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Abstract

The core accretion model—the most widely accepted theory of solar system formation—posits

that planets begins their life cycles as microscopic dust particles orbiting young star through a

gaseous disk. According to this theory, as the dust particles move through the gas, they col-

lide and adhere, eventually forming kilometer-sized bodies known as planetesimals [Lissauer

(1993)]. However, there are many processes in planet formation, such as overcoming the one-

meter hurdle and the processes of planetary migration, that this hypothesis does not explain.

As such, astrophysicists have developed several alternate hypotheses for planet formation, most

notably the gravitational instability and streaming instability hypotheses [Youdin and Goodman

(2005)].

In this paper, I examine a simple model of protoplanetary disks, treating an early solar

system as an inviscid gas disk with azimuthal symmetry. Dust within the disk is phase-locked

with the gas, and density (ρ) and temperature (T ) within the disk obey a power laws with

respect to the distance from the central star (r). I assume a background steady state of zero

radial velocity and a sub-Keplerian angular velocity. I then apply linear perturbation analysis

to this system’s non-dimensionalized equations for conservation of fluid mass and momentum.

I find that perturbations to radial velocity exhibit oscillatory behavior; and for T ∝ r−1, these

oscillations are a Bessel function in 2ωr3/2

3
where ω is the perturbation frequency. The order

of the Bessel function is determined by α, the ratio of the Keplerian velocity to the gas sound

speed at a reference radius r = r0. I then examine how these oscillations change with varying

values of n,m, and α as well as how these waves could potentially offer remedies to the one-

meter hurdle and planetary migration.

Background and Motivation

Scientific theories about the origin of the universe are nearly as old as human civilization itself,

as great thinkers throughout history have speculated on the origins of planets, stars, and other

celestial bodies. However, nearly all of these speculations were based exclusively on observa-

tions about our solar system, since that was the only data available for most of human history. It

has only been within the last two decades with the discovery of extra-solar planets [Mayor and

Queloz (1995)] that we have been able to observe additional planets outside our solar system.

Many of the newly discovered systems have properties that are vastly different from ours, such
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as Pegasi 51-b, a massive gas giant planet with an orbital period of just four days [Mayor and

Queloz (1995)], the Kepler-11 system, which contains five planets all with semi-major axes

shorter than Mercury’s [Lissauer et al. (2011)], and the Kepler-16 system, which harbors a

"modern Tatooine" orbiting a binary star system [Doyle et al. (2011)]. However, despite these

systems’ vastly different features, the underlying physics governing formation and subsequent

evolution of all solar systems must be the same. As a result, many old assumptions and theories

about how planets form need to be reevaluated, or at the very least modified, in order to account

for these new observations. This need has led to a plethora of proposals of new mechanisms

and theories in recent years, of which some of the most important and notable are outlined

below.

The Core Accretion Model

The most popular and widely accepted theory is still the one developed before the discovery

of exoplanets, the steady accretion, or core accretion model. Although exoplanet discoveries

have resulted in minor modifications to this theory, the modern understanding of the model is

similar to its earliest forms [Safronov (1972), Hayashi et al. (1985), Lissauer (1993)]. Solar

systems begin as rotating clouds of gas (primarily H and He) and dust (solid ice, rock, or

metal particles) rotating about a young star [Watson et al. (2007)]. Eventually, the centripetal

acceleration of this cloud causes all of the material to collapse into a disk Chiang and Youdin

(2010) Lin (2008). The primary forces governing the orbits of solid particles (dust grains) is

simply the balance between centripetal acceleration and the gravity of the central star. This

causes the dust particles to orbit at the Keplerian velocity (vk =
√

GM
r

where M is the star’s

mass.) However, gas, which comprises 99% of the material within the disk [Chiang and Youdin

(2010)], has a different force balance. Because gas is a fluid, it experiences a pressure gradient

force that partially counteracts the gravitational attraction from the central star. This additional

force causes the gas to orbit at a sub-Keplerian velocity

v =
√
v2
k − η (1)

where η ≡ −1
ρ
∂P
∂r

[Armitage (2010)].

This velocity difference causes large dust grains to experience a significant drag force as

they orbit, which causes them to lose angular momentum and spiral inward toward the central
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Figure 1: Illustration showing the earliest stages of planetesimal growth. Dust particles collide,
are swept up by the gas, and accumulate at the snow line. Source: Lin (2008)

star [Lin (2008)]. As the grains travel through the disk, they occasionally collide with one

another, and if conditions are suitable, a collision can cause two particles to stick together,

forming a larger particle [Blum and Wurm (2008)]. Although these collisions can occur any-

where within the disk, they are most common at local pressure maxima, where dust particles

tend to accumulate. One such maximum is the point at which it becomes warm enough for

volatiles such as water to boil off from dust grains, a region approximately 2-4 AU from the

central star known as the “snow line.” Furthermore, collisions near the snow line are also more

likely to build up grain size, since the boiled-off volatiles make the grains more “sticky” and

more likely to adhere upon collision. Eventually through such collisions, these particles grow

from micron-sized to dust grains to massive, kilometer-sized bodies known as “planetesimals”,

the building blocks of planets [Lissauer (1993)].

Collisions between solid bodies in the early solar system remain common even after they

reach planetesimal-size, and these collisions result in a distribution of planetesimal masses. The

largest planetesimals are massive enough to draw in nearby material due to gravity. Initially

this leads to even more growth, but eventually, the planetesimal will "consume" all of the

nearby material, and become so massive that it deflects the orbits of nearby particles rather
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than drawing them in. As a result, after about one millions years, most of the solid material

in the proto-planetary disk becomes concentrated within an "oligarchy" of planetary embryos

with massses ranging from that of the moon in the inner solar system to several times that of

Earth in the outer solar system [Lissauer (1993)].

At this stage of development, sufficiently massive planetary embryos (∼10 Earth masses)

will have a strong enough gravitational potential to draw in nearby gas. However, in order for

this accumulation to result in a full-fledged planet, the gas accumulation rate must dominate

over the rates of both gas depletion due to stellar winds and planetary migration (a process

discussed in detail below). Since all three of these processes occur over similar timescales,

ultimately which embryos grow into planets is all down to luck. However, for embryos in

which growth by gas accumulation dominates, the transition from embryo to planet occurs

surprisingly quickly; an embryo can grow to a planet with one-half Jupiter mass in roughly

1000 years. Eventually, the planet becomes massive enough to significantly alter the flow of

the neighboring gas. The new planet’s gravity causes gas interior to the planet’s orbit to orbit

more quickly, while gas exterior to the planet orbits more slowly. Both of these processes

cause gas to move away from the planet, stabilizing its orbit and clearing out a region of the

disk devoid of gas [Lin (2008)].

