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ABSTRACT 

Cyanobacteria are a healthy part of many freshwater and marine ecosystems. However, 
under suitable conditions, these blue-green algae can increase to extreme levels, resulting in 
visible “blooms” and deteriorating water quality.  Furthermore, some of these blooms produce 
toxins that can kill fish, mammals, and birds, and may even lead to human illness and death.  
Since 1999, these harmful algal blooms (HABs) have plagued Lake Champlain, the sixth largest 
freshwater lake in the United States, and a source of drinking water for many communities in the 
surrounding states of New York and Vermont. However, current monitoring programs rely on 
infrequent visual identification and limited in situ water sampling to initially alert officials to 
toxic events.  This paper presents remote sensing tools for cyanobacteria identification using 
Landsat 8 OLI and Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery, 
examining the potential for high spatial and temporal HAB monitoring in Lake Champlain’s 
Missisquoi and St. Albans Bay, two areas highly affected by bloom events.  Atmospheric 
correction algorithms were tested for each sensor and statistical models developed based on three 
years of in situ monitoring data from the Lake Champlain Long-Term Water Quality and 
Biological Monitoring Program (LTMP).  Results for both sensors demonstrate the potential of 
chlorophyll’s green (550 nm) reflectance maximum for HAB identification in shallow and 
protected areas of Lake Champlain. 
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SECTION 1. INTRODUCTION 
 

1.1 Harmful Algal Blooms and Lake Champlain Monitoring Protocols 
 

Cyanobacteria, or blue-green algae, are a type of microscopic, algae-like bacteria.  These 

algae are part of many healthy freshwater, coastal and marine ecosystems. However, under 

suitable conditions cyanobacteria can swell to extreme levels, forming visible “blooms” and 

deteriorating water quality [Figure 1].  Furthermore, some of these blooms produce toxins that 

can kill fish, mammals, and birds and may even lead to human illness and death. These harmful 

algal blooms (HABs) have become increasingly common occurrences worldwide and are of 

particular concern for inland freshwaters, where concentrations of neurotoxins can quickly 

multiply, impacting local drinking water supplies, fishery health, and recreation (Paerl, 2011).   

Harmful algal blooms were first recorded in Lake Champlain in 1999, after two dogs died 

from consuming water containing high concentrations of cyanotoxins (Rosen, 2004).  Since 

2000, HABs have become a major safety concern within the Lake Champlain basin, as studies 

have demonstrated the dominance of toxin-producing taxa in the Northeastern Arm of the Lake 

and levels of microcystin and anatoxin-a (two potent cyanotoxins) have regularly exceeded the 

World Health Organization (WHO) advisory levels of 1μ/L (Rosen, 2001; Rosen, 2004; Boyer, 

2004).   

Since 2002, HABs in Lake Champlain have been monitored through a tiered alert system 

based on WHO recommendations [Table 1].  This system relies on volunteer-based visual 

analyses and infrequent water sampling (about two times a month) for initial alerts. These 

observations are then reported and displayed through the Vermont Department of Health’s 

‘Algae Tracking Map.’1  Only once scum, highly discolored water, foul odor, or other potential 

HAB indicators are observed in these qualitative analyses does the alert system move to a 

quantitative stage, at which vertical plankton tows are collected for microscopic analysis by 

experts.  If both high cyanobacteria densities and microcystin concentrations exceeding 1μ/L are 

measured in these quantitative samples, Alert Level 2 is reached, and public health advisories are 

issued by local agencies (Watzin, 2006). 

																																																								
1	 Algae tracking map can be viewed at https://apps.health.vermont.gov/gis/vttracking/BlueGreenAlgae  	
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The efficacy of this alert system is severely limited in 1) its ability to respond rapidly to 

growing HABs, as initial alerts are dependent upon infrequent and often inaccurate visual 

observations, and 2) the spatial coverage of monitoring, with in situ samples and visual 

observations only covering a small portion of the 269 square km Northeastern Arm of Lake 

Champlain (LCBP, 2004).  Remote sensing technology offers a solution to both of these 

limitations, as satellite remote sensors provide regular and synoptic observations of the Lake 

Champlain Basin.  Although airborne and satellite remote sensing cannot replace in situ toxin 

identification and cell counts, a quantitative remote sensing model for algal blooms in Lake 

Champlain has the potential to greatly increase the accuracy and frequency of initial HAB alerts, 

providing an inexpensive and effective addition to existing monitoring protocols.   

