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ABSTRACT 

 
Creating a statistically-based genesis potential index which identifies meteorological 

variables that are well correlated with monsoon low pressure system genesis is vital as these storm 

systems contribute over half of the rainfall to monsoonal regions, rainfall which can be 

catastrophic. Grounded in the work of Emanuel and Nolan (2004), Camargo et al. (2008), and 

Tippet et al. (2011), this research constructed such an index for the Asian-Australian region by 

performing a Poisson regression on 1) genesis points at moist locations defined by a total column 

water vapor value greater than 35 kgm-2, and 2) four meteorological variables retrieved from the 

European Centre for Medium-Range Weather Forecasts’ monthly mean ERA-Interim reanalysis 

datasets: absolute vorticity at 850- hPa, estimated convective available potential energy calculated 

by subtracting the 200- to 400- hPa mean moist static energy from that at the surface, total column 

water vapor, and wind shear between 850- and 200- hPa. The index indicates a negative correlation 

between genesis and wind shear and positive correlations between genesis and the remaining three 

meteorological variables, with absolute vorticity being most strongly, positively correlated to 

genesis. Spatially and climatologically, the index is highly correlated to the actual genesis 

distributions in the Asian-Australian region. Through similar methodology, it was also found that 

genesis points can be described by similar statistics for the Indian Continent region and the entire 

globe. Finally, in an attempt to replicate the Tippet et al. (2011) results, a genesis potential index 

was created using tropical cyclone “best-track data” to compare the monsoon low pressure system 

genesis index to that of tropical cyclones. It was found that their respective genesis indices are 

very similar, and if tropical cyclones could form over land, their distribution would mimic the 

monsoon low pressure system spatial distribution which stretches inland from the Bay of Bengal. 
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I. Introduction 

A monsoon circulation is induced by a landmass lying poleward of an equatorial ocean and is 

accompanied by a strong seasonal precipitation cycle of dry winters and wet summers over land. 

During winter, air rises over warm tropical oceans and subsides over cooler landmasses, creating 

equatorward, low-level monsoonal flows. This circulation is known as the typical Hadley Cell 

circulation (Clift and Plumb, 2008). During summer months, landmasses gain heat at faster rates 

than oceans due to land’s low specific heat content. This creates strong land-ocean temperature 

gradients that induce reverse Hadley circulations, wherein air rises over landmasses through 

convection and subsides over now cooler oceans. Poleward, low-level monsoonal flows result 

(Clift and Plumb, 2008). If the shift in monsoonal flow in a given region is at least 120 degrees 

then that region is termed a monsoonal region (Ramage, 1971). 

Monsoonal rains are vital to the economy, culture, and lives of many living in monsoonal 

regions as well as the region’s ecosystems. Almost half of the total seasonal precipitation in 

monsoonal regions is said to be the result of embedded, synoptic-scale monsoon low pressure 

systems (MLPS) within the monsoonal circulation (Yoon and Chen, 2005). Nevertheless, MLPS 

have the potential to create catastrophic rainfall events dependent on their level of intensity: low, 

depression, deep depression, or typhoon (Ajayamohan, 2010). Some of the most dramatic 

examples of the devastation MLPS can cause involved summer Indian monsoons. A few examples 

include the 2013 monsoon causing over 500 deaths, over 80,000 displaced and over 5,000 missing 

individuals (BBC News, 2013; Masters, 2013) and the 2005 world-record breaking monsoon  

dumping 944 mm of rain within a 24 hour period and causing $1 billion in economic loss 

(Jenamani et al., 2006). 

Yet despite the impact of MLPS, very little is known or understood about how they form. 

Therefore, this research was undertaken to create a genesis potential index (GPI) for MLPS which 

would estimate how likely it is that a MLPS will form in a specific region of the globe at a certain 

time as a function of meteorological variables such as temperature, humidity, and winds. A GPI is 

vital for several reasons: it can improve our understanding of MLPS, the meteorological variables 

that control them, and their influence on global climate. It can also lead to improved forecasts of 

these MLPS, thereby aiding in preparedness operations and preventing or minimizing damage to 

or loss of human life and activities, animal life, ecosystems, and property. While the genesis of the 

higher intensity MLPS, such as deep depressions or typhoons, might be of interest to study, their 
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numbers are too small to yield a robust statistical assessment. Thus, the genesis of all MLPS was 

investigated, regardless of the eventual level of intensity attained.  

II. Region of Interest: The Asian-Australian (AA) Region  

Monsoonal regions and their embedded MLPS are found worldwide. The region that is most 

associated with monsoons is the Indian Continent region. In order to allow for the study of MLPS 

in both boreal and austral winters and summers and to create one GPI for many different regions 

rather than creating individual GPIs for each region impacted by MLPS, this research focused on 

the Indian Continent region as well as the additional regions of southern Asia, the Southern Ocean, 

and Australia. This entire area, now termed the Asian-Australian (AA) region, stretches across a 

diverse topographical area (Fig. 1) from 35°S to 35°N and 40°E to 160°E. AA includes mountain 

ranges such as the Himalayas, plateaus such as the Tibetan Plateau, the deserts of Australia, the 

rivers of China and India, and the seas and oceans of the equatorial regions. 

 
FIG. 1. Topography of the AA region in meters above and below sea level. Data retrieved from NGDC (1998). 

 

III. An AA MLPS GPI 

A. Pre-Construction 

To create a MLPS GPI, three types of information are needed: 1) an appropriate statistical 

method to relate meteorological data to genesis points, 2) the meteorological data itself, and 3) the 

date, latitude, and longitude of genesis points in the region of interest. 

1. Statistical Method for GPI Creation 

Emanuel and Nolan (2004) created a GPI for tropical cyclones (TC) from empirical results 

discovered by Gray (1979). The TC GPI was created through the use of a multiple regression in 
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order to determine the relationship, if any, between TC GP and meteorological variables. Recently, 

a more rigorously derived and statistically robust GPI for TC was formulated by Tippet et al. 

(2011) using a Poisson regression technique. 

a. The Emanuel and Nolan (2004) Multiple Regression Method 

The TC GPI developed by Emanuel and Nolan (2004) upon which this research’s GPI is based 

is defined as 

GPI = |105η|
3
2⁄ (

ℋ

50
)
3

(
PI

70
)
3
(1 + 0.1V)−2,  (1) 

where η is the 850 hPa absolute vorticity (s−1), ℋ is the 600 hPa relative humidity (%), PI is the 

potential intensity (ms−1), and V is the magnitude of the vertical wind shear between 850 and 200 

hPa (ms−1). TC “best-track data” was obtained from Dr. Kerry Emanuel, Professor of 

Atmospheric Science at the Massachusetts Institute of Technology (Emanuel, 2013). The present 

research initially attempted a multiple regression technique to fit the TC “best-track data” to 

meteorological variables as in Emanuel and Nolan (2004). However, their results were unable to 

be replicated as the variables were too sensitive to small changes in the data and the fit was not 

robust. Camargo et al. (2007) found similar difficulties. When attempting a multiple regression on 

MLPS data, similar statistical issues were found. Therefore, the method employed by Tippet et al. 