This clearing of gas along the new planet’s orbit disrupts the pressure profile of the disk,

creating new regions of local pressure maxima. As a result, the presence of one gas giant can

spark renewed plantesimal growth, which can in turn lead to the development of additional

gas giant [de Val-Borro et al. (2007)]. Many scientists believe that this is what happened in

our solar system, with Jupiter begin directly responsible for the formation of Saturn, Uranus,

and Neptune [Lin (2008)]. Gas giants must form within the first 10 million years of the solar-

system’s lifecycle, before all of the gas in the gas is blown away due to photoevaporation

[Armitage (2011), Raymond (2007)]. Terrestrial planets, on the other hand, can take much

longer to form. Planetary embryos in the inner solar system can continue to destabilze each

other’s orbits long after the gas from the disk has dissipated due to gravitational interactions

with each other or with a distant gas giant, resulting in massive, cataclysmic collisions. The

remnants of these collisions then coalesce into a larger body until, after tens of millions of years,

the terrestrial planet’s orbits stablize and the planet-formation process is complete [Raymond

(2007)].

While the core-accretion model presents a plausible theory of planet formation and ad-
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equately explains the sizes and orbits of the planets in our solar system, it is not without its

problems. One of the most important and troubling problems with core-accretion deals with

the earliest stages of planet development, when microscopic dust grains are developing into

macroscopic bodies. When the dust particles are on the order of 1µm in diameter, they are

essentially phase-locked to the gas and orbit at the sub-keplerian velocity described in equation

(1). Additionally, planetesimal-sized bodies are essentially unaffected by gas drag, and orbit

the central star at Keplerian velocities. However, drag becomes important once a particle grows

beyond 1mm in diameter, as the gas drag will cause these bodies to lose angular momentum

and spiral inward toward the center of the star. The timescales over which these particles will

crash into the central star is incredibly short (∝ 103 years) relative to other processes in a proto-

planetary disk, so these particles must grow incredibly quickly in order to avoid this fate [Blum

and Wurm (2008)].

However, it is nearly impossible for particles to grow to planetesimal-sizes through col-

lisions alone. A collision between two dust particles results in sticking if the relative velocity

between the particles (vcol) is less than a critical velocity (vcrit). This critical velocity decreases

with increasing particle size s; Chokshi et al. (1993) showed that vcrit ∝ s−5/6. By the time

the particles reach 1cm in size (the critical velocity is an order of magnitude less than observed

sticking velocities [Blum and Wurm (2008)]. As a result, solid particles cannot grow large

enough fast enough to avoid falling into the central star, a problem known as the "one-meter-

hurdle" [Youdin and Johansen (2007)]. If planetesimals form as a result of collisions, there

must be some process at play that lowers the critical velocity. One hypothesis is that volatiles

near the snow line make particles "stickier," enabling them to coalesce at higher collision veloc-

ities [Lin (2008)]. Another theory posits incorporating particle porosity can reduce the critical

velocity. Despite these hypotheses, experimental results reveal that it is incredibly difficult to

grow particles through collisions alone [Blum and Wurm (2008)], leading astrophysicists to

search for another explanation.

However, assuming that one could find a solution to the one-meter hurdle, there remain

additional problems to the core accretion model in the later stages of planet development. Plan-

etary embryos large enough to spawn gas giants can only form in the outter reaches of the solar

system, at distances greater than 5AU [Lissauer (1993)]. However, the first exoplanets discov-

ered were massive gas giants with incredibly short orbital periods [Mayor and Queloz (1995)].

If these planets formed in the outer regions of their protoplanetary disks, how did they get to the
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inner reaches of their solar systems, and once there, what stabilized their orbits? This problem

is known as planetary migration, and there are a few solutions that have been proposed. One

possible mechanism is that planets can migrate inward in response to gravitational interactions

with other solid bodies in a disk. If a planet ejects a nearby planetesimal farther outward into

the solar system, then in order to conserve angular momentum throughout the interaction, the

planet must move inward to compensate for the smaller body’s angular momentum increase

[Levison et al. (2007)]. Planetary migration can also occur through tidal interactions between

the planet and the gas disk. This type of migration can take two forms, both of which operate

over similar timescales (105−106 years). Type I migration, the mechanism relevant for smaller

protoplanets, occurs due to the planet exerting torque on density waves within the disk. By

contrast, type II migration is relevant for larger planets and takes place due to viscous transfer

of angular momentum after a planet has cleared all of the gas out of its orbital path [Papaloizou

and Terquem (2005)]. However, while the processes drving planetary migration are fairly well-

developed, much less is understood about what stops planetary migration and prevents a young

planet from crashing into its host star. It has been suggested that magnetic fields could in-

duce turbulence within the disk to halt type I migration [Papaloizou and Terquem (2005)], and

type II could stop if migration coincided with the outward dissipation of the gas [Trilling et al.

(2002)]. However, these theories cannot account for the locations of all observed exoplanets,

and as such, further investigation into planetary migration is crucial in order to fully understand

solar system evolution.

