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Abstract 

Mountains have a significant effect on the regional distributions of precipitation, 

producing high amounts of precipitation on windward slopes and low amounts of 

precipitation on leeward slopes. As an air mass is orographically forced upward, it 

systematically loses water vapor, preferentially raining out the heavier isotopes, H2 (D) 

and O18. This isotopic fractionation results in isotopic values becoming more negative at 

increasing levels of elevation. The strong correlation between isotopes in precipitation 

and elevation has led to a strong interest in the use of stable isotopes for quantitative 

measurements of paleoelevation. While various empirical estimates exist between 

modern elevations and corresponding isotopic values of precipitation, this study takes a 

theoretical approach. The linear theory of orographic precipitation (LTOP) developed by 

Smith and Barstad (2004) provides a solution for orographically forced precipitation 

given seven unknown atmospheric parameters. In this study, we use a modified version 

of LTOP to develop a model that estimates stable isotopic values given modern elevation 

data. Furthermore, we examine for the point at which isotopic fractionation occurs by 

comparing two cases, a condensation-equilibrated (CE) case and a precipitation-

equilibrated (PE) case. Using 169 existing sample data points from the Patagonian 

Andes, we find values for eight unknown parameters that result in the best-fit 

relationship between estimated isotope values and observed sample isotope values. 

Results from our model support a PE case for fractionation, which agrees with previous 

estimates of fractionation occurring at 1 to 2 km above sea level. Moreover, for the 

best-fit condition, the model estimates 61.1% of the variance for δD and 48.1% of the 

variance for δ18O, supporting the continuation of development of this model for future 

work in elevation estimates. 
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1. Introduction 

 

While numerous studies have found qualitative measurements of the paleoelevation 

of mountains, due to the difficulty in setting appropriate parameters and finding reliable 

methods, studies on quantitative paleoelevation measurements have only arisen in the 

last few decades. Quantitative measurements of paleoelevation are of great interest to 

scientists because elevation provides constraints on geodynamic processes happening in 

mountain belts (Rowley & Garzione 2007), influences biological events such as speciation, 

and has an impact on global and regional climate. Methods that have been developed 

include basalt vesicularity (Sahagian & Maus 1994), paleobotany (Forest & al. 1999) and a 

stable isotopes approach (Poage & Chamberlain 2001). Stable isotope-based analysis has 

been used for both empirical and theoretical estimates of paleoelevation (Rowley & 

Garzione 2007), and is a promising approach for further paleoaltimetry studies.  

The stable-isotope based approach relies on the fractionation of H and 0 isotopes in 

orographic precipitation. As an air mass is forced to ascend up a mountain slope, it 

experiences adiabatic expansion and cools. Air becomes saturated with water vapor faster 

at cooler temperatures, causing the water vapor to condense as it rises (Rowley & 

Garzione 2007). The heavier isotopes of water, 18O and D fall out first because they form 

stronger bonds and preferentially move into the lower energy level, the liquid phase. With 

increasing altitude, the air mass becomes depleted in 18O and D resulting in more negative 

isotope ratio values in precipitation and surface waters (Poage & Chamberlain 2001). This 

effect has been described using the one-dimensional Rayleigh distillation model where α is 

the equilibrium fractionation factor which can be expressed for oxygen by the equation, 

 

                                          .   (1) 

 

Rp represents the ratio of 18O/16O in precipitation while Rv represents that ratio in water 

vapor. The same relation can be used for D/H fractionation (Rowley & Garzione 2007). 

 This relation has been used to establish an empirical relationship between 

elevation and isotopic lapse rates of δ18O in precipitation and surface waters. Poage and 

Chamberlain found that in regions around the world other than those with extreme 

latitudes, the modern isotopic lapse rate is approximately .28ppm/100m (2001). While 
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this relationship gives a simplified version of orographic fractionation, it does not 

incorporate all the complexity that is involved (Risi & al. 2008). A linear theory of 

orographic precipitation that captures airflow dynamics, condensed water advection, and 

downslope evaporation was developed by Smith and Barstad (2004). The model presents 

a solution for the precipitation field of a complex region using eight unknown parameters: 

elevation, average wind speed, wind direction, initial isotopic composition of water vapor, 

temperature at sea level, humidity at sea level, lag time for condensation and fallout, and 

the moist Brunt-Väisälä frequency which measures the atmosphere’s resistance to lifting 

(Smith & Barstad 2004). In 2007, Smith and Evans applied the model to stream water 

samples at varying elevations in the Patagonian Andes to test the model against real data. 

They found that their data created a good agreement between estimated isotope values 

and observed isotope values, but did not agree with previous samples taken by Stern and 

Blisniuk (2002).  

 This study uses a modified version of LTOP to model the relationship 

between stable isotopes from precipitation and mountain elevation. Three main questions 

will be addressed in this thesis. The LTOP model assumes a constant precipitation field for 

a region, although seasonality and natural variances such as storms have an effect on real 

terrain. We will examine whether we can find a mean precipitation rate that accurately 

represents the actual intermittent precipitation rate. Furthermore, water vapor and 

condensates are thought to be in quasi-equilibrium with the ability to continuously 

exchange isotopically. Therefore, we investigate where isotopes get set during the 

process. The two-end member cases are a condensation-equilibrated (CE) case and a 

precipitation-equilibrated (PE) case. The CE case assumes fractionation occurs when 

condensates form while the PE case assumes fractionation occurs when hydrometeors 

form. The final question asked in this thesis is whether we can find a general solution for 

the Stern and Blisniuk (2002) and Smith and Evans (2007) stable isotope data from the 

Patagonian Andes.  

   

2. Model Formulations 

2.1 Model Qualities and Parameters 
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 A common simple method for estimating the distribution of precipitation in complex 

regions relies on estimates from the upslope model that uses regional slope and wind speed 

to determine the condensation rate above the terrain (Smith 1979). Even models that 

include advection of hydrometeors have several limitations in their application to real 

terrain. They assume instantaneous fallout of condensed water, constant orographically 

forced vertical velocity, and precipitation as only influenced by upslope regions (Smith and 

Barstad 2004). 

 Smith and Barstad’s LTOP model addresses these assumptions and provides a 

method for determining a precipitation field for real complex terrain. It determines eight 

unknown parameters that describe the local atmospheric conditions of the region: average 

wind speed, wind direction, humidity and temperature at sea-level, the isotopic value of the 

initial vapor source, the hydrostatic stability of the atmosphere or the moist Brunt-Väisälä 

frequency, and delay times for formation of condensates and the fallout of hydrometeors 

(Smith and Barstad 2004). The delay times for condensation and fallout, Τc and ΤF 

respectively, have been estimated to range from values of 200 to 2000s (Jiang and Smith 

2003) and address the upslope-advection assumption of instantaneous fallout. Furthermore, 

mountain wave theory states that the vertical wind velocity of an air mass experiencing 

forced ascent will oscillate or decay depending on the stability of the atmosphere, the width 

of the mountain along the wind path, and the wind speed. The LTOP model is solved using 

the Fourier Transform to bring the variables into the wave domain. By solving for a vertical 

wavenumber and using the moist Brunt-Väisälä frequency, the stability of the atmosphere 

and its effect on air flow such as upwind tilting can be accounted for (Smith and Barstad 

2004). The final solution in the LTOP model accounts for airflow dynamics, cloud delays and 

advection, 

 ̂    [(
     

 
) (

   

                 (       )
)]  ̂   ,  (2) 

where P(k) is the precipitation field, υ is wind speed, Γm is the moist adiabatic lapse rate, γ is 

the environmental lapse rate, h(k) is topography, Hw is the depth of the moist layer,  m is the 

vertical wave number, and k is the intrinsic frequency. 
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 Working off of the theoretical approach for the distribution of precipitation from the 

Smith and Barstad LTOP model, Dave Auerbach, Mark Brandon and I created a MATLAB 

program that relates stable isotope values to modern elevation given real data. Specifically, 

our model takes in real sample elevation data and given values for the eight unknown 

parameters, estimates isotope values for the sample locations. We test our model against 

the two previous studies (Stern and Blisniuk 2002; Smith and Evans 2007) to compare 

against the estimated stable isotope values. Comparing the model-estimated and observed 

sample isotope values and using climate dynamic data in the Patagonian Andes from 

previous studies (Garreaud 2013; Stern and Blisniuk 2002; Smith and Evans 2007), we find 

the best-fit parameters for our model. 