(2011) was used to create a GPI for MLPS. 

b. The Tippet et al. (2011) Poisson Regression Method 

Tippet et al. (2011) performed a Poisson regression on TC. They chose this specific method 

since Poisson regressions are used to model count data (i.e. whether an event occurs or not). 

Additionally, each TC GP is independent of one another and the rate of TC genesis has an 

interannual variation, two factors making a Poisson regression the appropriate statistical test to use 

(Elsner and Jagger, 2013). Using similar variables as in the Emanuel and Nolan (2004) index, the 

Tippet et al. (2011) index took the form  

μ = exp(b + bηη + bℋℋ + bTT + bVV + logcosΦ), (2) 

where 𝜇 represents the number of TC GP expected per month, b represents a constant intercept 

term, 𝑏𝑖 represents the coefficient associated with the particular climate variable (where i is 

η, H, T, orV), η is the 850 hPa absolute vorticity (105s−1), ℋ is the 600 hPa relative humidity (%), 

T is the sea surface temperature (SST, C°), V is the magnitude of the vertical wind shear between 

850 and 200 hPa (ms−1), and 𝛷 is the latitude (°). 
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Furthermore, to account for the bias of additional predictors used in the regression, the Akaike 

information criterion (AIC) was used where  

AIC = −2L + 2p. (3) 

In this formula, L is the maximized-log-likelihood of the regression and p is the number of 

predictors used in the regression (Akaike, 1973). The maximized-log-likelihood determines 

appropriate beta-coefficients which would allow for the known Poisson distribution of actual 

MLPS GP to be achieved. As noted in Tippet et al. (2011), the AIC should only be used as a guide 

to select which combination of variables has the best fit since the AIC, being a function of the data, 

is random. The lowest AIC value obtained corresponds to the best fit. 

In addition to an AIC, the dispersion (σ) – the degree to which the data is spread – was also 

calculated. As a Poisson regression is one where the variance of the data is equal to its mean, 

dispersion is simply the ratio of the variance to the mean. If this ratio is greater than one, then the 

fit is overdispersed and error coefficients need to be increased to compensate for additional errors. 

Tippet et al. (2011) records σ2 values, but this paper records σ values to indicate whether a fit is 

overdispersed or not.  

2. Meteorological Data 

All climate variable data come from two sources: the monthly mean 40-year European Centre 

for Medium-Range Weather Forecasts’ (ECMWF) Re-Analysis (ERA-40) (Uppala et al., 2005) 

and the monthly mean ECMWF Re-Analysis ERA-Interim (ERA-INT, Berrisford et al., 2009) 

datasets with climatological means over the 23 year period 1979-2001 and over the 34 year period 

1979-2012, both computed for the 12 month period January through December respectively. These 

two temporal periods were chosen due to the increased accuracy of satellite-acquired data 

beginning in 1979 and the availability of complete years of meteorological data from ERA-40 and 

ERA-INT through 2001 and 2012 respectively. The ERA-40 datasets have a vertical resolution of 

60 model levels and 23 pressure levels and a horizontal resolution of ~1.4° x ~1.4° while the ERA-

INT datasets have a vertical resolution of 60 model levels and 37 pressure levels and a horizontal 

resolution of ~0.70° x ~0.70°. The highly topographical nature (Fig. 1) of the Indian Continent 

region within the AA region required the use of model level datasets for two out of the four 

variables used in this paper since model levels conform to topography (ECMWF, 2013; Fig. 2). 
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FIG. 2. An example of how model levels conform to topography: the left axis represents pressure levels and the right 

axis represents model levels. Note how pressure level 900 hPa intersects topography while corresponding model 

level sigma 0.9 conforms to topography. Sigma is calculated as the ratio of the pressure at any given point to the 

pressure of the surface directly below it (Allen et al., 2002). 

 

In determining what variables to choose for the GPI, both the Emanuel and Nolan (2004) and 

the Tippet et al. (2011) variable choices were taken into account. After much trial-and-error, which 

included permutations of various combinations of variables and the subsequent observations of the 

spatial and climatological results, four variables were deemed to deliver the best MLPS GPI 

distribution: estimated convective available potential energy (ECAPE), total column water vapor 

(TCWV), absolute vorticity (η), and wind shear (V). 

a. Estimated Convective Available Potential Energy (ECAPE) 

Unlike TC, MLPS have the capability of forming over land. Therefore, the PI variable used in 

Emanuel and Nolan (2004) and the T variable used in Tippet et al. (2011) are not ideal for this 

research as they are only defined over the ocean due to their SST dependence. Thus, a simple 

proxy was used to estimate the energy available for convection over both ocean and land. This 

proxy estimated the convective available potential energy, here called ECAPE, by subtracting the 

average saturation moist static energy between 200 hPa and 400 hPa from the moist static energy 

at the surface so that 

ECAPE = (CpT + LvQ + GZ)
surf

 − (CpT + LvQsat + GZ)
200hPa−400hPa̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (4) 

where Lv is the latent heat of condensation (2.501 ∗ 106Jkg−1) , Cp is the specific heat at constant 

pressure (1.005.7JK−1kg−1), Q is the specific humidity, Qsat is the saturation specific humidity, 

T is the temperature (K), and GZ is the geopotential height (Jkg−1). ECAPE is expressed in units 
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of K by dividing ECAPE by Cp. Due to the height at which the saturation value of moist static 

energy is calculated, model levels were not needed as AA topography does not reach that height.  

b. Total Column Water Vapor (TCWV) 

This variable represents the column integrated water vapor content (i.e. the height of water that 

would exist if all water vapor in a column were precipitated as rain). It is commonly called 

precipitable water in the literature and is expressed in kgm-2. Both the Emanuel and Nolan (2004) 

and the Tippet et al. (2011) GPI use the variable relative humidity as a predictor. Here, TCWV is 

used instead of relative humidity since TCWV yielded a lower AIC value in regression trials and 

more robust spatial and climatological results.  

c. Absolute Vorticity (η) 

Values for η, expressed in 105s−1, were derived by taking the absolute value of the summation 

of the Coriolis factor (f = 2ΩsinΦ) and the ERA-40 derived relative vorticity values. Relative 

vorticity was retrieved at model level 49, the model level equivalent to the 850 hPa pressure level 

as used in the GPI established by Emanuel and Nolan (2004) and used in Tippet et al. (2011). 

d. Wind Shear (V) 

Wind Shear (V), expressed in ms-1, was calculated by solving for the total vector shear defined 

as 

V =  √(u49 − u30)2 +(v49 − v30)2, (5) 

where the entity under the square root symbol stands for the difference between horizontal winds 

at the 49 and 30 model level. These two model levels are equivalent to the 850 hPa and 200 hPa 

levels as used in the GPI established by Emanuel and Nolan (2004) and used in Tippet et al. (2011). 