Alternate Hypotheses

In an attempt to remedy problems such as the one-meter hurdle and planetary migration, as-

trophysicists have proposed several planet formation models. One of the most popular and

influential of these theories is the gravitational instability (GI) model [Boss (1997)]. This insta-

bility arises when axisymmetric perturbations in density lead to an overdense annulus of width

∆r. The increased self-gravity from this overdense region attracts more material to the annu-

lus, which would increase the density further, leading to an instability [Goodman and Pindor

(2000)]. The GI model treats solid dust particles as a self-gravitating, rotating fluid confined

to the disk midplane. According to Toomre (1964) if the perturbations scale as ei(krr+ωt) and
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krr � 1then the dispersion relation for such a model is

ω2 = c2k2
r − 2πGΣ|kr|+ κ2 (2)

Here, c is the velocity dispersion, κ ≡ (r ∂Ω2

∂r
+ 4Ω2)1/2, Ω is the angular speed of the dust,

Σ is the dust surface density, and G is the universal gravitational constant. This relation re-

veals that pressure from the fluid (the κ2 term) stabilizes short-wavelength perturbations and

rotation (the c2k2 term) stabilizes long-wave perturbations. However, the dust’s self-gravity

can destabilize perturbations of intermediate wavelengths Binney and Tremaine (2011) Chiang

and Youdin (2010). These intermediate wavelengths are unstable if Toomre’s criterion is met,

which necessitates that

Q ≡ cκ

πGΣ
< 1 (3)

(3) can also be written as a thickness requirement for the dust layer; gravitational instabilities

can only occur if the midplane layer depth hp satisfies

hp < h∗p ≈ 2 ∗ 106FZrel

( r

AU

)3/2

m (4)

where F and Zrel are dimensionless parameters of order unity describing the gas disk mass

and metalicity respectively [Chiang and Youdin (2010)]. Because protoplanetary disk flows

are thought to be highly turbulent, this thickness requirement is difficult to satisfy. However,

incorporating the effects of gas drag on the dust can help relax equation (3). When drag on the

dust is included but back-reaction on the gas is neglected, the dispersion relation for density

perturbations from which Toomre’s criterion is derived becomes

ω = i(c2k2
r − 2πGΣ|kr|)ts (5)

where ts is the time it takes for the gas to reduce a dust particle’s velocity by order unity

[Chiang and Youdin (2010)]. This new dispersion relation reveals that waves are unstable if

kr < 2πGΣ/c2 even if Q > 1. Furthermore, numerical simulations reveal that graviational

collapse of solids due to the gravitational instability occurs over timescales fast enough to

overcome the one-meter hurdle and prevent the solid body from crashing into the central star

[Johansen et al. (2007)].

However, while the gravitational instability model could offer a potential solution to the
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Figure 2: Figure from Kratter et al. (2010) showing the distribution of the masses of celestial
bodies. The "brown dwarf desert" Matzner and Levin (2005) is highlighted with dashed boxes.

one-meter hurdle, it is not without problems of its own. GI essentially claims that the same

fundamental physical processes govern the formation of both stars and planets. However, there

is a noticeable lack of celestial bodies between the mass of the largest planets and the mass of

the smallest stars [Zuckerman and Song (2009), see figure 2]. If planet and star formation both

operated under the same processes, we would expect to observe a continuum of masses. Con-

sequently, it seems likely that planet and star formation are fundamentally different processes,

and more celestial bodies within this "brown-dwarf desert" [Matzner and Levin (2005)] need

to be observed to provide robust physical evidence of the GI model

Another potential alternative to the core-accretion model is known as the streaming insta-

bility [Youdin and Goodman (2005)]. Because the gas in a protoplanetary disk exerts drag on

dust particles, by Newton’s Third Law, the dust must exert an equal and opposite force back on

the gas. Youdin and Goodman (2005) incorporate this back-reaction when assessing the stabil-

ity of perturbations within the disk. After assuming azimuthal symmetry and ignoring varia-

tions in z, they derive a sixth-order dispersion relation that generates instabilities as the particle

density within the midplane approaches the gas density. These instabilities primarily serve to

clump particles together, coagulating them into large fragments over time scales fast enough
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Figure 3: Summary of the processes that can build planets in a proto-planetary disk, as well as
the length scales over which each process is relevant. Source: Chiang and Youdin (2010)

to overcome the one-meter hurdle [Youdin and Goodman (2005)]. Additionally, Youdin and

Johansen (2007) verify the growth of these instabilities using numerical simulations, revealing

the promise of a fluid-dynamics approach to planetesimal formation.

So far I have described the features and pitfalls of several theories on planetesimal forma-

tion. Each of these theories establishes a relatively complicated model of a protoplanetary disk

and then explores how that model evolves over time. The purpose of this thesis is to apply the

same technique to a much simpler model of the early solar system, namely, a single-phase, ax-

isymmetric, rotating ideal, dusty-gas disk. We observe how perturbations to this simple model

evolve in space and time, and then posit what those observations reveal about the processes that

effect the evolution of the solar system, including planetesimal formation. I do not set out to

develop a new model to replace core accretion, GI or the streaming instability or to solve the

one-meter hurdle or planetary migration. Rather my goal is simply to explore what insight a

simplified model can reveal about the processes described by these theories.
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Simple Orbital Perturbations

Before exploring the equations of a gas disk, I briefly examine the behavior of a solid body

rotating around a star though a vacuum. In this two-body model, I treat the star as a stationary

point mass, and the only force acting on the body is the gravity from the star. In such a scenario,

the equations for the conservation of linear and angular momentum can be written as

∂vr
∂t

+ vr
∂vr
∂r
−
v2
φ

r
= −GM

r2
(6)

∂vφ
∂t

+
vr
r

∂

∂r
(rvφ) = 0 (7)

where M is the stellar mass, G is the universal gravitational constant, and vr vφ are the radial

and angular velocities of the body respectively. The radial and angular velocities of the planet

can be written as the sum of a steady background velocity that varies only with radius and small

perturbations that vary with both radius and time. Such representations take the form

vr = w0(r) + εw1(r, t) (8)

vφ = v0(r) + εv1(r, t) (9)

where ε is small, w0 and v0 represent the background radial and angular velocities, and w1 and

v1 represent the perturbations to the background states. Substituting these new definitions and

collecting terms of the same order in ε, (6) and (7) become

w0
∂w0

∂r
−
v2
φ

r
= −GM

r2
(10)

∂w1

∂t
+ w0

∂w1

∂r
+ w1

∂w0

∂r
− 2v0v1

r
= 0 (11)

w0

(
v0

r
+
∂v0

∂r

)
= 0 (12)

∂v1

∂t
+
w0v1 + w1v0

r
+ w0

∂v1

∂r
+ w1

∂v0

∂r
= 0 (13)

Since ε is small, I have neglected terms of order ε2. If there is no background radial velocity

(w0 = 0), then from (10), it follows that

vφ =

√
GM

r
= vk (14)
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Equation (14) is simply the definition of the Keplerian velocity. Thus, in the absence of of

radial drift, a solid body at a distance r from the sun will, unsurprisingly, orbit the sun in a

circle at the Keplerian velocity.