Our model differs in its treatments of the available water vapor term, ρs0, by allowing 

it to vary along the trajectory path of the air mass, accounting for the reduced water vapor 

flux caused by lower amounts of water vapor available as it falls out as precipitation. While 

Smith and Evans addressed this issue by making local precipitation proportional to the local 

water vapor (2007), we make local condensation proportional to local water vapor. This 

adjustment accounts for local precipitation being advected from the original site of 

condensation. 

 Furthermore, studies vary in their interpretation of the point at which isotopes are 

set. The Rayleigh distillation model assumes that no isotope exchange occurs between cloud 

droplets and water vapor and that isotopes are set closer to the time of condensate 

formation (Stern and Blisniuk 2002). Another approach is that isotopes are set at cloud base 

about 1 to 2 km above sea-level, assuming that fractionation occurs closer to the time of 

hydrometeor formation. In order to examine where fractionation occurs in the atmosphere, 

we analyze two end-member cases, a condensation-equilibrated (CE) and a precipitation-

equilibrated (PE) case. Our model calculates the estimated temperature for the formation of 

condensates and hydrometeors which is then used when estimating the isotope values. We 

then compare the isotope values estimated using the two cases against the sample isotope 

data and interpret the results. 

 Similar to the original LTOP model, our model takes in atmospheric data assuming 

certain uniform and constant parameters. While the parameters can be manipulated for 
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each trial, the wind speed, wind direction, moist stability of the atmosphere (Nm), and delay 

times are taken to be constant throughout each trial. 

 The moist Brunt-Väisälä frequency, Nm, is given by (Durran and Klemp 1982) 

   √
 

 
      ,  (3) 

where T is absolute temperature, Гm is the moist adiabatic lapse rate,   is the observed 

lapse rate, and g is gravitational acceleration. The value of Nm also relates to the non-

dimensional mountain height, 

    
      

 
,  (4) 

where hmax is the maximum elevation of the mountain and U is the wind speed 

perpendicular to the mountain slope. When Hn < 1, the atmosphere is said to be unstable 

allowing an air mass to pass freely over the topography with constant wind velocity. As Hn 

approaches 1, the atmosphere becomes more stable and resistant to flow, a process 

referred to as blocking. Blocking occurs in mountains with relatively high topography, or 

areas of low wind speed causing the air mass to stagnate along its path, flow backward or 

flow around the mountain (Galewsky 2009). 

2.2 Calculating the Vertical Wind Speed 

 The topography of a given mountain region is represented as h(x,y) and when Hn < 1, 

an unstable atmosphere, forced uplift mainly affects the vertical velocity of the air mass.  

The vertical velocity field, w(x,y,z) is the velocity of an air parcel that is forced vertically 

upward. The velocity field is solved following linear Boussinesq mountain wave theory 

(Smith 1979), with the result being calculated in the wave domain. The Fourier transform is 

applied to h(x,y) and w(x,y,z) to obtain their wave counterparts h(k,l) and w(k,l,z). MATLAB 

has a built-in function called the fast Fourier transformation (fft2) and its inverse (ifft2) that 

takes advantage of symmetric properties of complex roots and acts on the data in terms of 

periodicity (Shatkay 1995). The solution for vertical velocity in the wave domain is given as, 

w(k,l,z) = iσeimzh(k,l),  (5) 
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where the intrinsic frequency (rad/s) σ = ku + lv, i = √   , and h(k,l) is the mountain wave 

transform of the topography h(x,y). Although, the equation accounts for the effects of 

topography on air flow, its scale is ignored so z can be thought of as zero (Smith and Barstad 

2004). The vertical wave number is given as, 

       √        
     

 

         ,  (6) 

where   is the Coriolis frequency (rad/s). It is solved for with 

                             .  (7) 

Smith and Barstad determined that for mountains with horizontal scales between 100 m 

and 100 km, the Coriolis force can be neglected (2004). 

Smith and Barstad simplified the equation to include only the k wave domain 

component reducing        to      (2004). This assumes a two-dimensional hydrostatic 

atmosphere. In our model, we keep the original flow path equation, to account for flow 

affected by topography along and across its path. Crapper found that vertical wind speed 

has horizontal components caused by diverted air from the trajectory path so we keep m in 

three dimensions (1959).  

 In the initial trials of the model, Nm ranged from .0005 s-1 to .01 s-1  but remained 

uniform throughout the given trial. The σ2 was determined by the wind speed given to the 

model and by a program that calculated the intrinsic frequency values on a point on the 

given flow path. Thus, the σ2 changed for each point during the given trial. 

 The vertical wave number is influenced by the relationship between σ2 and Nm
2, so 

the wind speed and Brunt-Väisälä frequency have a strong effect. For instance, if σ2 > Nm
2, 

(6) reduces to   √           ,   becomes positive imaginary, and the forced air mass 

decays as it moves upward. If σ2 = Nm
2,   becomes zero and the forced waves will rise in 

phase, but will not decay. If σ2 < Nm
2,   becomes real signifying a stable atmosphere in 

which the forced waves propagate upstream. In this case, the air piles up on the windward 

side of the mountain, and the isotopic signal of the orographic precipitation may appear 

lighter (Nappo 2002).  
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2.3 Calculating the Precipitation Field 

The precipitation field is calculated using the version of the linear theory of 

orographic precipitation developed by Smith and Barstad (2004) and modified by Mark 

Brandon. At sea level (h=0), ρs0 is solved by 

    
      

    
  , (8) 

Where es is the partial pressure of water vapor, T0 is temperature (K) at sea level, and Rv = 

461 J kg-1K-1
 and represents the partial law constant for water vapor. The value for ρs 

decreases with increasing elevation and is proportional to e-z/Hw. In our calculations, water 

density is defined by 

                         . (9) 

The density for initial water vapor available, 0s , is treated differently in our model 

than in the earlier Smith and Barstad and Smith and Evans versions. It varies spatially along 

the flow path and accounts for changes in the water vapor flux caused by precipitation of a 

lifting air mass.  In the original LTOP model (2004), the water vapor flux was taken to be 

proportional to the flux at the original vapor source. The flux is in fact reduced as the air 

mass loses the available water vapor along its path, so this approach can overestimate the 

amount of precipitation occurring at a given elevation. Smith and Evans improved this 

characteristic by making the water vapor flux proportional to the local precipitation rate 

(2007). This approach provides a better estimate for the flux at a given elevation, but it does 

not account for local precipitation being advected from the point of condensation. In our 

model, we make the water vapor flux proportional to the local condensation based on 

modifications calculated by Brandon.  

The source rate, represented by S(x,y), is the initial condition at which water is 

produced. Source rate depends on vertical wind speed, w(x,y,z), and performing vertical 

integration as it is orographically lifted gives the relationship, 

        
          

   
∫          

  
  

⁄   
 

 
.  (10) 
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The ρsr(x,y) term can be estimated with the introduction of a relative  variable for 

source rate, 

 ̂       
      

        
  

  

   
∫          

  
  

⁄   
 

 
, (11) 

which is in the wave domain and can be solved by using the Fourier Transform.  The only 

variable that varies in the horizontal is the vertical wind speed, and it can be transformed 

into the wave domain by combining (5) and (11), which gives 

 ̂       [(
  

 
)

  

      
]  ̂     . (12) 

 Incorporating the solution of  ̂      , the relative precipitation rate can be found by 

adding the time-delay equations for condensation and fallout using the LTOP equation, 

 ̂       [(
  

 
) (

  

                (      )
)]  ̂     . (13) 

 The absolute precipitation rate is found by taking the maximum value of (13), 

                              ,  (14) 

where the max function ensures positive precipitation (Smith & Barstad 2004). 