 

 

Figure 1:  Blue-green algae blooms at the Route 78 access in Mississquoi 
Bay and boat-based sampling in Lake Champlain, VT (VT DEC). 

 

Table 1:  Outline of current monitoring and alert system for Lake Champlain, based 
on WHO guidelines (from Watzin, 2006) 

Alert	Level Frequency Samples	Collected	for	 Trigger	to	Next	Level	 Public	Action	

Initial 2/month Algal	identification Identification	of	toxin-producing	

cyanobacteria	

None

Quantitative 2/month Algal	enumeration;	

Chlorophyll	a

>2000	cyanobacteria	cells/mLa	in	net	

samples	or	lay	monitor	samples

None

Vigilance 1/week Algal	enumeration;	

Chlorophyll	a

>4000	cyanobacteria	cells/mLb	in	net	

samples	or	lay	monitor	samples

Notify	public	health	officials	that	cyanobacteria	are	

abundant	and	blooms	could	form.

Alert	Level	1 1/week Algal	enumeration;	

Chlorophyll	a;	Toxin	analysis

>1	"g	microcystin/L	in	whole	water	

samples

Notify	public	health	officials	of	potential	risks	to	

humans	and	animals.

Alert	Level	2 1/week 	Algal	enumeration;	

Chlorophyll	a;	Toxin	analysis

Notify	public	health	officials	that	significant

risk	to	humans	and	animals	exists.	Public	health	

advisories	should	be	issued	by	appropriate	agencies.
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1.2 Remote Sensing of Algal Blooms: Past Research and Applications 
 
 
1.2a Introduction 

Remote sensing of phytoplankton abundance has historically been termed ‘ocean color,’ 

as such methods were most primarily developed for synoptic measurement of phytoplankton 

biomass in the world’s oceans.  Since the development of the Coastal Zone Color Scanner 

Experiment (CZCS) in 1978, multiple satellite missions have focused on the measurement of 

marine phytoplankton biomass.  The data from these missions, including the Sea-Viewing Wide 

Field-of-View Sensor (SeaWIFS), Hyperspectral Imager for the Coastal Ocean (HICO), and 

Moderate Resolution Imaging Spectroradiometer (MODIS) missions, are then collected, 

processed, calibrated, archived, and distributed by NASA’s Ocean Biology Processing Group 

(OBPG).  Table 2 outlines the specifications of past and currently operational satellites for 

phytoplankton detection and monitoring.  Despite the many ocean color missions of the past 

three decades, only Landsat 7 and 8 and two MODIS missions remain operational for current 

phytoplankton monitoring (NASA Ocean Color Data, n.d.). 

These missions have been successful at detecting large-scale ocean phytoplankton 

dynamics. However, many of these ‘ocean-color missions’ lack the necessary resolutions for 

coastal or inland lake assessments, as remote sensor design always represents trade-offs between 

spatial resolution, spectral wavelengths, and temporal frequency (Gordon, 2012).  Furthermore, 

the remote sensing of such turbid, high-sediment, and small-scale water bodies provides unique 

complications and considerations.  Therefore, although many studies have attempted to apply 

ocean color remote sensing models to inland water assessment, such models must be developed 

independently for each location and sensor due variations in water quality parameters and 

atmospheric correction approaches (Lathrop, 1992; Dekker, 1993; Kloiber, 2002; Gons, 2002; 

Cipman, 2004; Simis, 2007; Becker, 2009; McCullough, 2012; Torbick 2013).  
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Table 2: Specifications of past and currently operational satellites for phytoplankton detection.  Information 

from NASA Ocean Color Data Website, further individual mission details from NASA satellite websites. 