The dynamics of the body’s orbit become more interesting when we consider the pertur-

bations to this background state. Substituting (14) into (11) and (13) gives

∂w1

∂t
− 2v1

√
GM

r3
= 0 (15)

∂v1

∂t
+ w1

(
1

2

√
GM

r3

)
= 0 (16)

Furthermore, substituting (16) into ∂
∂t

(15)

∂2w1

∂t2
= −ω2

kw1 (17)

where ωk ≡
√

GM
r3

is the Keplerian orbital frequency. Substituting (15) into ∂
∂t

(16) produces

an identical differential equation for v1. The solution to these differential equations are

w1 = A sin (ωkt) +B cos (ωkt) (18)

v1 =
A cos (ωkt)−B sin (ωkt)

2
(19)

where A and B are determined by the initial conditions of the body’s orbit. Equations (18)

and (19) state that perturbations to the base radial and angular velocity oscillate around the

base circular orbit at the Keplerian frequency. These equations also parametrize an elliptical

orbit. Again, this is not a surprising result, as (18) and (19) show that linear perturbation of the

two-body momentum equations is a method of deriving Kepler’s first law.

So far, the results we have described rare neither surprising or novel. The purpose of this

exercise was simply to understand how perturbations evolve in a simple model of our solar

system to serve as a reference for our more complex model described in the following sections.

I hypothesize that incorporating gas pressure into the model would result in similar oscillatory

behavior.
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Gas Disk Model: Governing Equations

I now examine how gas pressure effects velocity perturbations in an early solar system. To

begin, I treat the early solar system simply as a disk of gas and dust orbiting around a star of

mass M . The gas and dust are phase locked; both phases travel at the same velocity throughout

the disk and exert no force on each other. The governing equations of such a "dusty gas" system

are the continuity equation and the Navier-Stokes Equations

∂ρ

∂t
+∇ · (ρ~v) = 0 (20)

D~v

Dt
= −∇p

ρ
+ ν∇2~v + ~Fb (21)

where ~v is the velocity of the dusty gas, ρ is the fluid density, p is the pressure, ν is the kinematic

viscosity, and ~Fb are the body forces acting on the fluid. In this system, the primary body force

is gravity, which is given as

~Fb = ∇
(
GM

r

)
(22)

Equations (20) and (21) describe the behavior of any fluid; however, for our system, we can

make some assumptions about the structure of the disk to make these equations easier to work

with.

1. The gas disk is inviscid, allowing us to eliminate all terms containing ν.

2. The disk has azimuthal symmetry. When working in cylindrical polar coordinates

(r, φ, z), this assumption enables us to set all ∂
∂φ

terms eqal to 0. Like in Youdin and

Goodman (2005), I still consider the dusty gas’s angular velocity, but I assume that it

does not vary in φ.

3. The disk has a flared structure. Understanding how the height of the disk varies with

radius is necessary to determine how heat is transfered throughout the disk. Assuming a

flared structure allows one to express the temperature T of the disk as a power function

in r [Armitage (2010)]. i.e.

T = T0

(
r

r0

)−n
(23)

where n is a postive number.

4. We restrict our region of interest to the disk midplane. Gravity eventually causes
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most material within the disk to settle at the midplane, [Lin (2008)], and it is the region

of the disk where planet formation is most likely. This assumption converts our system

into a two-dimensional problem, allowing us to ignore varitations in the z-direction and

dramatically simplifying the gravity term in equation (21).

5. The equation of state of our fluid is that of an ideal gas. In other words

p = ρRT = c2
sρ (24)

where cs is the gas sound speed and R is the specific gas constant.

These assumptions allow us to write (20) and (21) is cylindrical co-ordinates as

∂ρ

∂t
+

1

r

∂

∂r
(rρvr) = 0 (25)

∂vr
∂t

+ vr
∂vr
∂r
−
v2
φ

r
= −1

ρ

∂p

∂r
− GM

r2
(26)

∂vφ
∂t

+
vr
r

∂

∂r
(rvφ) = 0 (27)

where vr and vφ are the angular and radial velocities respectively. Using (23) and (24) to

express pressure in terms of ρ and T , (26) becomes

∂vr
∂t

+ vr
∂vr
∂r
−
v2
φ

r
= −R

ρ

(
T
∂ρ

∂r
+ ρ

∂T

∂r

)
− GM

r2
(28)

∂vr
∂t

+ vr
∂vr
∂r
−
v2
φ

r
= −c

2
s(r)

ρ

(
∂ρ

∂r
− nρ

r

)
− GM

r2
(29)

where c2
s(r) ≡ RT0

(
r
r0

)−n
. Thus, equations (25), (27), and (29) fully describe the evolution

of gas density and velocity within the disk.

Before we examine how the gas properties evolve over time, one must first define a steady-

state solution in which the disk properties remain constant in time
(
∂
∂t

= 0
)
. Such a state can

be achieved by also specifying that vr = 0. In this state (25) and (27) become trivial, but (29)

reveals that pressure and gravity cause the gas to orbit at the sub-Keplerian orbital velocity

vφ =

√
v2
k +

c2
s

ρ

(
∂ρ

∂r
− nρ

r

)
(30)
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Table 1: Non-dimensional Parameters
Symbol Meaning Value Range Equation Number
α Dimensionless Keplerian Velocity 10− 103 (39)
n Temperature Profile Exponent 3/7− 1 (23)
m Density Profile Exponent 1/2− 2 (44)

Table 2: Non-dimensional Variables
Variable Meaning Equation

f Non-dimensionalized density (44)
w Non-dimensionalized radial velocity (42)
u Non-dimensionalized angular velocity (43)
η Normalized density perturbation
ψ Normalized angular velocity perturbation
r̂ Non-dimensionalized radial distance (31)
t̂ Non-dimensionalized time (31) (32)

Thus the background steady for this model is the scenario described by equation (1), in which

the dusty gas orbits the central star in a circle at a sub-Keplerian velocity.