 Smith and Evans accounted for the change in available water vapor by making the 

local water vapor flux (F(x,y)) proportional to the local precipitation (P(x,y)). The local water 

vapor flux can be represented by 

                   . (15) 

The Hw and U terms are spatially uniform while     varies in space which accounts for the 

decrease in water vapor available as the air experiences orographic precipitation. 

 In order to solve for psr, we integrate back along the path (s) in the given wind 

direction. The local precipitation rate is now determined by P(s) where s=0 represents the 

local region of interest and increases in the downwind direction. Differentiating (15) gives  

     

  
     

       

  
.  (16) 

Substituting s for the coordinates in (15) we get, 



12 
 

      
     

  
          .  (17) 

Combing (16) and (17) results in  

       

      
  

     

   
  ,  (18) 

Which when integrated provides the change in water vapor density along the wind path (s) 

where s = -  equals the initial upstream value, 

                 
 

   
∫     

      

  
 . (19) 

 The final water vapor density is represented by ρs0(k,l) in the wave domain. This 

approach provides the most accurate solution for the resulting precipitation field and is 

used to solve for the maximum precipitation rate (14).  

2.4 Estimating Stable Isotopic Values 

 As mentioned earlier, during orographic precipitation, a lifting air mass becomes 

isotopically lighter as the heavier isotopes of precipitation preferentially fallout. In the case 

of Rayleigh distillation, fractionation is set closer to the formation of hydrometeors (Stern & 

Blisniuk 2002). This process is due to a constant exchange of molecules between the water 

vapor and the hydrometeors until fallout of the hydrometeors occurs. Another case 

assumes that fractionation occurs closer to formation of condensates. This approach could 

be more plausible for ice because it exchanges more slowly with water vapor than with 

water (Rowley 2002).  In order to test the validity of these two approaches we establish two 

end member cases, a condensate-equilibrated case (CE) and a precipitation-equilibrated 

case (PE). The CE case represents the case in which isotopes are set at the formation of 

condensation while the PE case represents the case in which isotopes are set at the 

formation of hydrometeors. The limiting temperatures for equilibration are calculated for 

each case and compared in our model. For the CE case, the temperature for the source, Tp, 

is used while for the PE case, the land surface temperature, Ts, is used. Our model assumes 

the atmosphere is saturated vertically, so the isotopic composition of the hydrometeors in 

the latter case is set close to land surface temperature. 

 The equations for the two limiting temperatures are solved for as follows, 
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                                , (20) 

                      ,  (21) 

where zp is the mean height of precipitation given by, 

         ∫             
 

 
 ∫            

 

 
. (22) 

 The isotopic composition is solved for both of these cases using the Rayleigh 

fractionation equation (1). More general forms for the mass ratios of stable isotopes in the 

vapor and hydrometeor are given as follows, respectively, 

   

  
         

  

 
,  (23) 

            (24) 

F represents the water-vapor flux, and α is the temperature-dependent fractionation factor. 

The fractionation factor is solved for differently depending on whether it is in the ice or 

water state. The final solutions for the isotopic values of oxygen and hydrogen are solved for 

using experimentally determined relationships by Horita and Wesolowski (1994) and Ellehoj 

& al (2013). The outputs of the model give samples in standard delta notation, 

  
       

         
  , (25) 

 The final solution for the isotopic composition of precipitation at a given sample is 

given by, 

        [
    

     
]         

 

   
∫              

     
 

  
, (26) 

where the variable s represents the flow direction. 

3. Application of the model to the Patagonian Andes 

3.1 Study Region 

The study site is located in the Patagonian Andes, a diverse mountain range divided 

into Chile on the West and Argentina on the East. The Patagonian Andes lie in a region 

where the wind is predominantly westerly due to the Coriolis effect that is caused by Earth’s 



14 
 

rotation. This region is a strong example of the rain shadow effect with up to 6000 mm of 

rain fall per year on the windward side of the mountain while only 300 mm fall per year on 

the leeward side (Smith & Evans 2007). The western coast extends out to the Pacific Ocean, 

the main water source for the precipitation falling on the mountain, which avoids possible 

complications that could arise from mixed water sources. Furthermore, the modern 

elevation reaches around 2000 m, which is high enough to have a significant effect on uplift, 

but not too high to cause blocking or wind divergence around the mountain (Stern & 

Blisniuk 2002). This region is a straightforward example of orographic precipitation and has 

been studied greatly for is orographic effects. 

Smith and Evans collected 71 stream samples in the Patagonian Andes between 40°S 

and 47°S recording δ18O values, δD values, and elevation (2007). These samples used LTOP 

and found a best-fit relationship between their model results and the observed results with 

a co-efficient of efficiency of 0.530 for deuterium. However, they were unable to find a 

good-fit between their data and that of Stern and Blisniuk collected between 47°S and 48°S 

(2002). In this study, we combine all 169 sample points collected by the two studies and 

apply the modified LTOP to the analysis to find whether our model can produce a best-fit 

result that accounts for a good proportion of variance for all the data (Figure 1).  
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Figure 1 Stern and Blisniuk (red) and Smith and Evans (blue) samples presented on a topography field map of the 
Patagonian Andes. 

 

3.2 Establishing Azimuth for Wind Direction 

 The wind speed hitting the mountain is taken to be independent of time and space, 

represented by the vector U = Ui + Vj (Smith & Barstad 2004).   An estimate of wind 

directions of the Patagonian Andes was determined by Smith and Evans using NCEP-NCAR 

analysis from 2005 (Figure 1) (2007). Wind predominately came from the West remaining 

between 0 and 180 degrees. 
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Figure 2: Coastal wind rose from the southern Andes where length of the radial line translates to frequency of wind 

direction and number refers to wind speed (m/s). Smith and Evans 2007 

In order to incorporate the Patagonian Andes samples into our model, initial sample 

point locations were given as longitude and latitude points as separate data sets. We 

decided to create a grid with location in values of Northing and Easting with (0,0) located at 

the center of the 169 sample points. The padding of the grid box was chosen to be able to 

create a transect that started from the water source, the Pacific Ocean and went in the 

direction of an estimate of the maximum scope of westerly winds the Patagonian Andes 

receives.  

 The next step was to find a range of azimuth values that captured the maximum and 

minimum wind direction for the grid box. The goal was to find an upper and lower bound for 

wind trajectory lines that ran through each sample point entering through the western 

border and leaving through the eastern border of the grid box. Keeping wind direction 

within this range ensures that each trajectory line begins in the Pacific Ocean and thus uses 

the moisture source for its initial conditions. 

 We noted that the maximum and minimum directions could only be azimuths for a 

line that connected a sample point location to one of the four corners. Furthermore, each 

sample point only had one maximum and minimum azimuth value. In order to find these 

values for each sample point, the grid box was divided into quadrants (Figure 3).  
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Figure 3 Azimuth sections labeled in counterclockwise order starting with the western quadrant as Quadrant A 

A test was conducted comparing the azimuth values of the two lines dividing the grid box 

into quadrants and azimuths of a line from each sample point to the Northwest corner and a 

line from each sample point to the Southwest corner of the grid box. This placed each 

sample point into one of the quadrants. The minimum and maximum azimuth values for 

quadrants A through D are given as follows (Table 1): 

Table 1 Lines for maximum and minimum azimuth through each sample point 

Quadrant Maximum Azimuth Minimum Azimuth 

A (Sample, Northwest corner) (Sample, Southwest corner) 

B (Southeast corner, Sample) (Sample, Southwest corner) 

C (Southeast corner, Sample) (Northeast corner, Sample) 

D (Sample, Northwest corner) (Northeast corner, Sample) 
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 The maximum and minimum azimuth was found by comparing the maximum and 

minimum azimuths of each sample point. This method is transferable to other grid locations 

and could be used to determine a range of wind directions for other orographic regions. 

 The initial calculation involved the range of azimuths appropriate for the possible 

wind direction for the Patagonian Andes. The resulting azimuth range was 45.0633° to 

136.6426°, with azimuth set as 0° at North and 90° at East edge (Figure 4). This range is a 

conservative estimate of possible wind directions that are present in the Patagonian Andes 

region. 

  

Figure 4 Wind paths through each sample point at the maximum and minimum azimuth values 

 The wind trajectory lines were then segmented into 1 km-grid spacing in order to be 

able to integrate back along the path in later calculations. 