	  

Spectral	Range/Bands Radiometric Spatial Temporal

Oct	1978 Jun	1986

5	Multispectral	bands:
1)	433-453	nm;	2)	510-530	nm;
3)	540-560	nm;	4)	660-680	nm;
5)	700-800	nm
1	Thermal	band:	10,500-12,500	nm

8-bit 825	m	for	all	bands 26	days	

1 Multispectral	Scanner	(MSS)	 Jul	1972 Apr	1999 6-bit	 68	x	83	m	 18	days	

2 Multispectral	Scanner	(MSS)	 Jan	1975 Feb	1982 6-bit	 68	x	83	m	 18	days	

3 Multispectral	Scanner	(MSS)	 Mar	1978 Mar	1983

4	Multispectral	bands:
1)	500-600	nm;	2)	600-700	nm;
3)	700-800	nm;	4)	800-1,100	nm.
1	Thermal	band:	10,410-12,350	nm

6-bit	 68	x	83	m	 18	days	

4 Thematic	Mapper	(TM)	 Jul	1982 Jun	2001 8-bit
30	m	for	multispectral;	
120	m	for	thermal	

16	days	

5 Thematic	Mapper	(TM)	 Mar	1984 Jan	2013 8-bit
30	m	for	multispectral;	
120	m	thermal	

16	days	

7
Enhanced	Thematic	Mapper	Plus	
(ETM+)	

Apr	1999 Operational

6	Multispectral	bands:
1)	450-515	nm;	2)	525-605	nm;
3)	630-690	nm;	4)	750-900	nm;
5)	1,550-1,750	nm;	6)	2,090-2,350	nm	
1	Thermal	band:	10,400-12,500	nm
1	Panchromatic	Band:	520-900	nm

8-bit
30	m	for	multispectral;	
120	m	for	thermal;
15	m	for	panchromatic

16	days	

8
Operational	Land	Imager	(OLI)	and	
Thermal	Infrared	Sensor	(TIRS)

Feb	2013 Operational

7	Multispectral	bands:
1)	430-450	nm;	2)	450-510	nm;
3)	530-590	nm;	4)	640-670	nm;
5)	850-880	nm;	6)	1,570-1,650	nm	;	7)	
2,110-2,290	nm
2	Thermal	bands:	10,600-11,190nm	and	
11,500-12,510	nm
1	Panchromatic	Band:	500-680	nm
1	Cirrus	band:	1,360-1,380	nm

12-bit
30	m	for	multispectral;	
120	m	for	thermal;
15	m	for	panchromatic

16	days	

Aug	1997 Dec	2010

8	Multispectral	bands:
1)	402-422	nm;	2)	433-453	nm;	3)	480-
500	nm;	4)	500-520	nm;	5)	545-565	nm;	
6)	660-680	nm;	7)	745-785	nm;	8)	845-
885	nm

12-bit 1.1	km	for	all	bands	 1	-	2	days	

Dec	1999 Operational 12-bit
250	m	for	bands	1	&	2;	
500	m	for	bands	3	-	7;	
1000	m	for	bands	8	-	36

1-2	days

Mar	2002 Operational 12-bit
250	m	for	bands	1	&	2;	
500	m	for	bands	3	-	7;	
1000	m	for	bands	8	-	36

1-2	days

Mar	2002 Apr	2012

15	Multispectral	bands:
1)	407.5-417.5	nm;	2)	437.5-447.5	nm;	3)	
485-495	nm;	4)	505-515	nm;
5)	555-565	nm;	6)	615-625	nm;
7)	660-670	nm;	8)	677.5-685	nm;	Bands	
9-15)	700-905

12-bit From	300-1,200m	 3	days

Sep	2009 Sep	2014
87	Hyperspectral	bands	from	400	-	900	
nm

8-bit 90m
3	days	,	with	pre-
scheduled	acquisition

Jun	2010 Operational

8	Multispectral	bands:
1)	402-422	nm;	2)433-453	nm;	3)	480-
500	nm;		4)	545-565	nm;	5)	650-670	nm;	
6)	675-685	n;	7)	735-755	nm;	8)	845-
885nm