Non Dimensionalization and Perturbation

Now that a steady state has been defined, one can use dimensional analysis to understand

the relative importance of each term in each equation. This system has three key variables:

distance, velocity, and density, and we redefine these variables as follows:

r = Lr̂ (31)

v = V v̂ (32)

ρ = Φρ̂ (33)

where L, V , and Φ are the characteristic length, velocity, and density scales and the hatted

variables are now dimensionless. With these new definitions, the governing equations become

ΦV

L

(
∂ρ̂

∂t̂
+

1

r̂

∂

∂r̂
(r̂ρ̂v̂r)

)
= 0 (34)

V 2

L

(
∂v̂φ

∂t̂
+
v̂r
r̂

∂

∂r̂
(r̂v̂φ)

)
= 0 (35)
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∂v̂r

∂t̂
+ v̂r

∂v̂r
∂r̂
− v̂φ

2

r̂
= − RT

V 2Ln

(
r̂

r0

)−n(
∂ρ̂

∂r̂
− nρ̂

r̂

)
− GM

V 2L

1

r̂2
(36)

We can ensure that all hatted variables are of order 1 by defining L and V such that

L ≡ r0 (37)

V ≡
√
RT0 = cs0 (38)

Substituting these definitions into (25), (27), and (29) and removing the hats gives the non-

dimensionalized equations of continuity, angular momentum, and radial momentum respec-

tively. The non-dimensionalized continuity and angular momentum equations will look identi-

cal to (25) and (27), but the non-dimensionalized radial momentum equation is

∂vr
∂t

+ vr
∂vr
∂r
−
v2
φ

r
= −r−n

(
∂ρ

∂r
− nρ

r

)
− α2

r2
(39)

The new parameter, α, is defined such that

α2 ≡ GM

c2
s0r0

(40)

In other words,α specifies the ratio of the of the Keplerian velocity to the gas sound speed at

r = r0. Because the rest of the terms in (39) are of order 1, the magnitude of α2 determines

the behavior for the radial momentum equation. The value of α2 can vary from solar system to

solar system as it depends heavily on the temperature and mass of the central star, but for the

purposes of this analysis, I consider values of α2 between 102 and 104

After non-dimensionalizing, the next step is to linearize the governing equations about

the steady-state described in the previous section. This is done by redefining our variables ρ,

vr, and vφ as the sum of the background steady and small perturbation that vary with time:

ρ(r, t) = f0(r) + εf1(r, t) (41)

vr(r, t) = εw1(r, t) (42)

vφ(r, t) = u0(r) + εu1(r, t) (43)

where f1, w1, u1 � f0, u0. Furthermore, it is assumed that the unperturbed density f0 behaves
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as a power function with respect to r, i.e.

f0 ∝ r−m (44)

where m is a positive number. Algebraic manipulation transforms the non-dimensionalized

governing equations (25), (27) and (39) into

∂η

∂t
+
∂w1

∂r
+
w1

r
(1−m) = 0 (45)

v = r−n
(
r

f0

∂f0

∂r
− n

)
+
α2

r
= −r−n(m+ n) +

α2

r
(46)

∂w1

∂t
− 2v2ψ

r
− v

r
η = −r−n

(
∂η

∂r
− (m+ n)η

r

)
− α2

r2
η (47)

∂ψ

∂t
+
w1

2v

∂v

∂r
+
w1

r
= 0 (48)

where η ≡ f1
f0

, ψ ≡ u1
u0

, and v ≡ u2
0.

The final step of this linear perturbation analysis is to combine all four of these equations

into a single expression that describes how the perturbations evolve over time. Substituing ∂
∂r

of (45), (46), and (48) into ∂
∂t

of (47) gives

rn
(
∂2w1

∂t2
+
w1

r

(
α2

r2
+
n(m+ n)− 2(m+ n)

rn+1

))
= (1−m)

∂

∂r

(w1

r

)
+
∂2w1

∂r2
(49)

(49) is a partial differential equation of w1 alone. If we assume that the time dependence of w1

goes as eiωt, then we can solve this equation numerically using MATLAB’s boundary-value-

problem-solving tool.

The following figures show plots of the numerical solutions to this equation for different

values of n, m, α2. I achieve this solution by starting with a mesh of 10,000 points spanning

from r = 0 to r = 30. The characteristic length scale corresponds to a length of 1AU, and

r = 30 represents the outer limit of the disk. ω is set to 1 in all figures to make changes to

the oscillatory behavior easily observable. Perturbations are driven at the outer edge of the

solar system and die off once they reach the central star. These criteria are represented in the

model through the boundary conditions w1(r = 0.01) = 0 and w1(r = 30) = 1 (setting

w1(r = 0) = 0 results in a singularity). The amplitude of perturbations is set to one because, to

quote Youdin and Goodman (2005), "perturbation amplitudes are arbitrary in a linear analysis."
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Figure 4: Plots showing the numerical solutions to equation (49) for m = 1, α2 = 103, and
varying values of n. Top Left: n = 3/7 Top Right: n = 4/7 Bottom Left: n = 1 Bottom Right:
All three plotted together. Increasing n increases both the wave number of the solution and
the amplitude of the initial oscillation. Variations in n have no effect on the radius of initial
oscillation rosc.

Only inward-propagating solutions to this differential equation because beyond r = 30, it is

assumed that ρ = 0 and there is no more material through which the wave can propagate.

From these numerical solutions, it is clear that perturbations to the radial velocity are

zero at within the inner portions of the disk, before beginning to oscillate at some radius rosc.

Since the only boundary an inward-propagating wave will encounter is at the center of the

disk, this phenomenon justifies the exclusion of the effects of reflected waves in the analysis.

Figure 4 shows that varying n (the power of the temperature profile)does not change the overall

structure of the perturbation function or rosc. A change in n simply changes the wave number

of the oscillations, with larger n corresponding to larger wave numbers. Similarly, figure 5

shows that varying m (the power of the density profile) only alters the amplitude of the initial
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Figure 5: Plots showing the numerical solutions to equation (49) for n = 1, α2 = 103, and
varying values of m. Top Left: m = 1/2 Top Right: m = 1 Bottom Left: m = 2 Bottom
Right: All three plotted together. Increasing m increases only the amplitude of the innermost
oscillation. The wave number and rosc are both unaffected by changes in m.
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Figure 6: Plots showing the numerical solutions to equation (49) for n = 1,m = 1, and varying
values of α2. Top Left: α2 = 102 Top Right: α2 = 103 Bottom Left: α2 = 104 Bottom Right:
All three plotted together. Changes in α2 affect all three key components of the solution’s
structure. Increasing α2 decreases the wave number and the amplitude, but increases rosc.
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osciallation; both the wave number and rosc are resistant to changes in m. However, figure 6

reveals that varying α2 results in more interesting and dramatic changes. An increase in α2 not

only decreases the amplitude of the innermost perturbation, it also decreases the wave number

and increases rosc. Thus, the ratio between the Keplerian velocity and the gas sound speed

is the most important parameter for determining the structure of radial velocity perturbations

within a single-phase protoplanetary disk.