3.3 Finding the best-fit parameters 

 Inputting elevation data, h(x,y), from the Stern and Blisniuk (2002) and the Smith and 

Evans (2007) sample points, we were able to test 169 sample points. The Patagonian Andes 

region of study has a horizontal scale greater than 300 km, thus the Coriolis force was 
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included in the calculations. The latitude value which is used as input to find the effects of 

the Coriolis force was estimated as 45° based on the average latitude of the sample points. 

Using equation (7), the Coriolis frequency (f) for our trial runs was 1.03x10-4 rad/s. The initial 

isotope values were estimated as -52.8 ppm for D and -5.3 ppm for 18O. The values for wind 

speed, wind direction, delay time, surface temperature and the moist Brunt-Väisälä 

frequency were initiated at the beginning of each run. An initial function calculated Гm,  , 

Hw, and ρs0 using sea surface temperature (T0) and Nm.  

 The input parameters were tested for by comparing the sample isotope values at a 

given elevation to the isotope values estimated by the model. The values were compared by 

first calculating a standard deviation for each with 

               √
 

     ⁄ , (27) 

where δRs is the sample isotope value, δRE is the estimated isotope value, and n is the sum 

of samples. Note, the denominator of the square root is subtracted by 8 due to the number 

of unknown parameters used in the model. The lower the SD value, the better the model 

agrees with the observed data. Once the SD value was calculated, the R-squared 

relationship could be found with 

                              ,  (28) 

where SDobserved is equal to the standard deviation of the total observed isotope values, D = 

21.50183 and 18O = 2.731646. The greater the R-squared value, the better the variance of 

our model agreed with the natural variance of the sample data. 

 The model was run approximately 100 times to check for the best-fit 

parameters with differing input values for U, azimuth,  f and  c, T0, and Nm. Each trial took 

approximately 45 seconds to complete when all figures were included. The values for U, 

azimuth and T0 were estimated using PRECIS-DGF results from the year 1980-1990 for the 

Patagonian Andes region (Garreaud 2013). Smith provided limits for the horizontal wind 

components as 1-50m/s, Nm as 0.01s-1, and  f and  c as 200-2000s (2006). In the initial trails, 

azimuth = 125°,  f and  c = 800, T0 = 280, and Nm = 0.001s-1. Wind speed was varied between 

5m/s and 50m/s. Next, the azimuth was changed between 90° and 135° following the upper 
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limit of the original azimuth limit for our model’s location and a Northwesterly correlation 

between precipitation amount and wind direction developed by Garreaud (2013). Smith and 

Evans found that the values for   do not experience drastic changes with altering values for 

fallout and condensation (2007). Rather, the sum of the   values is important. The delay 

time values in the trials ranged from 600 s to 800 s. The value of T0 ranged from 267K to 

283K based on annual temperature values estimated using PRECIS=DGF data (Garreaud 

2013). Estimates for Nm ranged from .0005 s-1 to .01 s-1 which has a lower bound than the 

original limit proposed by Smith for LTOP (2006). This range was determined based on an 

estimate of Nm = 0.003 s-1 for the Patagonian Andes by Smith and Barstad (2007).  

In every trial, the δD and δ18O for the CE and PE cases were estimated at each 

sample elevation. The CE case and PE case were distinguished by the use of either the Tp or 

Ts temperature, respectively to solve for the stable isotopes in each. The Tp temperature 

was estimated at the precipitation height solved by equation (22). The model solved for the 

temperature of each case on the model grid producing cooler source temperatures (Tp) and 

warmer surface temperatures (Ts), as expected (Figure 5). 
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Figure 5 (Right) Mean precipitation temperature (Tp) for the CE case under best-fit parameters.  (Left) Mean surface 
temperature (Ts) for PE case under best-fit parameters. 

       

The model program returned an estimate for the scale height, Hw, regional mean 

precipitation height, and a standard deviation value for δDCE, δ18OCE, δDPE, and δ18OPE. The 

parameters for the best-fit solution support the PE case, while the CE case was unsuccessful 

in creating a meaningful agreement between the estimated and observed isotopic values 

(Figure 6). 
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Figure 6 Comparison of the correlation between observed stable isotopes and estimated stable isotopes for the CE and 
PE cases. The parameters given represent the best-fit case. The blue represents δD values while the red represents δ18O 

values. 

 The best-fit solution was determined by the R-squared value for δDPE because it 

gave the best agreement to the model. All the trial runs produced negative R-squared values 

for the CE case, presenting no correlation between the model results and the observed 

results. The best-fit parameters for the model were a wind speed of 30 m/s, azimuth of 

132°,  total of 1450 s, T0 of 274 K, and Nm of 0.001 s-1. Under these parameters, the model 

produced a linear fit of 61.1% for δD and 48.1% for δ18O (Table 2). 

Table 2 Sample trial runs for the model with Stern and Blisniuk (2002) and Smith and Evans (2007) Patagonian Andes 
sample data. The first values indicate the best-fit parameter case. The upper and lower range values for each value that 
was varied between trials is shown as well (bold). These trials were run with the Coriolis Frequency included. 

U(m/s) Azimuth(deg)       (s) T0 (K) Nm(s-1) R2 δDCE R2 δ18OCE R2 δDPE R2 δ18OPE 

30 132 725 274 0.001 -8.21457 -4.46666 0.610702 0.480648 

5 132 725 274 0.001 -8.17241 -5.05569 0.465179 0.326975 

50 132 725 274 0.001 -4.92715 -2.58393 0.57558 0.438468 

30 90 725 274 0.001 -5.33955 -2.92699 0.422675 0.286272 

30 135 725 274 0.001 -7.24055 -3.91293 0.529095 0.439762 

30 132 600 274 0.001 -8.61027 -4.62015 0.573676 0.475761 

30 132 800 274 0.001 -7.93041 -4.32568 0.599973 0.464141 

30 132 0 274 0.001 -92.9856 -54.4171 -43.9167 -28.3942 

30 132 725 267 0.001 -8.4931 -4.5859 0.401515 0.42181 

30 132 725 280 0.001 -8.4096 -4.59054 0.549355 0.426361 

30 132 725 274 0.0005 -8.80569 -5.19936 0.577566 0.492655 

30 132 725 274 0.01 -17.3297 -11.5549 -0.46966 -0.33058 
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 Table 2 also shows the effects and trends of higher and lower values for each 

parameter. Due to the negative results for the CE case, only the PE case was analyzed for 

the effects of changes in the parameters on the R-squared values.  Higher wind speeds 

resulted in a better fit than lower wind speeds. Wind directions from a Northwesterly 

direction fit better than those from a Westerly direction. The   range in this model did not 

have a significant effect when changing from higher to lower values. However, values of 0 s 

did result in a bad-fit for both cases, supporting the importance of the delay times in the 

model. Higher temperature gave a better fit for δDPE, but did not experience a significant 

change for δ18OPE than lower temperatures (T0 < freezing). The Nm values had a large effect 

on R-squared values, with a value of 0.01 s-1 resulting in negative values. 

 The model calculated a value of 2024 m for the scale height, Hw, and 1172 m for the 

mean precipitation height. The model also returned values for the vertical wind speed for an 

air mass at any given location on the grid map (Figure 6). 

     

Figure 7 Vertical wind speed predicted by the model under best-fit parameter case in comparison to topography of the 
region. 
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The vertical wind speed ranges from approximately -40 m/s to 50 m/s. For an incoming 

speed of U = 30 m/s, values estimated for the vertical wind speed above do not agree with 

the notion that the wind speed will either stay constant or decay in its vertical component. 

The graph does show a majority of points falling within the 20 m/s to -10 m/s range. 

One of the aims of the study was determining whether the model can accurately 

represent intermittent rain with a mean precipitation rate. The relative precipitation rate 

was calculated in proportion to the available water vapor at the location of precipitation 

(Figure 7). 

        

Figure 8 Relative precipitation rate predicted by the model under best-fit parameter case in comparison to topography 
of the region. The precipitation rate is relative to available water vapor at the given location. 