3. Genesis Points (GP) 

Two different sources of genesis points (GP) were available for this research: a) GP digitized 

from the subjective analyses by Mooley and Shukla (1987) and Sikka (2006) covering the Indian 

Continent region from June through September 1888 – 2003 and b) GP compiled from the 

objective analysis by Yale Geology & Geophysics’ Postdoc John Hurley covering the globe from 

January through December 1979 - 2012. Ultimately, it was determined that the Hurley database 

was to be used for this research due to the objectivity implemented in its compilation and the 

completeness of the database, as it covers a global spatial scale and incorporates all months of each 

year. Still, the Mooley and Shukla (1987) and Sikka (2006) databases are detailed below. 
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a. Digitizing Mooley and Shukla (1987) and Sikka (2006) 

MLPS track data were retrieved from Mooley and Shukla (1987) and Sikka (2006). 

Identification of track data was achieved through the analysis of “the morning (0300 UTC) sea 

level synoptic pressure analysis” daily weather charts put forth by the India Meteorological 

Department (Ajayamohan, 2010). Lim and Simmonds (2007) believed that although subjectivity 

did occur in these analyses, they provided more accurate accounts of MLPS occurrences than the 

“reanalyses used by automated cyclone identification procedures.” Track data were categorized 

according to intensity, with values of 1 through 5 given to low, depression, deep depression, 

cyclonic storm, and severe cyclonic storm respectively (Ajayamohan, 2010). Other information 

included with the track data were dates of the MLPS genesis, dates of the subsequent track of the 

MLPS, and corresponding latitude-longitude coordinates for both genesis and track path. Both 

Mooley and Shukla (1987) and Sikka (2006) provided data for the months of June through 

September, the months of the boreal monsoon, in the Indian Continent region. While Mooley and 

Shukla (1987) provided undigitized MLPS track data from 1888-1983 and Sikka (2006) provided 

undigitized MLPS track data from 1984-2003, for this research MLPS data needed to be and 

therefore was digitized for and restricted to the years 1979-2001, the first of the two 

aforementioned temporal periods. MLPS GP were then isolated (Fig. 3). Other climatologies that 

exist include Chen and Weng (1999) and Saha et al. (1981). Yet, since they are temporally and 

spatially similar to the Mooley and Shukla (1987) dataset and produce similar climatologies, they 

were not used in this research. 

 
FIG. 3. The GP density distribution of MLPS from June-September 1979-2001 in the Indian Continent region. 
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b. Compiling MLPS from Hurley (2014) Database 

At the start of this research, there was no existing database of MLPS located outside of the 

Indian Continent region. Therefore, as part of a separate initiative to create such a database, for the 

reasons previously stated (see Section II), a climatology of global MLPS was created and compiled 

by Postdoc John Hurley by using an automatic feature tracking algorithm developed by Hodges 

(1995). Hurley adapted this algorithm, called TRACK, to pinpoint cyclonic vorticity maxima in 

the ERA-Interim reanalysis on a global scale. From his work, there now exists a global database 

of MLPS GP and their associated tracks. The resulting GP and track data were categorized 

according to intensity, with values of 1 through 3 given to low, depression, as well as deep 

depression and stronger respectively. Other data included dates of the MLPS genesis, dates of the 

subsequent track of the MLPS, and corresponding latitude-longitude coordinates for both genesis 

and track path. Data were provided from January 1979 through December 2012. As with the 

Mooley and Shukla (1987) and Sikka (2006) data, MLPS data were restricted to and GP were 

isolated for the years 1979-2001 but also for 1979-2012 (Fig. 4) to encompass both of the 

aforementioned temporal time periods.  

 
FIG. 4. Global GP density distribution from January 1979-December 2012. The red box indicates the AA region. 

Represented here are only those storms which have a precipitable water content of 35 𝑘𝑔𝑚−2 or higher (Section IV). 
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B. Refinement and Exploration 

Through variable analysis, two different types of MLPS were identified by TRACK: those that 

formed under dry conditions and those that formed under moist conditions. Since this research is 

interested in determining genesis for those MLPS which contribute almost half of the total seasonal 

precipitation to monsoonal regions, a value which robustly separates dry storms from moist storms 

needed to be found. Histograms were therefore created from points of monthly mean TCWV 

values which corresponded to points of genesis (Fig. 5). The bimodal distribution created shows 

the dry and moist MLPS are separated at about 35 kgm-2. Therefore, for this research all GP which 

formed at points where TCWV were less than 35 kgm-2 were removed from the index. This 

procedure was also performed with daily data and the minimum between the bimodal peaks was 

also observed at 35 kgm-2. 

 
FIG. 5. A PDF displaying the density distribution of monthly mean TCWV in the AA region. Note the bimodal 

distribution with one peak centered around 15 kgm-2 and the other peak centered around 53 kgm-2. 
 

After the dry storms were removed from the index, histograms were once again created, this 

time for each of the four variables at points of genesis and points of non-genesis separated by 

eventual attainment of intensity (Fig. 6). From observational analysis of the resulting histograms, 

it appears as though the genesis points associated with MLPS evolving into deep depressions and 

stronger form at higher ECAPE and TCWV values and lower WS values than genesis points 

associated with MLPS evolving into depressions or lows. Depressions are shown to form at higher 

ECAPE and TCWV values and lower WS values than those genesis points associated with MLPS 

evolving into lows. 
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FIG. 6. PDFs displaying the density distribution by intensity of each of the four meteorological variables used. The 

bars indicate frequency at points of genesis. The lines indicate frequency at points of non-genesis, normalized to the 

height of the corresponding color’s bars.  

 

C. Construction 

A GPI for MLPS was constructed by implementing a Poisson regression on the results from 

the TRACK program’s identification of global MLPS and the four aforementioned meteorological 

variables. All data were geographically restricted to the AA region defined in Section II.  

1. Executing the Poisson Regression: The Statistics 

A Poisson regression was run on 18 combinations of variables using first the ERA-40 and then 

the ERA-INT datasets. Combinations included Poisson regression runs on: one variable (Trials 1-

4), two variables (Trials 5-10), three variables (Trials 11-14), each level of attained intensity (Trials 

15-17), and all four variables (Trial 18). Resulting beta coefficients, AIC, dispersion, and standard 

errors can be seen below (Tabs. 1A and 1B). Correlation coefficients between estimated GP and 

actual GP for the Northern and Southern Hemispheres were calculated and provided as well. 