12-bit 500m
Constant	coverage	of	
Korean	Peninsula	
(2500	x	2500	km2)

Resolution
Satellite	sensor

Landsat

36	Multispectral	bands:
1)	620-670	nm;	2)	841-876	nm;
3)	459-479	nm;	4)	545-565	nm;
5)	1,230-1,250	nm;	6)	1,628-1,652	nm;	7)	
2,105-2,155	nm;	8)	405-420	nm;
9)	438-448	nm;	10)	483-493	nm;

MODIS

Coastal	Zone	Color	Scanner	Experiment	(CZCS)	

Launch	Date End	Date

Geostationary	Ocean	Color	Imager	(GOCI)

Hyperspectral	Imager	for	the	Coastal	Ocean	(HICO™)	

MERIS	(Medium	Resolution	Imaging	Spectrometer)

6	Multispectral	bands:
1)	450-520	nm;	2)	520-600	nm;
3)	630-690	nm;	4)	760-900	nm;
5)	1,550-1,750	nm;	6)	2,080-2,350	nm	
1	Thermal	band:	10,400-12,500	nm

4	Multispectral	bands:
1)	500-600	nm;	2)	600-700	nm;	3)	700-
800	nm;	4)	800-1,100	nm

Terra

Aqua

SeaWiFS	
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1.2b Remote Sensing of Water Properties and Algal Biomass 

Remote sensing of water quality relies on the development of bio-optical algorithms that 

relate the reflectance at the surface to water quality parameters.  Sunlight entering a clear water 

body is mostly absorbed within about 2 meters of the surface, depending on the wavelength.  

Light in the near infrared wavelengths (700 nm-1300 nm) is generally absorbed near the surface 

of the water. However, the absorption of water in the visible wavelengths varies dramatically 

based on water column constituents such as phytoplankton, suspended sediments, and dissolved 

organic matter.  These water column constituents each influence the backscattering and 

absorption (the inherent optical properties, or IOPs) of a water body within the visible range, and 

therefore the spectral properties of a water body are determined by volume reflection, or the sum 

of contributions to these IOPs (Gordon, 2012). 

Morel and Prieur (1977) classified ocean water into “Case 1” and “Case 2” waters. The 

optical properties of Case 1 water are dominated by phytoplankton, with very low sediment and 

suspended matter (generally open ocean environments).  Case 2 waters, on the other hand, are 

influenced by the optical contributions of other constituents such as suspended sediments or 

color-dissolved organic matter (CDOM), as well as phytoplankton biomass (Gordon and Morel, 

2012).  Turbid coastal and inland waters are characterized as Case 2 waters due to land runoff 

and anthropogenic inputs to the local ecosystem (Li et al., 2003). In both Case 1 and Case 2 

waters, algae biomass is generally measured through the concentration of photosynthetic pigment 

Chlorophyll-a. Chlorophyll-a has two absorbance peaks near 433 nm (blue) and 686 nm (red), a 

reflectance maximum near 550 nm (green), and a reflectance peak around 690-700 (Cannizzaro, 

2006).  

In addition to spectral properties recorded in the literature, lab-based spectra were 

processed as part of this study for empirical measures of chlorophyll-laden water. Phytoplankton 

samples were taken from commercially available Seachem Reef Phytoplankton, a concentrated 

blend of green algae with size ranges from 1-20 μm. A 1000mL beaker was filled with 100 mL 

sand and 800 mL of water, and this sand was allowed to settle to the bottom of the beaker, 

coating the bottom of the beaker for the remainder of the experiment.  Next, 200 mg of 

additional sand was added to the beaker and, while this sediment remained suspended in the 

water column, phytoplankton was added to the beaker at increments of 5mL, or 10 mg.  