 The orographic precipitation effect is captured with the model with more precipitation 

falling on the windward side of the mountain as expected and less precipitation falling on 

the leeward side. 

4. Discussion  
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This project sought to answer three main questions: whether the model could 

accurately represent the precipitation of a complex region with intermittent rain patterns, 

whether isotopes are set closer to the time of condensate formation or closer to the final 

formation of hydrometeors, and whether it could produce a common best-fit parameter for 

the Smith and Evans (2007) and Stern and Blisniuk (2002) sample sets. 

The model does a good job of estimating the relative precipitation rate of the 

Patagonian Andes. This region has a strong and steady wind pattern that moves from West 

to East creating more precipitation on the Western side of the mountain and a rain shadow 

on the Eastern slopes. For the case of the Patagonian Andes, the model is able to reproduce 

the orographic effect seen in the region. As mentioned earlier, the Patagonian Andes are a 

simple case of atmospheric flow so the model may not be as effective in more complicated 

terrains. This result does show that even with intermittent rain and seasonality, the 

Patagonian Andes do have a mean precipitation rate that can represent the region for input 

in stable isotope calculations.  

Furthermore, the results support a precipitation-equilibrated (PE) approach to 

isotopic fractionation. In this case, hydrometeors and water vapor are free to exchange 

during the formation of precipitation, and the isotopes do not get set until the fallout 

occurs. In our model, the air is vertically saturated during precipitation events meaning that 

the location of fallout is represented by the surface temperature. R-squared values for δD 

showed a better fit than R-squared values for δ18O. This may be due to noise in the oxygen 

data in the samples. Smith and Evans also found better agreement with the δD values than 

the δ18O values (2007).  

Our best-fit parameters were found by searching for the best fit, least variant result 

between the observed and estimated stable isotopes. The parameter results do agree with 

observable atmospheric conditions. The wind direction of 132° agreed well with the climate 

data presented by Garreaud (2013) (Figure 9).  
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Figure 9 Correlation between precipitation and average wind direction during precipitation amounts. The area of 
interest is located between 40°S and 48°S with a precipitation wind direction coming from the Northwest. 

 

The wind speed at 30m/s is much larger than the average wind speed found by 

Smith and Evans of 11m/s (2007). Their wind speed estimates were shown for average wind 

speed without a correlation with amount of precipitation. The higher wind speed presented 

by our model may imply that wind that forms precipitation over the Patagonian Andes 

moves with a higher magnitude. As mentioned earlier, wind speed also has an effect on the 

intrinsic frequency of an air mass experiencing forced uplift where σ2 < Nm
2 creates a more 

stable atmosphere. The variable σ2 is dependent on wind speed so a smaller wind speed 

would lead to a more stable atmosphere. Our results agree with an unstable atmosphere 

with a large magnitude for wind speed. 

 The stability of the atmosphere also depends on Nm. Our model estimates a value of 

0.001 s-1 which is close to Smith and Evan’s estimate of 0.003 s-1 (2007). Going back to the 
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relationship between σ2 and Nm
2, when Nm

2 < σ2, the atmosphere is assumed to be unstable. 

A large value of Nm at 0.01 s-1  led to negative values for R-squared. This trend also supports 

the claim that our model works for an unstable atmosphere and that an air mass is able to 

flow over the Patagonian Andes with limited blocking. 

Smith and Evans found that a total delay time of 1700 s using the LTOP model for the 

Patagonian Andes fit well (2007). Our model estimates a total delay time of 1450 s. The 

range of values used for delay time in the trials did not result in significant changes in R-

squared values so our value seems within range with the earlier Smith and Evans value. 

When delay time for condensation and fallout were initialized as 0 s (case of instantaneous 

fallout), the resulting R-squared values for the PE and CE cases were large negative 

numbers, implying a significance of delay time for our model.  

 The best-fit parameter for temperature, 274K, was found to be close to the freezing 

temperature of 273.15K. The PRECIS-DGF data for our sample location shows temperatures 

that fall between 0°C and 5°C or 273.15K and 278.15K (Garreaud 2013) (Figure 10). 
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Figure 10 Garreaud 2013  PRECIS-DGF near surface temperature  (shaded) compared against monthly data in station 
observations (circles) for the period 1978-2001. 

 

The final question addressed whether the Smith and Evans data and the Stern and 

Blisniuk data for stable isotopes in the Patagonian Andes could be solved for with a model. 

Our model resulted in 61% agreement for δD and 48% for δ18O. An agreement of 100% in 

the R-squared value would mean that the model accounts for all the variance occurring in 

the natural terrain. The Patagonian Andes is a complex region with a lot of natural variance. 

The R-squared values we calculated under best-fit conditions show a promising ability for 

the model to estimate stable isotopes. These results show that we were able to model 

stable isotopes resulting from isotopic fractionation in precipitation for a complex region 

using mean climatic properties.  

5. Summary 

 The climatology of the Patagonian Andes provides a straightforward setting to study 

the effects of orographic precipitation and isotopic fractionation. The modified LTOP model 
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developed by Smith and Barstad (2004) provides a promising method to estimate the 

precipitation field of a complex terrain. The model implies that the Patagonian Andes’ 

intermittent rain can be represented by a mean precipitation rate.  Furthermore, results 

from this study found that isotopes are set closer to the formation of hydrometeors than 

the formation of condensates. While the Smith and Evan’s study (2007) was unsuccessful in 

finding a solution that included data from Stern and Blisniuk (2002), our model found a best-

fit solution that created a good fit between the two data sets. The model estimated the 

variance for δD values as 61.1% and for δ18O values as 48.1%. The hydrogen isotopes 

provided a better fit than the oxygen isotopes. 

 The development and results of this study have the potential to be applied to other 

orographic regions. In studies focused on determining paleoelevation estimates of 

mountains, this study can help determine the atmospheric dynamics that affect the 

relationship between stable isotopes from precipitation and mountain elevation. 
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Appendix: MATLAB Code 

A) quadrant_check.m : Finds the azimuth ranges and creates 1 km grid-spacing for the wind 

path of the sample at a given wind direction. It produces a display of the maximum and 

minimum azimuth values and a representation of the 1 km grid-spacing. 

function quadrant_check 
%% Create a 1 km lines that pass through each sample at a specific azimuth 
clear all 
close all 
%%...Read the topography data 
[x,y,h] = grdread('Patagonia_1kmGrid.nc'); 
  
%...find line through each sample point 
% open and read the sample data from excel file 
fid = fopen('Patagonian Andes Stern and Blisniuk 2005_xy.dat'); 
S1 = textscan(fid, '%f%f%f%f','treatAsEmpty',{'NAN','nan'}, ... 
    'commentStyle','%'); 
fclose(fid); 
fid = fopen('Patagonia Andes Smith and Evans 2007_xy.dat'); 
S2 = textscan(fid, '%f%f%f%f', ... 
    'treatAsEmpty',{'NAN','nan'}, 'commentStyle','%'); 
fclose(fid); 
  
%...Construct data into column vectors 
xs = [S1{1}(:);S2{1}(:)]; 
ys = [S1{2}(:);S2{2}(:)]; 
%... The column vector source indicates the source of the data 
source = [ones(size(S1{1}(:))); 2*ones(size(S2{2}(:)))]; 
  
%...initialize values 
npoints = length(xs); 
azimMin = 0; 
azimMax = 180; 
xMin = x(1); 
xMax = x(end); 
yMin = y(1); 
yMax = y(end); 
%% find the quadrant of each sample point 
  