 

η V 
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Trial Constant Heat Humidity Vorticity Shear 
Statistics 

# 𝒃 𝒃𝑬𝑪𝑨𝑷𝑬 𝒃𝑻𝑪𝑾𝑽 𝒃𝜼 𝒃𝑽 

Coefficients σ AIC 

1 -4.2607 0.1795 ------ ------ ------ 1.0456 12939 

2 -8.7581 ------ 0.1239 ------ ------ 0.9974 12234 

3 -3.1070 ------ ------ -0.0054 ------ 1.1753 15601 

4 -1.8033 ------ ------ ------ -0.0889 1.1412 14180 

5 -8.3193 0.0352 0.1089 ------ ------ 1.0030 12218 

6 -5.6568 0.2014 ------ 0.3209 ------ 0.9272 12017 

7 -4.0309 0.1730 ------ ------ -0.0142 1.0421 12919 

8 -10.3188 ------ 0.1324 0.3091  0.8695 11239 

9 -8.3981 ------ 0.1207 ------ -0.0167 0.9958 12206 

10 -2.3585 ------ ------ 0.2009 -0.1086 1.1054 13776 

11 -9.3900 0.0837 0.0967 0.3407 ------ 0.8751 11115 

12 -8.1631 0.0243 0.1111 ------ -0.0142 0.9993 12199 

13 -5.3472 0.1917 ------ 0.3275 -0.0207 0.9186 11976 

14 -9.7489 ------ 0.1269 0.3253 -0.0293 0.8600 11148 

15 -9.1089 0.0787 0.0781 0.4109 -0.0108 0.8800 8091 

16 -12.0351 0.0704 0.1379 0.2678 -0.0236 0.8174 4583 

17 -17.5105 0.2518 0.2200 0.0803 -0.1603 1.0228 1871 

18 -9.2058 0.0690 0.1000 0.3447 -0.0195 0.8664 11079 

Standard Errors NH Corr SH Corr 

1 0.0548 0.0053 ------ ------ ------ 0.8597 0.8012 

2 0.1525 ------ 0.0029 ------ ------ 0.9920 0.8798 

3 0.0524 ------ ------ 0.0107 ------ -0.9823 -0.8541 

4 0.0455 ------ ------ ------ 0.0034 0.6890 0.8634 

5 0.1877 0.0089 0.0047 ------ ------ 0.9896 0.8704 

6 0.0638 0.0039 ------ 0.0096 ------ 0.9566 0.8666 

7 0.0783 0.0057 ------ ------ 0.0034 0.8213 0.7983 

8 0.1184 ------ 0.0021 0.0083 ------ 0.9678 0.9101 

9 0.1718 ------ 0.0031 ------ 0.0032 0.9868 0.8676 

10 0.0553 ------ ------ 0.0107 0.0034 0.9437 0.9276 

11 0.1375 0.0066 0.0034 0.0088 ------ 0.9723 0.9017 

12 0.1937 0.0094 0.0048 ------ 0.0034 0.9853 0.8630 

13 0.0784 0.0043 ------ 0.0096 0.0030 0.9564 0.8780 

14 0.1344 ------ 0.0023 0.0084 0.0028 0.9756 0.9127 

15 0.1717 0.0081 0.0040 0.0117 0.0036 0.9611 0.8872 

16 0.2832 0.0149 0.0070 0.0151 0.0052 0.9265 0.8951 

17 0.9919 0.0444 0.0196 0.0363 0.0187 0.7914 0.7323 

18 0.1430 0.0071 0.0035 0.0088 0.0029 0.9763 0.9057 

TAB. 1A. Beta coefficient results and statistics from the Poisson regression between MLPS GP and ERA-40 

meteorological variables. Entries with “------” indicate that the respective variable was not included in the 

regression. 
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Trial Constant Heat Humidity Vorticity Shear 
Statistics 

# 𝒃 𝒃𝑬𝑪𝑨𝑷𝑬 𝒃𝑻𝑪𝑾𝑽 𝒃𝜼 𝒃𝑽 

Coefficients σ AIC 

1 -4.2289 0.1821 ------ ------ ------ 0.9660 25319 

2 -9.6964 ------ 0.1256 ------ ------ 0.9178 24465 

3 -4.0935 ------ ------ 0.0038 ------ 1.0892 29659 

4 -2.7975 ------ ------ ------ -0.0847 1.0589 27590 

5 -8.6736 0.0554 0.1010 ------ ------ 0.9195 24396 

6 -5.3292 0.1866 ------ 0.2926 ------ 0.8431 23957 

7 -4.1254 0.1796 ------ ------ -0.0079 0.9689 25310 

8 -10.9494 ------ 0.1299 0.2832 ------ 0.8210 23067 

9 -9.3415 ------ 0.1227 ------ -0.0173 0.9183 24418 

10 -3.3485 ------ ------ 0.1929 -0.1025 1.0307 27000 

11 -9.3007 0.0925 0.0875 0.3174 ------ 0.8137 22777 

12 -8.6036 0.0472 0.1032 ------ -0.0122 0.9205 24374 

13 -5.1980 0.1827 ------ 0.2965 -0.0111 0.8422 23937 

14 -10.4144 ------ 0.1246 0.2948 -0.0259 0.8102 22952 

15 -9.3337 0.0860 0.0724 0.3858 -0.0035 0.8305 15494 

16 -11.6099 0.1120 0.1170 0.2414 -0.0191 0.7720 8660 

17 -14.1791 0.2685 0.1648 0.0443 -0.1397 1.6111 3465 

18 -9.2115 0.0848 0.0893 0.3196 -0.0131 0.8104 22754 

Standard Errors NH Corr SH Corr 

1 0.0238 0.0041 ------ ------ ------ 0.9315 0.8651 

2 0.1120 ------ 0.0022 ------ ------ 0.9888 0.8958 

3 0.0392 ------ ------ 0.0079 ------ 0.9809 0.9073 

4 0.0338 ------ ------ ------ 0.0025 0.7632 0.8940 

5 0.1577 0.0064 0.0035 ------ ------ 0.9902 0.8922 

6 0.0336 0.0028 ------ 0.0064 ------ 0.9729 0.9092 

7 0.0405 0.0043 ------ ------ 0.0025 0.9191 0.8610 

8 0.0862 ------ 0.0016 0.0060 ------ 0.9481 0.9192 

9 0.1256 ------ 0.0023 ------ 0.0024 0.9911 0.8831 

10 0.0412 ------ ------ 0.0078 0.0025 0.9584 0.9479 

11 0.1115 0.0045 0.0024 0.0062 ------ 0.9573 0.9200 

12 0.1605 0.0067 0.0036 ------ 0.0025 0.9905 0.8839 

13 0.0421 0.0030 ------ 0.0064 0.0021 0.9748 0.9122 

14 0.0979 ------ 0.0017 0.0060 0.0020 0.9586 0.9200 

15 0.1400 0.0054 0.0030 0.0082 0.0027 0.9451 0.9204 

16 0.2250 0.0108 0.0050 0.0113 0.0039 0.9292 0.9028 

17 1.0344 0.0544 0.0211 0.0463 0.0224 0.8455 0.7781 

18 0.1139 0.0048 0.0025 0.0062 0.0021 0.9613 0.9207 

TAB. 1B. Beta coefficient results and statistics from the Poisson regression between MLPS GP and ERA-INT 

meteorological variables. Entries with “------” indicate that the respective variable was not included in the 

regression. 
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An analysis of the resulting spatial and climatological distributions of all runs showed that 

Trial 18 from both Tabs. 1A and 1B provided the best and closest fit. Additionally, the lowest AIC 

value was obtained when running the Poisson regression with all four variables. This combined 

with a dispersion value less than “1” made the results from Trials 18 ideal for a MLPS GPI in the 

AA region. This paper uses the results obtained with the ERA-INT dataset (Trial 18, Tab. 1B) 

since compared to the ERA-40 dataset, the ERA-INT dataset is more recent, has a higher spatial 

resolution, and has corrected many existing problems found within the ERA-40 dataset (Berrisford 

et al., 2009). Trial 18 from Tab. 1B will hereinafter be referenced as just Trial 18. Trial 18 

demonstrates that low-level absolute vorticity has the strongest influence on MLPS genesis. 