The numerical solutions in figures 4, 5, and 6 have yielded lots of useful information

about the effects of the free parameters on radial velocity perturbations. To gain additional

insight, I now search for a specific scenario for which I can derive an analytical solution for w1.

As it happens, n = 1 is just such a scenario. The results of this analysis are presented in the

following section.

Searching for an Analytic Solution

As discussed above, varying n in (49) only chnages the wave number of the solutionn to w1, not

the overall behavior or radius of initial oscillation. Thus, we can learn more about the behavior

of w1 by searching for analytic solutions valid for particular n. If we assume that n = 1 and

that the t-dependence of w1 behaves as eiωt, then (49) becomes

r2w′′ + r(1−m)w′ + (r3ω2 − β2)w = 0 (50)

where β2 ≡ α2 − 2m, w′ ≡ ∂w1

∂r
, and w′′ ≡ ∂2w1

∂r2
. This is a second order differential equation

with a form similar to that of the Bessel function, and with a few minor changes of coordinates,

(50) can be rewritten in the form of the Bessel function differential equation. Defining u ≡ rγ ,

(50) becomes

γ2u2w′′ + (γ −m)γuw′ + (u3/γω2 − β2)w = 0 (51)

where w′ and w′′ now refer to ∂w1

∂u
and ∂2w1

∂u2
respectively. In attempting to get something that

looks like a Bessel function are free to set our transformation parameter γ to whatever value

we choose. For γ = 3/2, (51) becomes

γ2u2w′′ + (γ −m)γuw′ + (u2ω2 − β2)w = 0 (52)
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making the additional transformation w = uaf(u), (52) becomes

u2f ′′ + uf ′ +

(
u2

(
ω

γ

)2

− δ2

)
f = 0 (53)

where δ2 ≡ β2

γ2
− m

γ
. The solution to (53) is a Bessel function in u. Therefore, the final solution

to w1 is

w1 = rm/2
(
C1Jδ

(
r3/2 2ω

3

)
+ C2Yδ

(
r3/2 2ω

3

))
eiωt (54)

where C1 and C2 are specified by the boundary conditions. Imposing the boundary conditions

from the previous section gives

C1 =
Yδ(0)

30m/2 ∗
(
Jδ
(
303/2 2ω

3

)
∗ Yδ(0)− Jδ(0) ∗ Yδ

(
303/2 2ω

3

)) (55)

C2 = − Jδ(0)

30m/2 ∗
(
Jδ
(
303/2 2ω

3

)
∗ Yδ(0)− Jδ(0) ∗ Yδ

(
303/2 2ω

3

)) (56)

Figure 7 compares MATLAB plots of (54) and (49) when n = 1, m = 1, and α2 = 1000. A

plot showing the difference between the numerical and analytical solutions ((49) - (54)) has also

been included. These plots reveal that there is a roughly 3% error between the two solutions.

I believe that that this error is a result of the highly oscillatory behavior of the solution, which

makes it difficult for MATLAB to find a numeric solution within our specified residual of 0.01.

This agreement between the numerical and analytical solutions to the problem allows us to use

the Bessel function described by equation (54) as a basis for developing a deeper understanding

of how these waves propagate through the model protoplanetary disk.

Discussion

The major motivation underlying this research was to gain insight into the dynamics at play

within the solar system during its earliest stages and to see whether these insights could help

solve unanswered questions regarding the evolution of bodies in the early solar system. This

single-phase model can be thought of as a simplification of GI [Boss (1997)] and streaming

instability [Youdin and Goodman (2005)] models, which attempt to overcome the one meter-

hurdle. This model shows that even in a simple, single-phase gas disk, radial velocity pertur-

bations create regions of convergence ∂w1

∂r
> 0 and regions of divergence ∂w1

∂r
< 0. Because of
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Figure 7: Left: MATLAB plot of the numerical (red) and analytical solutions (blue) to (49) for
n = 1, m = 1, and α2 = 104. Right: Difference between numerical and analytical solutions.
The 3% discrepency between the solutions is likely the result of the oscillatory behavior, and
the difficulty associated with getting a numerical solution with a small residual.
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this phenomenon, gas will tend to accumulate in regions of the disk where w1 = 0 and ∂w1

∂r
< 0.

Thus, a driven perturbation at the outer edge of a protoplanetary disk can still cause material

to accumulate several AU inward of the perturbation. These regions of accumulation, like the

snow line [Lin (2008)], are prime locations for planetesimal formation. Therefore, perturba-

tions at the outer edge of the planetary disk can generate density maxima at smaller radii that

can spawn young planets.

Alternatively, one can consider these velocity perturbations as sound waves propagating

energy from the out solar system to the inner solar system. If the perturbation were being

driven by an orbiting planet, this sound wave could be a mechanism of removing energy from

the planet’s orbit. This energy loss would cause the planet to slow down and lose angular

momentum, which in turn would cause it to sprial inward. These sound waves would continue

to remove energy from the planet’s orbit until eventually the planet reached a radius (determined

by δ) at which the wave dies out. This removal of energy through sound waves could be a

potential mechanism drivng planetary migration. It explains how planets that originally form at

the outer regions of the solar system can travel inward, and it also explains why the migration

stops at a particular radius, preventing the planet from crashing into the central star.