% find azimuth of line azim_13 and azim_24 
azim_13 = atan2d(xMax-xMin,yMin-yMax); 
azim_24 = atan2d(xMax-xMin,yMax-yMin); 
% compare sample azimuths to diaganol azimuths, find limiting azimuths 
for i = 1:npoints 
    azim_1s = atan2d(xs(i)-xMin,ys(i)-yMax); 
    azim_2s = atan2d(xs(i)-xMin,ys(i)-yMin); 
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    switch true 
        case(azim_1s <= azim_13 && azim_2s >= azim_24) 
            %...A quadrant, points max1 and min2 are limiting 
            azimMaxPt = atan2d(xs(i)-xMin,ys(i)-yMax); 
            azimMinPt = atan2d(xs(i)-xMin,ys(i)-yMin); 
        case(azim_1s >= azim_13 && azim_2s >= azim_24) 
            %...B quadrant, points max3 and min2 are limiting 
            azimMaxPt = atan2d(xMax-xs(i),yMin-ys(i)); 
            azimMinPt = atan2d(xs(i)-xMin,ys(i)-yMin); 
        case(azim_1s >= azim_13 && azim_2s <= azim_24) 
            %...C quadrant, points max3 and min4 are limiting 
            azimMaxPt = atan2d(xMax-xs(i),yMin-ys(i)); 
            azimMinPt = atan2d(xMax-xs(i),yMax-ys(i)); 
        case(azim_1s <= azim_13 && azim_2s <= azim_24) 
            %...D quadrant, points max1 and min4 limiting 
             azimMaxPt = atan2d(xs(i)-xMin,ys(i)-yMax); 
             azimMinPt = atan2d(xMax-xs(i),yMax-ys(i)); 
    end 
    if azimMinPt > azimMin 
        azimMin = azimMinPt; 
    end 
    if azimMaxPt < azimMax 
        azimMax = azimMaxPt; 
    end 
end 
%% plot figures 
figure(1) 
subplot(1,2,1) 
hold all 
pcolor(x,y,h) 
shading interp 
cpmap = haxby; 
cpmap = cmscale(h(:),cpmap,1); 
colormap(cpmap); 
for i = 1:npoints 
    plot([xMin, xMax], ys(i) + [-(xs(i)-xMin), ... 
        (xMax-xs(i))]/tand(azimMin), 'w-'); 
end 
%... Plot Smith and Evans sample locations 
plot(xs(source==1), ys(source==1), 'ro'); 
%... Plot Stern and Blisniuk  sample locations 
plot(xs(source==2), ys(source==2), 'bo'); 
grid on 
axis equal 
axis([xMin,xMax,yMin,yMax]); 
str = sprintf('  %s%5.1f  ','Minimum Azimuth = ',azimMin); 
title(str) 
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xlabel('Easting (km)') 
ylabel('Northing (km)') 
  
% plotting maximum azimuth wind directions 
subplot(1,2,2) 
hold all 
pcolor(x,y,h) 
shading interp 
cpmap = haxby; 
cpmap = cmscale(h(:),cpmap,1); 
colormap(cpmap); 
for i = 1:npoints 
    plot([xMin, xMax], ys(i) + [-(xs(i)-xMin), ... 
        (xMax-xs(i))]/tand(azimMax), 'w-'); 
end 
%... Plot Smith and Evans sample locations 
plot(xs(source==1), ys(source==1), 'ro'); 
%... Plot Stern and Blisniuk  sample locations 
plot(xs(source==2), ys(source==2), 'bo'); 
grid on 
axis equal 
axis([xMin,xMax,yMin,yMax]); 
str = sprintf('  %s%5.1f  ','Maximum Azimuth = ',azimMax); 
title(str) 
xlabel('Easting (km)') 
ylabel('Northing (km)') 
  
%% create 1 km grid spacing 
dP = 1; %1 km on azimuth line from each sample point 
azim = azimMax; 
for i = 1:1 
    dx = dP*sind(azim); 
    xPMin = xs(i) - dx*floor((xs(i)-xMin)/dx); 
    xPMax = xs(i) + dx*floor((xMax-xs(i))/dx); 
    xPi = (xPMin:dx:xPMax); 
    yPi = (xPi-xs(i))*tand(azim)+ys(i); 
    hPi = interp2(x,y,h,xPi,yPi); 
    pPi = (xPi-xs(i))*sind(azim)+(yPi-ys(i))*cosd(azim); 
end 
  
% plotting maximum azimuth wind directions 
figure(2) 
hold all 
pcolor(x,y,h) 
shading interp 
cpmap = haxby; 
cpmap = cmscale(h(:),cpmap,1); 
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colormap(cpmap); 
plot([xPi(1),xPi(end)],[yPi(1),yPi(end)], 'w-') 
plot(xPi,yPi, 'wo') 
% plot sample location 
plot(xs(1), ys(1), 'ro'); 
grid on 
axis equal 
axis([xMin,xMax,yMin,yMax]); 
str = sprintf('  %s%5.1f  ','Maximum Azimuth = ',azimMax); 
title(str) 
xlabel('Easting (km)') 
ylabel('Northing (km)') 
end 
 

B) verticalWindSpeed.m: Finds the vertical wind speed for a given region. It produces a 

display of vertical wind speed, wind transect and a quiver plot. 

function verticalWindSpeed 
%% Calculate the steady vertical velocity field 
%% initialize program 
clear all 
close all 
clc 
dbstop if error 
%% user defined variables 
gridFile = 'Patagonia_1kmGrid.nc'; 
mag = 30; %m/s 
azimuth = 132; %degrees 
Nm = 0.001; %s^-1 
zContour = 100; 
zLw = 0; 
zHi = 10000; 
zD = 1000; 
%% Start calculation 
% define windspeed 
u = mag*sind(azimuth); 
v = mag*cosd(azimuth); 
%%...Read the topography data 
[x,y,h] = grdread(gridFile); 
x = x*1e3; 
y = y*1e3; 
nX = length(x); 
nY = length(y); 
dX = abs(x(2)-x(1)); 
dY = abs(y(2)-y(1)); 
% Calculate wavenumber vectors for x and y 
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iXMostNeg = ceil(nX/2)+1; 
iYMostNeg = ceil(nY/2)+1; 
kX = (0:nX-1)/nX; 
kX(iXMostNeg:nX)=kX(iXMostNeg:nX)-1; 
kX = 2*pi*kX/dX; 
kY = (0:nY-1)/nY; 
kY(iYMostNeg:nY)=kY(iYMostNeg:nY)-1; 
kY = 2*pi*kY/dY; 
[KX,KY] = meshgrid(kX,kY); 
% Calculate fourier transform 
H = fft2(h); 
sigma = u*KX+v*KY; 
sigma(sigma==0)=1e-7; 
iSigma = abs(sigma) < 1e-7; 
sigma(iSigma) = sign(sigma(iSigma))*1e-7; 
m = sqrt(((Nm./sigma).^2 -1).*(KX.^2+KY.^2)); 
W = 1i*sigma.*exp(1i*m.*zContour).*H; 
w = real(ifft2(W)); 
wContour = real(ifft2(W)); 
% Calculate quiver plot 
nStep = 25; 
nWrows = floor((zHi-zLw)/zD)+1; 
xQuiver = x(1:nStep:nX); 
nXQuiver = length(xQuiver); 
zQuiver = (0:nWrows-1)*zD+zLw; 
UQuiver = ones(nWrows,nXQuiver)*u; 
WQuiver = zeros(nWrows,nXQuiver); 
for i = 1:nWrows 
    W = 1i*sigma.*exp(1i*m.*zQuiver(i)).*H; 
    w = real(ifft2(W)); 
    WQuiver(i,:) = w(ceil(nY/2),1:nStep:nX); 
end 
%% plot figures 
figure(1) 
pcolor(x*1e-3,y*1e-3,h) 
shading interp 
cpmap = haxby; 
cpmap = cmapscale(h,cpmap,1); 
colormap(cpmap); 
grid on 
axis equal tight 
box on 
hFig = colorbar; 
ylabel(hFig,'Elevation (m)') 
title('Topography') 
xlabel('Easting (km)') 
ylabel('Northing (km)') 
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% plot vertical wind speed at 1 km 
figure(2) 
pcolor(x*1e-3,y*1e-3,wContour) 
shading interp 
cpmap = coolwarm; 
cpmap = cmscale(wContour(:),cpmap,.5); 
colormap(cpmap); 
grid on 
axis equal tight 
box on 
hFig = colorbar; 
ylabel(hFig,'Vertical Wind Speed (m/s)') 
title('Vertical Wind Speed') 
xlabel('Easting (km)') 
ylabel('Northing (km)') 
  
figure(3) 
plot(x*1e-3,w(ceil(nY/2),:)); 
title('Vertical Wind Speed Along Center Line') 
xlabel('Easting (km)') 
ylabel('w (m/s)') 
  
figure(4) 
hold on 
axis([-5*1e5 5*1e5 0 12000]) 
q = quiver(xQuiver,zQuiver,UQuiver*500,WQuiver*500,0); 
adjust_quiver_arrowhead_size(q,.2); 
plot(x,h,'-k','Linewidth',3) 
title('Quiver Plot') 
ylabel('Elevation (m)') 
xlabel('Easting (m)') 
end 
 