Additionally, only one of the four variables has a negative coefficient – total shear – which implies 

that shear represses MLPS genesis.  

2. Spatial Distribution 

Using the coefficients in Trial 18, the corresponding spatial distribution with overlaying GP 

was produced (Fig. 7). Comparing the results in Fig. 7 to the overlaying GP points and to the 

density distribution in Fig. 4, the GPI was able to replicate the spatial distribution of GP. 

Describing the larger AA region by sections allows for a more thorough investigation of how well 

the generated GPI reproduced the actual spatial distribution of GP.  

ASIA: The GPI distribution in the Western Pacific tilts to the southeast, and it is similar in 

intensity to the GP density distribution. In the western Pacific, the GPI was able to 

reproduce the tounge-esque distribution of GP. Over northern China, the GPI overestimates 

intensity while over southern China, the GPI underestimates intensity.  

INDIA: The GPI distribution in both the Bay of Bengal and the eastern Arabian Sea 

replicates the spatial distribution and the intensity of GP. Additionally, the GPI over India 

replicates the spatial and intensity distribution. The GPI was unable to replicate the western 

Arabian GP distribution, however. 

OCEAN (SOUTHERN): The GPI is able to replicate the approximately ten degree band of 

GP which arcs from Madagascar to western Australia. 

AUSTRALIA: Australia’s northern third is covered with GP. However, the GPI only covers 

the northern coastline of Australia. In the surrounding waters, the GPI displays a better 

representation of GP spatial distribution and intensity. 
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FIG. 7. Spatial distribution of the MLPS GPI in the AA region (shaded) based on Trial 18 coefficients for the 34 year 

period of January 1979 – December 2012. GP distribution (black dots) is overlaid on top of the GPI distribution with 

varying sizes corresponding to differing numbers of GP occurring at any given point. The density values for the four 

different sized black dots are shown in the legend. 

 

Overall, the index does a very good job in reproducing the Indian, Asian, and Southern Ocean 

distributions and a good job in reproducing the Australian distribution. 

3. Zonal Distribution 

The spatial distribution observed in Fig. 7 presented itself in two strong zonal bands –north of 

the equator and south of the equator – with the equator having a noticable lack of GP. The zonal 

mean distribution is displayed in Fig. 8 with both the Southern and Northern hemispheric GP 

means aligning closely to the projected GPI zonal means with a correlation of 0.8802. 

  
FIG. 8. The zonal mean from the MLPS GPI (red dashed) and the actual TRACK-determined climatology (red solid) 

for the AA region. 
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4. Seasonal Climatology  

Climatologically, the GPI is able to closely replicate the frequency of MLPS GP over the 34 

year period (Fig. 9). It depicts the increase in MLPS GP during boreal summer and the decrease in 

boreal winter. As seen in Trial 18, correlations between the actual number of GP and the estimated 

number of GP from the GPI have a 0.9613 correlation for the Northern Hemisphere and a 0.9207 

correlation for the Southern Hemisphere.  

 
FIG. 9. The climatology from the MLPS GPI in the AA region is shown for the Northern (red dashed) and Southern 

(blue dashed) hemispheres. These values are compared to the actual TRACK-determined climatology for the 

Northern (red solid) and Southern (blue solid) Hemispheres. 

 

Additionally, the GPI predicts that the Southern Hemisphere had an average of about 118 GP 

less than the Northern Hemisphere, close to the actual 99 GP difference between the Northern and 

Southern Hemispheres. More statistics (Tab. 2) display the magnitude of difference between the 

actual GP count and the estimated GPI count. 

Difference Northern Hemisphere Southern Hemisphere 

Mean 38 24 

Minimum 1 4 

Maximum 139 101 

TAB. 2. Calculated from Fig. 9, the difference column in the above Table represents the mean, minimum, or 

maximum difference between the actual GP counts (solid lines, Fig. 9) and the estimated GPI counts (dashed lines, 

Fig. 9).  

 

5. Interannual Variability 

One way to test whether the Trial 18 coefficients are robust is to use those coefficients in 

conjunction with interannual data to try and recreate a similar spatial and a well-produced 

climatological distribution of MLPS. Three different methodologies were implemented: 1) using 
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the Trial 18 coefficients on data for all months covering the period January 1979 through 

December 2012 inclusively rather than on monthly mean data, 2) using the Trial 18 coefficients 

on data for the boreal and austral five-month summers of 1979 through 2012 inclusively rather 

than on data for all months, and 3) using the Trial 18 coefficients on the mean boreal and austral 

five-month summers from 1979-2012 inclusive. Spatially, each of these three methodologies 

performed well and was able to closely replicate the climatological monthly-mean spatial 

distribution as shown in Fig. 7. The spatial distribution observed once again presented itself in two 

strong zonal bands – one north of the equator and one south of the equator. The zonal mean 

distribution for each of the three methods performed aligned closely to the projected GPI zonal 

means. However, the interannual climatology in each of the three methods underperformed, as 

shown by the correlation coefficients in Tab. 3. Although values of the projected GPI were close 

to the actual GP distribution per year, the GPI lacked the magnitude of oscillations found in the 

GP distribution. 

Methodology NH Corr SH Corr 

1 0.1261 0.5923 

2 0.0742 0.5847 

3 0.0254 0.5337 

TAB. 3. Correlation coefficients calculated from the three methodologies detailed in Section IIIC5. SH GP counts 

and estimated GPI counts were much more correlated than that of the NH GP counts and estimated GPI counts. 

 

IV. An Indian MLPS GPI 

With the successful implementation of a Poisson regression to generate a GPI for MLPS over 

the AA region, the same regression was once again performed in the same manner as explained 

above but now for the geographically restricted region of the Indian Continent (5°N to 30°N and 

64°E to 100°E). The purpose behind this execution was to determine whether the MLPS which 

form over India do so under similar or different conditions than the MLPS that form in the greater 

AA region. This can be determined by examining the similarity between the results generated in 

the Indian Continent region to the results in Trial 18 corresponding to the AA region (Tab. 4). 

A. Executing the Poisson Regression: The Statistics 

From the statistics generated, a few important similarities appear. In both the AA region and 

the Indian Continent region, wind shear has a negative effect on the formation of MLPS, where 

the stronger the wind shear, the fewer the number of MLPS. Yet, the wind shear component from 

the Indian GPI is not that statistically robust since the corresponding error coefficient is larger in 

magnitude than the actual coefficient. For each of the other three variables in the index, positive 
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relationships were found in both regions, with low-level absolute vorticity having the largest 

influence on MLPS genesis. The magnitudes of each respective variable from both the AA and 

Indian GPI are similar, implying that MLPS which form over the Indian Continent region are 

formed under similar conditions as those that form in the entire AA region. 

