km
bmarine 4 ma~?
beoastal | 0.25 | ma~?
Zmarine | 1200 m
Zcoastal 425 m

Later on, we will find that we need the integral of the sur-
face flux. We shall call this integral q. To compute this on
a well-spaced discrete variable, we define ¢ to be the cumula-

tive trapezoidal integral of the surface flux B, as in equation
7.
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Figure 3: This graph show the relationship between surface ice
flux and its integral, which is also the discharge of the glacier.

3.4 Toe calculation

At the crossing point z,7, which is the first point at which
gnr, <= 0, all of the accumulated ice has been melted. We
therefore know that the toe of the glacier must be located at
some point between z,7,_1 and z,7;,. We can determine this
point more precisely: the terminus occurs at x,,_1 + dL using
linear interpolation as in equation 8.
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Now that we know the precise position of the toe, we can use
it to determine the height of the first grid point upstream
from the toe in the glacial profile. For the first grid point,
we find the root of the non-linear function described in equa-
tion 9. This equation defines the profile of the toe between
Tnr—1 and x,p—1 + 6L. Specifically, it states that both the
discharge and the ice thickness fall off linearly between these
two points, allowing g and T" at x,;,_1 + %L to be calculated in
terms of the ¢,r_1 and 1,11, leaving a non-linear equation
in Tanl.
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3.5 Glacier Profile

The remainder of the profile of the glacier can be calculated
upwind of the toe by iterating over all of the points above it.
Using the height of the point to the right and the discharge of
the glacier, the slope of the glacier is found using equation 10
projected backwards using equation 11.
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The glacier profile is constrained on the other side by the

fact that there is no slope at the ice divide and therefore
§H
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3.6 Isostatic Flexure

The weight of the ice on the crust causes it to depress into the
mantle. We can imagine that the bedrock is floating on top of
the mantle, and that the system is currently in steady state.
If we then make some small change to the weight of the ice,
the bed will shift downwards to balance the additional weight

against the weight of the displaced mantle. Additionally, we
need to consider the case where the height of the bed is below
sea level, in which case the displacement of the water has a
buoyant effect. All together, this forms equation 12.

piceHice Pwater X mam(*Hbed; 0)

AHpeq = — +

Pmantle

(12)

Pmantle

Local isostacy reduces the height of the bedrock relative to
the ELA, which helps to stabilize the system and results in a
smaller glacier. The main difficulty here is that we only know
the amount that the bed is deflected by after we have calcu-
lated the ice profile. This is resolved by iteratively calculating
the ice profile and deforming the bedrock. Each iteration the
amount of ice will change, but by less and less each time, as the
amount that the bed deforms declines with each iteration. This
is repeated until the difference between the ice profiles before
and after an iteration is a sufficiently small amount.

Figure 4: This deflection of the bed under load from the glacier
after each iteration from 1 (red) to 10 (blue)

3.7 Calving

Ice ceases to have an effect on the rest of the glacier once it
reaches the point of floating on the ocean (Oerlemans 2003).
This occurs when the weight of the ice is less than the weight
of the water that it displaces, as in equation 13.

Pice Tice

— <0
pwaterTwater

(13)

where Twater = hocean - hbed

We assume that the height of the ocean is Om for the entire
time period of the simulation.
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Figure 5: This graph shows the effect of calving on the glacier.

The red line shows the profile of the graph without calving, while
the green line shows the profile of the graph with calving.

3.8 Ice Divide

Since the Ice Divide is located in middle of a large region of
surface ice flux, moving the ice divide to the west should en-
large the eastern side of the divide, and shrink the western side.
Moving the divide to the east should do the opposite.

Figure 6: The difference between the height of the glaciers when
the divide is placed at the corresponding point on the z-axis.
The regions that result result in no glacier on either side are
highlighted in red. The optimal position for the ice divide is
circled in green.
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Figure 7: This is a zoomed in version of 6, showing the non-
linear variation in glacial difference across x within a small
TEGLON.

If the function were monotonically decreasing, it would be a
simple matter to perform a binary search and locate the point
at which the divide reaches a minimum. However, due to the

small, sharp, inconsistencies that appear when the ice divide
is moved, a binary search only helps to narrow the search
area.

From the semi-optimal value given by a binary search, we con-
duct a linear search outwards and in parallel, increasing the
range until glacial profile with sufficiently small height dispar-
ity is found.

3.9 Erosion

The amount of erosion of the bed is directly related to the

sliding velocity us by the dimensionless Erosion-Law factor
K.

The sliding velocity can be found when calculating the original
profile using equation 14

0H,;

s = Js Tn_l
us = fs X X|6x

" (14)
which can then be converted directly into an erosion in (m/a)
by multiplying it with K.