C) ltopWithIsotopes.m: Estimates the stable isotopic values for a given elevation with the 

inclusion of 8 parameters. It produces a display of topography, mean precipitation height, 

mean precipitation rate, mean precipitation temperature, and mean surface temperature. 

function ltopWithIsotopes 
%% Calculate the steady precipitation-rate field and isotope fields 
  
%% Initialize system 
clear all 
close all 
clc 
dbstop if error 
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%% User-defined variables 
gridFile = 'Patagonia_1kmGrid.nc'; 
U = 30;              % horizontal wind speed (m/s) 
azimuth = 132;       % horizontal wind direction (degrees from +y towards +x) 
tauC = 725;          % condensation time (s) 
tauF = 725;          % fall-out time (s) 
T0 = 274;            % sea-level temperature (K) 
Nm = 0.001;          % moist Brunt-Vaisala frequency (cycles/s) 
latitude = 45;       % average latitude for Coriolis frequency (deg) 
deltaH20 = -52.8e-3; % estimate for initial delta D (per unity) 
deltaO180 = -5.3e-3; % estimate for initial delta O18 (per unity) 
  
%... Coriolis frequency (rad/s) 
f = 2*7.2921e-5*sind(latitude); 
%... Set to zero when mountain width < ~200 km 
%f = 0; 
%% Constants 
TK2C = 273.15;     % conversion from Kelvin to Celcius 
  
%% Start calculation 
% Calculate atmospheric parameters 
[gammaCap,gamma,Hw,rhoS0] = moistAdiabat(Nm,T0); 
%... Define windspeed 
u = U*sind(azimuth); 
v = U*cosd(azimuth); 
%%...Read topography data 
[x,y,h] = grdread(gridFile); 
x=x*1e3; 
y=y*1e3; 
[X, Y] = meshgrid(x,y); 
xMin = x(1); 
xMax = x(end); 
yMin = y(1); 
yMax = y(end); 
dX = abs(x(2)-x(1)); 
dY = abs(y(2)-y(1)); 
nX = length(x); 
nY = length(y); 
nXPad = round(1.2*nX); 
nYPad = round(1.2*nY); 
  
%... Calculate wavenumber vectors for x and y (rad/m) 
iXMostNeg = ceil(nXPad/2)+1; 
iYMostNeg = ceil(nYPad/2)+1; 
kX = (0:nXPad-1)/nXPad; 
kX(iXMostNeg:nXPad)=kX(iXMostNeg:nXPad)-1; 
kX = 2*pi*kX/dX; 
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kY = (0:nYPad-1)/nYPad; 
kY(iYMostNeg:nYPad)=kY(iYMostNeg:nYPad)-1; 
kY = 2*pi*kY/dY; 
[KX,KY] = meshgrid(kX,kY); 
%... Calculate fourier transform 
hHat = fft2(h,nYPad,nXPad); 
%... Calculate intrinsic frequencies (rad/s) 
sigma = u*KX + v*KY; 
%... Calculate denominator for m equation, and modify to 
% avoid division-by-zero errors. 
denom = sigma.^2 - f^2; 
denom(denom==0) = eps; 
%... Calculate vertical wave numbers 
m = sqrt((((2*pi*Nm)^2./denom) -1).*(KX.^2 + KY.^2)); 
%... Calculate precipitation rate 
rpHat = (gammaCap.*1i.*sigma.*hHat./gamma) ... 
    ./((1 - 1i.*m*Hw).*(1+1i.*sigma.*tauC).*(1+1i.*sigma.*tauF)); 
rp = real(ifft2(rpHat)); 
rp = rp(1:nY,1:nX); 
rp(rp<=0) = 0; 
  
%... Calculate mean precipitation height 
zpHat = (gammaCap*Hw.*1i.*sigma.*hHat./gamma) ... 
    ./((1 - 1i.*m*Hw).^2.*(1+1i.*sigma.*tauC).*(1+1i.*sigma.*tauF)); 
zp = real(ifft2(zpHat)); 
zp = zp(1:nY,1:nX); 
zp = abs(zp./rp); 
%... zp is restricted to values less than 3*Hw 
zp(zp>3*Hw) = 3*Hw; 
  
%... Mean temperature at source 
Tc = T0 - gammaCap*(zp + h); 
  
... Mean temperature at surface 
Ts = T0 - gammaCap*h; 
  
%...Open and read the sample data from excel file 
fid = fopen('Patagonian Andes Stern and Blisniuk 2005_xy.dat'); 
S1 = textscan(fid, '%f%f%f%f','treatAsEmpty',{'NAN','nan'}, ... 
    'commentStyle','%'); 
fclose(fid); 
fid = fopen('Patagonia Andes Smith and Evans 2007_xy.dat'); 
S2 = textscan(fid, '%f%f%f%f', ... 
    'treatAsEmpty',{'NAN','nan'}, 'commentStyle','%'); 
fclose(fid); 
%...Construct data into column vectors 
xSample = [S1{1}(:);S2{1}(:)]*1e3; 
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ySample = [S1{2}(:);S2{2}(:)]*1e3; 
deltaO18Sample = [S1{3}(:);S2{3}(:)]*1e-3; 
deltaH2Sample = [S1{4}(:);S2{4}(:)]*1e-3; 
  
%... Calculate precipitation rate at sample locations 
nSample = length(xSample); 
dS = (dX + dY)/2; 
pSample = zeros(nSample,1); 
hSample = zeros(nSample,1); 
rhoSrSample = zeros(nSample,1); 
deltaH2_TcPred = zeros(nSample,1); 
deltaO18_TcPred = zeros(nSample,1); 
deltaH2_TsPred = zeros(nSample,1); 
deltaO18_TsPred = zeros(nSample,1); 
%... Iterate over the samples 
for i = 1:nSample 
    %... Find s coordinate for most upstream point along wind path  
    % passing through the sample location. Wind is assumed to flow  
    % through the xMin side of the topographic grid. 
    sMinPath = (xMin - xSample(i))*sqrt(1+cosd(azimuth)^2); 
    sMinPath = dS*ceil(sMinPath/dS); 
    %... Calculate x,y coordinates for points from s = sMinPath 
    % to s = 0, which marks the sample location along the wind path. 
    xPath = xSample(i) + (sMinPath:dS:0)*sind(azimuth); 
    yPath = ySample(i) + (sMinPath:dS:0)*cosd(azimuth); 
    %... Interpolate topographic grid to get elevations along wind path 
    hPath = interp2(X,Y,h,xPath,yPath); 
    hSample(i) = hPath(end); 
    %... Interpolate rp grid to get relative precipation values along wind path 
    rpPath = interp2(X,Y,rp,xPath,yPath); 
    %... Calculate reduced water-varpor density at land surface along wind path 
    rhoSrPath = rhoS0.*exp(-cumtrapz(rpPath)*dS/(Hw*U)); 
    rhoSrSample(i) = rhoSrPath(end); 
    %... Calculate precipitation rate along wind path 
    pPath = rpPath.*rhoSrPath; 
    pSample(i) = pPath(end); 
    %... Calculate mean condensation temperature along wind path 
    TcPath = interp2(X,Y,Tc,xPath,yPath); 
    %... Hydrogen isotopic composition for CE case 
    alpha = hydrogenFractionation(TcPath); 
    deltaH2_TcPred(i) = ... 
        log(alpha(end)/alpha(1)) + deltaH20 - trapz((alpha-1).*rpPath).*dS./(Hw*U); 
    %... Oxygen isotopic composition for CE case 
    alpha = oxygenFractionation(TcPath); 
    deltaO18_TcPred(i) = ... 
        log(alpha(end)/alpha(1)) + deltaO180 - trapz((alpha-1).*rpPath).*dS./(Hw*U); 
    %... Calculate land-surface temperature along wind path 
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    TsPath = interp2(X,Y,Ts,xPath,yPath); 
    %... Hydrogen isotopic composition for PE case 
    alpha = hydrogenFractionation(TsPath); 
    deltaH2_TsPred(i) = ... 
        log(alpha(end)/alpha(1)) + deltaH20 - trapz((alpha-1).*rpPath).*dS./(Hw*U); 
    %... Oxygen isotopic composition for PE case 
    alpha = oxygenFractionation(TsPath); 
    deltaO18_TsPred(i) = ... 
        log(alpha(end)/alpha(1)) + deltaO180 - trapz((alpha-1).*rpPath).*dS./(Hw*U); 
end 
%... Calculate standard deviation of the residuals for the observed 
% versus predicted stable isotope measurements 
n = sum(~isnan(deltaH2Sample)); 
sd_deltaH2_Tc = nanstd(deltaH2Sample - deltaH2_TcPred, 1) * sqrt(n/(n-8)); 
n = sum(~isnan(deltaO18Sample)); 
sd_deltaO18_Tc = nanstd(deltaO18Sample - deltaO18_TcPred, 1) * sqrt(n/(n-8)); 
n = sum(~isnan(deltaH2Sample)); 
sd_deltaH2_Ts = nanstd(deltaH2Sample - deltaH2_TsPred, 1) * sqrt(n/(n-8)); 
n = sum(~isnan(deltaO18Sample)); 
sd_deltaO18_Ts = nanstd(deltaO18Sample - deltaO18_TsPred, 1) * sqrt(n/(n-8)); 
  