Trial Constant Heat Humidity Vorticity Shear 
Statistics 

Location 𝒃 𝒃𝑬𝑪𝑨𝑷𝑬 𝒃𝑻𝑪𝑾𝑽 𝒃𝜼 𝒃𝑽 

Coefficients σ AIC 

AA -9.2115 0.0848 0.0893 0.3196 -0.0131 0.8104 22754 

India -8.0973 0.0735 0.0671 0.3212 -0.0011 0.8430 4440 

Standard Errors NH Corr SH Corr 

AA 0.1139 0.0048 0.0025 0.0062 0.0021 0.9613 0.9207 

India 0.1817 0.0112 0.0044 0.0157 0.0038 0.9537 ------ 

TAB. 4. Beta coefficient results from the Poisson regression between MLPS GP and meteorological variables. The 

first row corresponds to the Trial 18 results from Tab. 1B. The second line depicts the results from executing a 

Poisson regression on the four variables excluding dry GP in the Indian Continent region. 

 

B. Spatial Distribution 

Spatially, the GPI was able to replicate the distribution of MLPS GP over India, as shown in 

Fig. 4 and by the overlaying GP in Fig. 10. The maximum density boomerang shape over the 

Northern Bay of Bengal is consistent with the arched, observed distribution. The GPI performs 

well over the Indian Continent interior and also mimics the southwest band of storms off India’s 

western coast. Yet, the GPI underperforms to the northeast of Nepal, where it projects GP where 

there are none. 

 
FIG. 10. Spatial distribution of the MLPS GPI in the Indian Continent region (shaded) based on Tab. 3 coefficients 

for the Indian Continent region over the 34 year period of January 1979 – December 2012. GP distribution is 

overlaid on top of the GPI distribution (black dots) with varying sizes corresponding to differing numbers of GP 

occurring at each point. The density values for the four different sized black dots are shown in the legend. 
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C. Seasonal Climatology 

Once again, the GPI is able to climatologically replicate the MLPS GP frequency, this time 

over the Indian Continent region over the 34 year period (Fig. 11). As seen in Tab. 3, the correlation 

between the actual number of GP and the estimated number of GP from the GPI is 0.9537.  

 

FIG. 11. The climatology from the MLPS GPI in the Indian Continent region is shown for the Northern (red dashed) 

and Southern (blue dashed) hemispheres. These values are compared to the actual TRACK determined climatology 

for the Northern (red solid) and Southern (blue solid) Hemispheres. 

 

Additional statistics (Tab. 5) display the magnitude of difference between the actual GP count 

and the estimated GPI count. 

Difference Indian Continent region 

Mean 17 

Minimum 0 

Maximum 50 

TAB. 5. Calculated from Fig. 10, the difference column in the above Table represents the mean, minimum, or 

maximum difference between the actual GP counts (solid lines, Fig. 11) and the Estimated GPI counts (dashed lines, 

Fig. 11).  

 

V. A Global MLPS GPI 

This research recognized the value in having a global MLPS GP distribution, a scope not 

originally undertaken due to the breadth of the region and its different climates, topographical 

regions, and weather patterns. If a robust global MLPS GP distribution could be achieved and if 

this distribution were similar to those of the AA and Indian Continent regions, then it could be 

concluded that MLPS GP are governed by similar meteorological triggers worldwide. 
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A. Executing the Poisson Regression: The Statistics 

On a global scale, the Poisson regression statistics (Tab. 6) return similar beta coefficients as 

in the AA and Indian region cases. The absolute vorticity contribution was weaker when performed 

on a global scale but this was compensated by a larger contribution from ECAPE. Once again, 

total shear seemed to inhibit MLPS formation. 

Trial Constant Heat Humidity Vorticity Shear 
Statistics 

# 𝒃 𝒃𝑬𝑪𝑨𝑷𝑬 𝒃𝑻𝑪𝑾𝑽 𝒃𝜼 𝒃𝑽 

Coefficients σ AIC 

Global -9.7375 0.1273 0.0968 0.4053 -0.0263 0.5241 43666 

AA -9.2115 0.0848 0.0893 0.3196 -0.0131 0.8104 22754 

India -8.0973 0.0735 0.0671 0.3212 -0.0011 0.8430 4440 

Standard Errors NH Corr SH Corr 

Global 0.0570 0.0020 0.0012 0.0038 0.0013 0.9851 0.8873 

AA 0.1139 0.0048 0.0025 0.0062 0.0021 0.9613 0.9207 

India 0.1817 0.0112 0.0044 0.0157 0.0038 0.9537 ------ 

TAB. 6. Beta coefficient results from the Poisson regression between MLPS GP and meteorological variables. The 

first row corresponds to the results from executing a Poisson regression on the four variables excluding dry GP over 

the entire globe. The second and third rows are the results shown in Tab. 4, with the AA results being those from 

Trial 18 in Tab. 1B. 

 

B. Spatial Distribution 

Global spatial coverage performed almost as well as the spatial coverage in the AA and Indian 

cases. Breaking down the globe into its respective continents and major oceans from west to east 

in Fig. 12 allows for a more in-depth analysis of the distribution.  

EAST AFRICA: The GPI does not perform well over eastern Africa. It barely displays GP 

events near the eastern coastline. Rather the focus of the GPI is on the western coastline. 

INDIA AND ASIA: The spatial distribution in these regions are robust. There is one band of 

GP that was not able to be reproduced, located directly to the east of the northern Bay of 

Bengal and directed northeastward.  

INDIAN OCEAN – ARABIAN SEA AND BAY OF BENGAL: With most of the GP hugging the 

shoreline in the Arabian Sea, the GPI was able to display this distribution while also 

displaying a broader stretching distribution in the Bay of Bengal. 

OCEAN (SOUTHERN): As before, the distribution in the Southern Ocean is confined to a ten 

degree band, with the inner five degrees having a higher concentration of GP. The GPI 

index was able to replicate this pattern. 

AUSTRALIA: The GPI was unable to reproduce the southern extent of the GP distribution. 

Yet, it was able to spatially show the GP distribution off the northern coastline. 
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PACIFIC OCEAN: Reproducing the approximate shape of GP distribution, the GPI was 

concentrated around a ten degree band located just north of the equator from about the 

middle to eastern Pacific. In the Pacific Warm Pool region, a larger swath of ocean 

encompassed GP and the spatial extent of the GPI. In the Eastern Pacific, the GPI 

reproduced the maximum density distribution off the western coast of Central America. 

NORTH AMERICA: The lack of GPI is consistent to the little to no GP in North America.  

SOUTH AMERICA: The GPI did not reproduce the spatial distribution of GP in southern 

South America. Rather, it produced a maximum distribution in northern South America.  

ATLANTIC OCEAN: Similar to the Pacific Ocean distribution, the Atlantic Ocean 

distribution was mainly confined to a band located just north of the equator. Differing from 

the Pacific, however, the Atlantic band was approximately fifteen degrees wide. The 

Western Atlantic Ocean GP was overestimated by the GPI, as the GPI produced maximums 

in the vicinity of the Gulf Stream off the eastern United States. On the other hand, the 

spatial distribution in the eastern Atlantic was reproduced with a maximum centralized off 

the western coast of Africa. 

WEST AFRICA: The GPI did replicate the spatial distribution off the southern coast of 

western Africa. However, it could not replicate the GP in the central part of western Africa. 