In generalizing these solutions to real protoplanetary disks, it becomes important to reeval-

uate the initial assumptions and decide if there are regions within the disk or times within the

disk’s life cycle where these assumptions may break down. Since the composition of pro-

toplanetary disks is a complex mixture of light gases and metals, the smooth density profile

described by equation (44) is perhaps the weakest assumption. As described in in Lin (2008),

in a real protoplanetary disk, volatiles such as water will transition from the gas to solid phase

at radii corresponding to their boiling points, causing the composition of the gas to change as

one moves farther away from the central star. Similarly, if the relevant density profile changes

with radius, then the relevant α2 parameter may vary with radius as well. One possible way

to address this behavior would be to impose a piece-wise density profile of several varying

power laws, with function breaks occurring at radii corresponding to the boiling points of key

volatiles. One could then combine these functions by requiring continuity of pressure and tem-

perature at each break point, thereby creating a more realistic model of a protoplanetary disk.
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Figure 8: The derivative of w1 for n = 1, m = 1, and α2 = 103. Matter is expected to accumu-
late in regions where ∂w1

∂r
< 0, which could potentially lead to increased rates of planetesimal

formation.

Future Directions

There are many potential avenues for future research to be conducted from this simple model

of a protoplanetary disk. This thesis presents a simple, foundational model of the early solar

system, and there are several additional forces and more complicated geometries at play. For

example, in this model, I have assumed that perturbations to the radial velocity are axisym-

metric, i.e. that they take the form of an annulus encircling the central star. True perturbations

are likely not axisymmetric; however, the effects of non-axisymmetric perturbations on gravita-

tional instabilities is still an open field of study. Noh et al. (1991) explore the non-axisymmetric

linearly perturbed mass and momentum equations, and find several unstable growth modes for

sufficiently massive disks. Tanga et al. (2004) test these predictions through N-body simu-

lations of planetesimal clusters, but find that these perturbations evolve into instabilities only

when gas drag is introduced. Furthermore, the drag levels they introduce, by their own admis-

sion, do not necessarily correspond to the levels of gas drag observed in physical protoplanetary

disks. Non-axisymmetric perturbations have been shown to create vorticies in a disk that could

form a planetary embryo, but only in the later stages of the disk’s lifecycle, after a gas giant has

already formed [de Val-Borro et al. (2007)].

24



The vertical structure of a protoplanetary disk must also be considered when analyzing

the stability of perturbations. As mentioned earlier, Toomre’s criterion (equation(4)) requires

that the dust midplane layer reach a minimum thickness in order for gravitational instabilities

to develop. However, vertical shear between different layers within the disk can prevent this

criteria from being met by creating Kelvin-Helmholtz instabilities (KHI). However, raising the

metallicity of the midplane (the Zrel parameter in equation (4)), could potentially overcome this

problem. Metallicity can be enriched through a variety of mechanisms, most notably through

photoevaporation of the gas [Armitage (2011)] and through radial pile-up [Youdin (2003)].

Youdin and Shu (2002) show that, depending on the disk parameters, gravitational instabili-

ties can manifest in midplanes with Zrel values as low as two, thereby overcoming the issues

introduced by vertical shear.

In addition to incorporating these additional components of the disk’s geometry, any com-

prehensive model of protoplanetary disk evolution must be able to explain the transport of an-

gular momentum throughout the disk. In my model, I neglected the background radial velocity

drift in order to find the steady state solution to the governing equations. However, real proto-

planetary disks exhibit no such stable behavior. In the early stages of the disk’s life time, matter

is accreting onto the central star, fueling it’s growth. As such, angular momentum must be trans-

ported outward, away from the star, in order to achieve this mass flux [Armitage (2011)]. There

are several mechanisms through which this transport can take place, but the most important, ac-

cording to Armitage (2011) are self-gravity-induced gravitational instabilities (see Alternate

Hypotheses) and the magneto-rotational instability (MRI). The magneteo-rotational instability

posits that in the presence of a weak magnetic field, the orbits of rotating charged particles will

be unstable if d
dr

(Ω2) < 0. This criterion is always satisfied in a protoplanetary disk; however,

the relevant importance of this instability compared the other forces within the disk is still an

active area of investigation [Armitage (2011)].

The ultimate goal of models such as those in Youdin and Goodman (2005) that employ the

methods described above is to develop a comprehensive, two-phase model of a protoplanetary

disk and how all the relevant forces within the disk affect instabilities. Youdin and Goodman

(2005) make an important start by incorporating both gas drag and dust back-reaction into their

model, but a complete model of such as system would incorporate additional forms of phase

interaction such as turbulence into the governing equations. Such an approach has shown to

yield valuable insight in other geophysical systems. Bercovici and Michaut (2010) developed
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such as model to explain the discrepancies between observed sound speeds in volcanoes and

those predicted by the pseudo-gas theory. By including terms that quantified the phase interac-

tions and fluid surface tension within a volcano, they were able to recreate the observed sound

speeds from the relevant continuity, momentum, and energy equations. A similarly complete

approach for a model protoplanetary disk will hopefully reconcile the discrepancies between

theoretical limits on particle growth and observations from distant solar systems.

Summary and Conclusions

In this essay, I have shown that in a single-phase gas disk orbiting a point mass star, with

temperature and density as power functions in r, perturbations in radial velocity will exhibit

oscillatory behavior for real values of ω. When T ∝ r−1, and p ∝ r−m, the radial perturbations

take the form of a transformed Bessel function of order δ multiplied by rm/2. We find that most

important parameter that determines the structure of the oscillations is α, the ratio between the

Keplerian velocity and gas sound speed. I theorize that driven velocity perturbations at the outer

edge of the solar system could offer plausible mechanisms for both overcoming the one-meter

hurdle and halting planetary migration. Further investigations in this area should incorporate

more complicated disk geometries and additional forces, with the ultimate goal to develop a

two-phase gas and dust model.
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Appendix: MATLAB Code for the Numerical Solution

The following MATLAB code ws used to generate the plots in Figure 7. Modifications to this

code were used to generate all other plots in the paper.