When the model is running backwards in time the timestep will
be negative, depositing material instead of eroding it.
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Figure 8: This figure shows the amount of erosion that occurs
over 0.1MA if the ELA is held at the present level. The origi-
nal bed is shown in red dots, and the gray area shows the level
of the bed after 0.1MA.
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Figure 9: This figure shows the amount of bedrock required in
order to reduce the bed to its present height over 0.1MA if the
ELA is held at the present level. The modern bed is shown in
red dots, and the gray area shows the original height of the bed.



3.10 Uplift

Uplift is the counterpart to erosion; it is the reason why the
mountains develop despite the constant removal of material.
Uplift rates are relatively consistent over the region, and dur-
ing the modeled time period are very small or non-existent
(Gregory-Wodzicki 2000) . Nevertheless, uplift is included in
the model for generality, and is simply added to the height of
the bed at each time step, as in equation 15.

hoed = hpeq + uplift x AT (15)

3.11 Bifurcation

Bifurcation refers to the fact that a system can exist in exactly
two stable states: one with a large amount of ice (an ice cap),
and one with little to no ice (valley glaciers). This is possible
because when the ice is low, the surface is lower relative to the
ELA, resulting in lower or negative flux values across more of
the profile. This results in a much smaller steady state glacier.
When the ice is thick, the surface is high relative to the ELA,
resulting in higher or positive ice flux across the profile. Both
of these situations can result in stable ice configurations: which
one the system ends up in is determined by the previous state
of the system, since the system requires energy to flip between
them. However, when the ELA rises high or low enough, only
one of the configurations is possible. This forces the glacier to
flip between the two states when the temperature temporarily
gets very high or very low.

Herein lies a problem: coming out of the last ice age, we
would have expected to follow the original thick-ice configu-
ration shown in blue in figure 10. However, the present day
location of the glacier closely corresponds to the low ice con-
figuration shown in orange in the same figure. This figure also
shows that the low ice state only became possible within the
past 6000-7000 years, and so the transition must have hap-
pened some time in this period. Figure 11 shows that both
configuration are stable until a AELA of around 100-200 is
reached, at which point the system would be kicked into the
low ice state. The highest that the AELA reached was 94m,
around 2500bp, which is the most likely point at which this
transition would have occurred. The fact that the model does
not show this is most likely due to the simplification of physical
relationships in the model.
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Figure 10: This shows the two possible high-ice and low-ice
bifurcation states over the past 10000 years.
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states at the given ELA shift.

Figure 11:
bifurcation

4 Results

The most problematic result from the model was the exponen-
tially high sliding value at the calving front. There is clearly
some behaviour here that is not modeled correctly and needs
to be accounted for: most likely the buoyancy from the water is
slowing the ice’s slide into nothingness. This creates a discon-
tinuity here, which eventually creates a spike in the landscape
and causes the model to break down. To fix this, we truncate
the sliding values and apply a Gaussian filter. This results in
the orange line shown in figure 12.

Over the past 1Ma, Patagonia was mostly underneath deep
ice sheets, as shown in figure 13. However, it passes through
several interglacial periods like the present. We can see that
over 1Ma, very little erosion actually occurs: it clearly takes
much longer than this for a glacier to erode down a mountain
significantly.
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Figure 12: This figure shows the average rate of erosion

the profile, over 1MA

across



obpa
P o 250000bpa

2000 2000

500000bpa

750000bpa

1000000
3000 3000 o

2000 2000

Figure 13: This figure shows the progression of erosion on the profile over 1MA

Conclusions

. Glaciers adapt quickly to changes in ELA, meaning that

a steady-state approximation is valid.

The main action of erosion is to elongate valleys outwards
from the ice divide.

Erosion over the past IMA has dulled the smaller, nearby
peaks much more than the main peak of mount Valentine.

Down-slopes are more quickly eroded than up-slopes.

A quasi-steady state model can be run backwards to re-
cover the original landscape with as much accuracy as it
can be run forwards to predict the future landscape.

The current ELA is within a region that allows for bi-
furcation, and has been during interglacial periods in the
past.

Limitations

. ELA is a limited characterization of surface flux, and a

complete atmospheric model would be better as we get
further into the past.

The sliding speed on the calving side of the glacier does
not take into account the slow-down effect of the water’s
buoyancy, resulting in much higher sliding values than
are actually observed (by an order of magnitude) as well
as a discontinuity at the calving front. This results in
much higher rates of erosion than are actually observed.

The model doesn’t conserve mass, completely ignoring
the deposition of moraines.

. The model becomes unstable if the bed slopes up too

quickly, which can happen if there are large discontinu-
ities in the erosion rates.
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