 
FIG. 12. The global spatial distribution of the MLPS GPI (shaded) based on Tab. 5 Line 1 coefficients for the 34 year 

period of January 1979 – December 2012. GP distribution is overlaid on top of the GPI distribution (black dots) with 

varying sizes corresponding to differing numbers of GP occurring at each point. The density values for the four 

different sized black dots are shown in the legend. 
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Overall, the index does a very good job in reproducing spatial distributions over India, the 

Indian Ocean, the Southern Ocean, the Pacific Ocean, North America, and the Atlantic Ocean; a 

good job in reproducing spatial distributions over Australia; and a generally poor job in 

reproducing the spatial distributions over Africa and South America. 

C. Seasonal Climatology 

Once again, the GPI is able to closely replicate the frequency of MLPS GP over the 34 year 

period (Fig. 13) climatologically. It depicts both the increase and decrease in MLPS GP during 

summers and winters respectively. As seen in Tab. 6, correlations between the actual number of 

GP and the estimated number of GP from the GPI have a 0.9851 correlation for the Northern 

Hemisphere and a 0.8873 correlation for the Southern Hemisphere.  

 
FIG. 13. The global climatology from the MLPS GPI is shown for the Northern (red dashed) and Southern (blue 

dashed) hemispheres. These values are compared to the actual TRACK determined climatology for the Northern 

(red solid) and Southern (blue solid) Hemispheres. 

 

Additionally, the GPI projected that the Southern Hemisphere had an average of 197 GP less 

than the Northern Hemisphere, close to the actual 202 GP difference between the hemispheres. 

More statistics (Tab. 7) display the magnitude of difference between the actual GP count and the 

estimated GPI count. 

Difference Northern Hemisphere Southern Hemisphere 

Mean 40 45 

Minimum 4 9 

Maximum 119 141 

TAB. 7. Calculated from Fig. 13, the difference column in the above Table represents the mean, minimum, or 

maximum difference between the actual GP counts (solid lines, Fig. 13) and the Estimated GPI counts (dashed lines, 

Fig. 13).  
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VI. A Global TC GPI 

To determine whether MLPS genesis is statistically similar to TC genesis, the TC GP dataset 

obtained from Dr. Kerry Emanuel was used in place of the TRACK dataset in conjunction with 

the same methodology used in this paper to generate a TC GPI. Then, the TC GP were run with 

meteorological variables that more closely matched the Tippet et al. (2011) variables. The beta 

coefficients (Tab. 8, Lines 2 and 3) were compared to both the global MLPS GPI results (Tab. 8, 

Line 1) and the global TC GPI results found in Tippet et al. (2011; Tab. 8, Line 4).  

A. Executing the Poisson Regression: The Statistics 

In comparing results from this research’s two TC GPI runs to the global MLPS GPI and Tippet 

et al. (2011) results, a few important similarities and differences appear. First, near identical beta 

coefficients were obtained for humidity and shear coefficients in all four GPI results, with wind 

shear having a negative correlation to both TC and MLPS genesis. Also, near identical heat and 

vorticity coefficients were obtained for the MLPS GPI and the TC GPI which used this research’s 

methodology. On the other hand, both the TC heat and vorticity coefficients differ from the Tippet 

et al. (2011) index. With identical meteorological variables as used previously in this research, the 

heat coefficient was three times smaller and the vorticity coefficient was four times smaller than 

those in Tippet et al. (2011). When using sea surface temperature and clipped absolute vorticity, 

the heat coefficient was about six fifths times smaller and the vorticity coefficient was about three 

times smaller than the Tippet et al. (2011) coefficients. This implies that the Tippet et al. (2011) 

index’s heat and vorticity terms have a stronger correlation to TC formation. 

Trial Constant Heat Humidity Vorticity Shear 
Statistics 

Scope 𝒃 𝒃𝑬𝑪𝑨𝑷𝑬 𝒃𝑻 𝒃𝑻𝑪𝑾𝑽 𝒃𝑺𝑺𝑴/𝑰 𝒃𝜼 𝒃𝜼,𝟑.𝟕 𝒃𝑽 

Estimates σ AIC 

Global -9.7375 0.1273 ------ 0.0968 ------ 0.4053 ------ -0.0263 0.5241 43666 

TC -9.4635 0.1510 ------ 0.1011 ------ 0.3007 ------ -0.1421 0.4107 25232 

TC_Tipp -120.2764 ------ 0.3668 0.1060 ------ ------ 0.4040 -0.1433 0.4879 24541 

Tippet* -11.9600 ------ 0.4600 ------ 0.1200 ------ 1.1200 -0.1300 1.7000 12070 

Standard Errors NH Corr SH Corr 

Global 0.0570 0.0020 ------ 0.0012 ------ 0.0038 ------ 0.0013 0.9851 0.8873 

TC 0.0680 0.0027 ------ 0.0014 ------ 0.0034 ------ 0.0019 0.9291 0.9537 

TC_Tipp 2.8970 ------ 0.0097 0.0020 ------ ------ 0.0089 0.0024 0.9317 0.8657 

Tippet1 0.5400 ------ 0.0370 ------ 0.0067 ------ 0.0440 0.0100 ------ ------ 

TAB. 8. Global beta coefficient results from a Poisson regression. The first row corresponds to the results from 

executing a Poisson regression on the four variables excluding dry MLPS GP over the entire globe. The second row 

corresponds to the results from executing a Poisson regression on the four variables excluding dry TC GP over the 

entire globe. The third row corresponds to the results on executing a Poisson regression on four variables for TC GP 

as found in Tippet et al. (2011). 

 ____________________ 
1 Tippet et al. (2011) used slightly different variables under the same main headings. They used the heat variable relative sea surface temperature 

(SST) in C°, the humidity variable column integrated relative humidity from the Special Sensor Microwave Imager (SSM/I), the vorticity variable 

absolute vorticity modified to a threshold level of 3.5, and the same shear variable used by this paper. 
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B. Spatial Distribution 

Global spatial coverage performed similarly to the results found in the global MLPS GPI. Since 

TCs form over oceans only, continents are not discussed unless the GPI shows a distribution over 

a continent. Additionally, each region is discussed for Fig. 14A and Fig. 14B. If differences 

between plots occur, it is noted by the respective letter before a comment. If spatial distributions 

are similar in both figures, then no letter will be listed. 

INDIA AND ASIA:  

A | Despite no presence of TC GP over land, the GPI shows a strong spatial 

distribution in these regions, similar to the MLPS GP and MLPS GPI distributions. 

B | There is no GPI distribution over land, as SST is not defined over land. 

INDIAN OCEAN – ARABIAN SEA AND BAY OF BENGAL: The GPI does not reproduce the GP 

located within the Arabian Sea. It does, however, show a more broad stretching distribution 

in the Bay of Bengal. 

OCEAN (SOUTHERN): The distribution in the Southern Ocean is confined to a band.  

A | The GPI index was not able to replicate this pattern well. 

B | The GPI index was able to replicate this pattern well. 

AUSTRALIA: The GPI was able to spatially show the GP off the northern coastline. 