1 f u n c t i o n samp2

2 %I n i t i a l v a r i a b l e s and p a r a m e t e r s

3 r0 = 0 . 0 0 1 ;

4 r1 = 3 0 ;

5 r end = 5 0 ;

6 p t s = 10000 ;

7 r b e s = l i n s p a c e ( r0 , r1 , p t s ) ;

8 n = 1 ;

9 m = 1 ;

10 gamma = 3 / 2 ;

11 a = m/ ( 2 ∗ gamma ) ;

12

13 %S e t t i n g o r d e r and w a v e l e n g t h o f b e s s e l f u n c t i o n

14 a l p h a s q = 1 0^ 3 ;

15 bsq = a l p h a s q − 2∗m;

16 dsq = a l p h a s q / gamma^2 − ( gamma − m) ∗a / gamma − a ∗ ( a +1) ;

17 b = bsq ^ ( 1 / 2 ) ;

18 d = dsq ^ ( 1 / 2 ) ;

19 wsq = 1 ;

20 omega = wsq ^ ( 1 / 2 ) ;

21 omega2 = omega / gamma ;

22 u = r b e s . ^ gamma ;

23 %Boundary C o n d i t i o n s f o r a n a l y t i c S o l u t i o n

24 j 0 = b e s s e l j ( d , omega2∗ r0 ^gamma ) ;

25 j 1 = b e s s e l j ( d , omega2∗ r1 ^gamma ) ;

26 y0 = b e s s e l y ( d , omega2∗ r0 ^gamma ) ;

27 y1 = b e s s e l y ( d , omega2∗ r1 ^gamma ) ;

28
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29 c1 = y0 / ( r1 ^ ( gamma∗a ) ∗ ( j 0 ∗y1 − j 1 ∗y0 ) ) ;

30 c2 = j 0 / ( r1 ^ ( gamma∗a ) ∗ ( j 1 ∗y0 − j 0 ∗y1 ) ) ;

31

32 f b e s = c1∗ b e s s e l j ( d , u . ∗ omega2 ) + c2∗ b e s s e l y ( d , u . ∗ omega2 ) ;

33

34 % which i n t h i s c a s e i s 0<z <1 f

35 % c a l l i n i t 1 on a 10− p o i n t g r i d f o r i n i t i a l guess , and t o s e t

t h e g r i d

36 i n i t 1 = @( r ) m y i n i t ( r , r0 , r1 ) ;

37 s o l i n i t = b v p i n i t ( l i n s p a c e ( r0 , r1 , p t s ) , i n i t 1 ) ;

38

39 % c a l l bvp4c t o g e t t h e s o l u t i o n t o t h e ODE s p e c i f i e d i n ode1

and g i v e n

40 % t h e boundary c o n d i t i o n s s p e c i f i e d i n bc1 , w i th t h i s i n i t i a l

g u e s s and g r i d

41 ode1 = @( r , f ) m yd i f f ( r , f ,m, n , a l p h a s q , wsq ) ;

42 o p t i o n s = b v p s e t ( ’ Re lTo l ’ , 1e−2) ;

43 s o l = bvp4c ( ode1 , @bc1 , s o l i n i t , o p t i o n s ) ;

44

45 % g e t t h e g r i d

46 r = s o l . x ;

47 % g e t t h e s o l u t i o n

48 f = s o l . y ;

49

50 d e s c r = ’ n = %d \ nm = %d \ n \ \ a l p h a ^2 = %g ’ ;

51 s t r 1 = s p r i n t f ( d e s c r , n , m, a l p h a s q ) ;

52 % p l o t i t a g a i n s t t h e a n a l y t i c s o l u t i o n t o check

53 f i g u r e ( 1 )

54 p l o t ( r , f ( 1 , : ) , ’ r−’ )

55 p l o t ( rbes , u . ^ ( a ) . ∗ ( f b e s ) , ’b−’ )

56 t i t l e ( ’ R a d i a l V e l o c i t y P e r t u r b a t i o n s ’ )

57 t e x t ( 1 , 5 , s t r 1 )
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58 %, r , f ( 2 , : ) , ’ b− ’)

59 x l a b e l ( ’ r ’ )

60 y l a b e l ( ’w_{1} ’ )

61 a x i s ( [ 0 r1 −6 6 ] )

62 ho ld on

63

64 %f i g u r e 2 p l o t s t h e d i f f e r e n c e

65 f i g u r e ( 2 )

66 p l o t ( rbes , u . ^ ( a ) . ∗ ( f b e s ) − f ( 1 , : ) , ’ g ’ )

67 t i t l e ( ’ Numer ica l − A n a l y t i c ’ )

68 x l a b e l ( ’ r ’ )

69 y l a b e l ( ’ D i f f e r e n c e ’ )

70

71 %v = 1 / z − asq / ( z ^n ) ∗ (m+n ) ;

72 %dv = −z ^(−2)+n∗ asq ∗z^(−n−1) ∗ (m+n ) ;

73

74 %cs = ( r ^(−n ) ) ;

75 %v = ( asq / r − r ^(−n ) ∗ (m+n ) ) ;

76 %dvdr = (− asq ∗ r ^(−2) + n∗ r ^(−n−1) ∗ (m+n ) ) ;

77 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

78 f u n c t i o n d fdz = m yd i f f ( r , f ,m, n , asq , wsq )

79 % The 2nd o r d e r ODE " d ^2 f / dz ^2 = −( p i / 2 ) ^2 f " ,

80 % which becomes two 1 s t o r d e r ODEsi

81 % df1 / dz = f2 and df2 / dz = −( p i / 2 ) ^2 f1

82 d fdz = [ f ( 2 )

83 ( r . ^ n ) .∗(−wsq∗ f ( 1 ) + ( f ( 1 ) . / r ) . ∗ ( a sq / r . ^ 2 + ( n−2) ∗ (m+n

) . / r . ^ ( n +1) ) ) + (m−1) ∗ ( r . ^ ( −1) . ∗ f ( 2 ) − f ( 1 ) . / r . ^ 2 ) ] ;

84 end

85 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

86

87

88 f u n c t i o n r e s = bc1 ( fa , fb )
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89 % Boundary c o n d i t i o n t h a t f ( z =0) = 0 , and f ( z =1) = 1

90 % where f a i s f a t z =0 , fb a t z =1 .

91 r e s = [ f a ( 1 )

92 fb ( 1 ) + 1 ] ;

93 end

94

95 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

96

97 f u n c t i o n v = m y i n i t ( r , r0 , r1 )

98 %f1 = −(z−z0 ) / ( z1−z0 ) ;

99 %f2 = −1/( z1−z0 ) ;

100 f1 = −( r−r0 ) ^ 2 / ( ( r1−r0 ) ^2 ) ;

101 f2 = −2∗( r−r0 ) / ( ( r1−r0 ) ^2 ) ;

102 % i n i t i a l g u e s s has t o have t h e r i g h t boundary c o n d i t i o n s

103 v = [ f1

104 f2 ] ;

105 end

106

107 end
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