%% Report results 
%... Report characteristic height for water vapor distribution 
fprintf('Characteristic height for water vapor, Hw (m) = %5.0f\n', Hw); 
%... Calculate regional mean for precipitation height 
iFinite = ~isnan(zp); 
weights = rp(iFinite)./sum(rp(iFinite)); 
zpRegionalMean = sum(weights.*zp(iFinite)); 
fprintf('Regional mean for precipitation height (m): %5.0f\n', zpRegionalMean); 
%... Standard deivation of the residuals 
fprintf('====== STANDARD DEVIATION OF THE RESIDUALS =====\n') 
fprintf('CE case, delta 2H (per mil): %g\n', sd_deltaH2_Tc*1e3) 
fprintf('CE case, delta 18O (per mil): %g\n', sd_deltaO18_Tc*1e3) 
fprintf('PE case, delta 2H (per mil): %g\n', sd_deltaH2_Ts*1e3) 
fprintf('PE case, delta 18O (per mil): %g\n', sd_deltaO18_Ts*1e3) 
  
%% Plot figures 
%... Plot topography 
figure(1) 
pcolor(x*1e-3,y*1e-3,h) 
shading interp 
cpmap = haxby; 
cpmap = cmapscale(h,cpmap,1); 
colormap(cpmap); 
axis equal tight 
hFig = colorbar; 
ylabel(hFig,'  Elevation (m)  ') 
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title('  Topography') 
xlabel('  Easting (km)  ') 
ylabel('  Northing (km) ') 
  
%... Plot relative precipitation rate 
figure(2) 
pcolor(x*1e-3,y*1e-3,rp*1e3) 
shading interp 
cpmap = coolwarm; 
cpmap = cmapscale(rp*1e3,cpmap,0.5); 
colormap(cpmap); 
axis equal tight 
hFig = colorbar; 
ylabel(hFig,'  Relative Precipitation Rate  ') 
title('  Relative Precipitation Rate   ') 
xlabel('  Easting (km)  ') 
ylabel('  Northing (km)  ') 
  
%... Plot mean height for precipitation 
figure(3) 
pcolor(x*1e-3,y*1e-3, log10(zp*1e-3)) 
shading interp 
cpmap = coolwarm; 
cpmap = cmapscale(log10(zp*1e-3),cpmap,0.25); 
colormap(cpmap); 
axis equal tight 
hFig = colorbar; 
ylabel(hFig,'  Height (log10 km)  ') 
title('  Mean Precipitation Height  '); 
xlabel('  Easting (km)  ') 
ylabel('  Northing (km)  ') 
  
%... Plot mean temperature for precipitation 
figure(4) 
T = Tc-TK2C; 
T(T<-TK2C) = -TK2C; 
pcolor(x*1e-3,y*1e-3, T) 
shading interp 
cpmap = coolwarm; 
cpmap = cmapscale(T,cpmap,1,0); 
colormap(cpmap); 
axis equal tight 
  
hFig = colorbar; 
ylabel(hFig,'  Temperature (C)  ') 
title('  Mean Precipitation Temperature  '); 
xlabel('  Easting (km)  ') 
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ylabel('  Northing (km)  ') 
  
%... Plot land surface temperature 
figure(5) 
T = Ts-TK2C; 
pcolor(x*1e-3,y*1e-3, T) 
shading interp 
cpmap = coolwarm; 
cpmap = cmapscale(T,cpmap,1,0); 
colormap(cpmap); 
axis equal tight 
hFig = colorbar; 
ylabel(hFig,'  Temperature (C)  ') 
title('  Land Surface Temperature  '); 
xlabel('  Easting (km)  ') 
ylabel('  Northing (km)  ') 
  
%... Plot mean precipitation height 
figure(6) 
plot(log10(rp*1e3),log10(zp.*1e-3),'.k') 
xlabel('  Relative Precipitation Rate (log10)  ') 
ylabel('  Mean Preciptation Height (log 10 km)  ') 
  
%... Plot predicted vs observed isotope values 
xMin = min([deltaH2Sample(:);deltaO18Sample(:);deltaH20;deltaO180]*1e3); 
xMax = max([deltaH2Sample(:);deltaO18Sample(:);deltaH20;deltaO180]*1e3); 
yMin = min([deltaH2_TcPred(:);deltaO18_TcPred(:); ... 
    deltaH2_TsPred(:);deltaO18_TsPred(:);deltaH20;deltaO180]*1e3); 
yMax = max([deltaH2_TcPred(:);deltaO18_TcPred(:); ... 
    deltaH2_TsPred(:);deltaO18_TsPred(:);deltaH20;deltaO180]*1e3); 
xMin = floor(min([xMin,yMin])); 
xMax = ceil(max([xMax,yMax])); 
  
subplot(1,2,1) %... CE case 
hold on  
%... Plot 1:1 reference line 
plot([xMin,xMax],[xMin,xMax],'-','Color',[0.4 0.4 0.4],'LineWidth',3) 
%... Plot isotope data 
plot(deltaH2Sample*1e3, deltaH2_TcPred*1e3,'ob') 
plot(deltaO18Sample*1e3, deltaO18_TcPred*1e3, 'or') 
%... Plot initial values for isotopes 
plot(deltaH20*1e3, deltaH20*1e3,'sb','MarkerSize',24) 
plot(deltaO180*1e3, deltaO180*1e3, 'sr','MarkerSize',24) 
axis square 
xlim([xMin,xMax]); 
ylim([xMin,xMax]); 
title('Stable Isotopes for CE Case') 
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xlabel('Sample (per mil)') 
ylabel('Calculated (per mil)') 
  
subplot(1,2,2) %... PE case 
hold on  
%... Plot 1:1 reference line 
plot([xMin,xMax],[xMin,xMax],'-','Color',[0.4 0.4 0.4],'LineWidth',3) 
%... Plot isotope data 
plot(deltaH2Sample*1e3, deltaH2_TsPred*1e3,'ob') 
plot(deltaO18Sample*1e3, deltaO18_TsPred*1e3, 'or') 
%... Plot initial values for isotopes 
plot(deltaH20*1e3, deltaH20*1e3,'sb','MarkerSize',24) 
plot(deltaO180*1e3, deltaO180*1e3, 'sr','MarkerSize',24) 
axis square 
xlim([xMin,xMax]); 
ylim([xMin,xMax]); 
title('Stable Isotopes for PE Case') 
xlabel('Sample (per mil)') 
ylabel('Calculated (per mil)') 
end 
 