PACIFIC OCEAN: As with the global MLPS GPI, the global TC GPI was able to reproduce 

the approximate shape of the GP distribution throughout the Pacific Ocean.  

A | The distribution was unable to replicate the thin band of storms which stretches 

from the Pacific Warm Pool eastward across the Pacific Ocean. 

B | The distribution was able to replicate the thin band of storms stretching across 

the Pacific Ocean. 

ATLANTIC OCEAN: Similar to the Pacific Ocean distribution, the Atlantic Ocean GP 

distribution was mainly confined to a band located just north of the equator. However, 

unlike the global MLPS GPI, neither of the global TC GPI was able to replicate this band.  

A | There was no GPI distribution in the Atlantic Ocean or over the Gulf Stream. 

There was a GPI distribution in the Gulf of Mexico, however, which closely 

replicated the GP distribution 

B | The GPI distribution was too far south of the equator. But, the GPI distribution 

in the Gulf of Mexico and over the Gulf Stream was able to be reproduced.  
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FIG. 14A. The global spatial distribution of the TC GPI (shaded) based on Tab. 8 Line 2 coefficients for the 34 year 

period of January 1979 – December 2012. GP distribution is overlaid on top of the GPI distribution (black dots) with 

varying sizes corresponding to differing numbers of GP occurring at each point. The density values for the four 

different sized black dots are shown in the legend. 

 

 
FIG. 14B. The global spatial distribution of the TC GPI (shaded) based on Tab. 8 Line 3 coefficients for the 34 year 

period of January 1979 – December 2012. GP distribution is overlaid on top of the GPI distribution (black dots) with 

varying sizes corresponding to differing numbers of GP occurring at each point. The density values for the four 

different sized black dots are shown in the legend. 
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Overall, the indexes do a very good job in reproducing spatial distributions over the Indian 

Ocean, the Southern Ocean, and the Pacific Ocean; a good job in reproducing spatial distributions 

over eastern Atlantic Ocean; and a generally poor job in reproducing the spatial distributions over 

the majority of the Atlantic Ocean. It also predicted a spatial distribution over India and Southern 

Asia, distributions which could not occur for hurricanes, as shown in Fig. 14A since all variables 

used are defined over both ocean and land. Fig. 14B used variables similar to Tippet et al. (2011) 

including their heat variable, SST, which is only defined over ocean. Therefore, no GPI 

distribution could occur over land. This implies that MLPS form under similar conditions as TC, 

and if TC had the capability of forming over land, they would exhibit a similar distribution as the 

MLPS in the Bay of Bengal. Perhaps then although the MLPS and TC genesis seem to be governed 

by the same variables the specific dynamics of genesis still differ as TC do not form over land. 

C. Seasonal Climatology 

The global TC GPI is able to closely replicate the frequency of TC GP over the 34 year period 

(Figs. 15) climatologically. It depicts both increase and decrease in TC GP during summers and 

winters respectively. As seen in Tab. 8, Line 2, correlations between the actual number of GP and 

the estimated number of GP from the GPI has a 0.9291 correlation for the Northern Hemisphere 

and a 0.9537 correlation for the Southern Hemisphere.  

 
FIG. 15A. The global climatology from the TC GPI (Tab. 8, Line 2) is shown for the Northern (red dashed) and 

Southern (blue dashed) hemispheres. These values are compared to the actual TC climatology for the Northern (red 

solid) and Southern (blue solid) hemispheres as obtained from Emanuel. 

 

Additionally, the Southern Hemisphere was projected to have an average of 110 GP less than 

the Northern Hemisphere, close to the actual 115 GP difference between the hemispheres. More 
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statistics (Tab. 9) display the magnitude of difference between the actual GP count and the 

estimated GPI count. 

Difference Northern Hemisphere Southern Hemisphere 

Mean 53 26 

Minimum 8 1 

Maximum 117 52 

TAB. 9. Calculated from Fig. 15, the difference column in the above Table represents the mean, minimum, or 

maximum difference between the actual GP counts (solid lines, Fig. 15) and the Estimated GPI counts (dashed lines, 

Fig. 15).  

 

As seen in Tab. 8, Line 3, correlations between the actual number of GP and the estimated 

number of GP from the GPI has a 0.9371 correlation for the Northern Hemisphere and a 0.8657 

correlation for the Southern Hemisphere.   

 

FIG. 15B. The global climatology from the TC GPI (Tab. 8, Line 3) is shown for the Northern (red dashed) and 

Southern (blue dashed) hemispheres. These values are compared to the actual TC climatology for the Northern (red 

solid) and Southern (blue solid) hemispheres as obtained from Emanuel. 

 

Additionally, the Southern Hemisphere was projected to have an average of 80 GP less than 

the Northern Hemisphere, close to the actual 115 GP difference between the hemispheres. More 

statistics (Tab. 10) display the magnitude of difference between the actual GP count and the 

estimated GPI count. 

Difference Northern Hemisphere Southern Hemisphere 

Mean 68 39 

Minimum 1 9 

Maximum 166 82 

TAB. 10. Calculated from Fig. 15, the difference column in the above Table represents the mean, minimum, or 

maximum difference between the actual GP counts (solid lines, Fig. 15) and the Estimated GPI counts (dashed lines, 

Fig. 15).  
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VII. Future Work 

This research was performed with monthly mean data averaged over a 34 year period to create 

a GPI for MLPS. It was queried whether the use of daily data from the ERA-INT reanalysis 

datasets with a similar methodology would yield comparable results as those found when using 

monthly mean data. The one change to the methodology was the use of a logistic regression instead 

of a Poisson regression, since daily data cause values of GP to range between 0 and 1 for any given 

day. Yet, the resulting spatial distribution of MLPS in the GPI always clustered around the sharp 

topographical gradient of the Tibetan Plateau and Himalayas. As a result, a Poisson regression was 

used in conjunction with the daily data in an attempt to exactly match methodology used with 

monthly mean data, despite MLPS GP varying between 0 and 1 for any given day. Still, spatial 

bias towards topography was present. Further investigation into why these biases are occurring is 

needed and will be attempted in the future. 

VIII.   Conclusion 

This research was successfully able to create a MLPS GPI for those MLPS GP that occurred 

where the TCWV was greater than 35 kgm-2 on three spatial scales: the AA region, the Indian 

Continent region, and the entire globe. Each of the three GPI was able to spatially and 

climatologically replicate the actual distribution and trends of GP provided by Hurley over the 

January 1979 through December 2012 period. Since the coefficients obtained for the three GPI 

created were very similar, this implies that the genesis of moist MLPS worldwide is governed by 

the same properties, those being wind shear inhibiting and absolute vorticity having the highest 

contribution to MLPS genesis. Furthermore, by creating a TC GPI and comparing those results to 

that of the global MLPS GPI and the Tippet et al. (2011) results, it was shown that if TC could 

form over land, then the TC spatial distribution would mimic that of the MLPS distribution over 

the Bay of Bengal. Additionally, the similarity between the TC GPI and the MLPS GPI coefficients 

implies that the underlying causes of genesis for TC and MLPS are similar. 
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