Reflectance spectra were measured at 1nm intervals from 350- 2500nm with an ASD FieldSpec 

Pro spectroradiometer and calibrated with Spectralon as the white reference. Figure 2 shows the 
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experimental setup and recorded spectra. Lab-based spectra confirmed expected chlorophyll 

reflectance features, with reflectance minima in the blue (433 nm) and red (678 nm), and 

maxima in the green (590 nm) and at 722 nm.  Overall strength reflectance characteristics 

increased with increasing chlorophyll concentration as expected, with the magnitude of the 

722nm reflectance peak increasing with particularly high concentrations of phytoplankton. 

	 

Figure 2. Experimental setup with 200 mg/L of suspended sediment in 1000 mL beaker and ASD 
FieldSpec Pro spectroradiometer  (left). Lab spectra of varying Chlorophyll concentrations, with visible 
reflectance peaks at 555 and 700nm (right).	 

 

The relationships of light reflected or absorbed at specific wavelengths in the visible 

spectrum, such as those recorded in this study’s lab stud measurements, can be used to estimate 

chlorophyll-a concentrations using satellite bio-optical algorithms (O’Reilly et al. 1998).  Bio-

optical algorithms have successfully been derived for Case 1 waters, with numerous studies 

presenting a comprehensive log-linear relationship between chlorophyll-a concentration and 

selected spectral band ratios (Jensen, 2000).  Furthermore, the NASA Ocean Biology Processing 

Group (OBPG) has developed maximum band ratio algorithms for use in large-scale oceanic and 

global chlorophyll-a mapping.  These “OC” algorithms model a fourth-order polynomial 

relationship between the ratio of remote sensing reflectance in the blue and green wavelengths 

and chlorophyll-a, with coefficients varying based on sensor characteristics [Equation 1]: 

	
	

	

2 g/L
4 g/L

10 g/L
20 g/L
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𝑙𝑜𝑔!" 𝐶ℎ𝑙! = 𝛽! + 𝛽!𝑋! + 𝛽!𝑋!! + 𝛽!𝑋!! + 𝛽!𝑋!! + 𝜀! 		

	 	 	 	 	 	 	 	 	 	 Eq.	1	

𝑋! = 𝑙𝑜𝑔!"(
𝐵𝑎𝑛𝑑!
𝐵𝑎𝑛𝑑!

)! 	

	
Unlike these ‘ocean color’ algorithms, however, chlorophyll-a abundance in Case 2 

waters (turbid coastal or lake waters with high suspended solid concentrations) cannot be 

described through a single and comprehensive band ratio algorithm due to confounding and 

complex water column constituents (Nieke, 1997; Doerffer, 2007; Gitelson, 2009).  Although 

bio-optical algorithms may be successfully correlated to water quality parameters in Case 2 

waters, these developed algorithms are only viable for a particular location and not applicable on 

a larger scale (Nieke, 1997; Doerffer, 2007; Gitelson, 2009). Figure 3 illustrates the various 

water column constituents that may contribute to the water-leaving signal and therefore must be 

considered when developing bio-optical algorithms, namely surface reflection/win, suspended 

sediments (both organic and inorganic), bottom reflection, and phytoplankton populations. 

 
Figure 3:  Diagram showing various possible water column contributions 
to Case 2 water leaving radiance. 

 
 

1.2c Harmful Algal Bloom Remote Sensing 

With the increasing frequency of HABs worldwide, remote sensing classification of these 

blooms has become an active area of research.  Large-scale HAB monitoring programs have 

been developed by the National Oceanic and Atmospheric Administration (NOAA) and the 
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National Centers for Coastal Ocean Science (NCCOS), including the application of Medium 

Resolution Imaging Spectrometer (MERIS) data for HAB monitoring off the Florida Coast and 

Chesapeake Bay and MODIS-based models monitoring blooms in Southern California oceans 

(Anderson, 2009).    

Because all phytoplankton (both green algae and cyanobacteria) contains chlorophyll-a, 

remote sensing of chlorophyll alone cannot be used to determine the specific species 

composition or toxicity of assemblages.  Previous studies have attempted to use the accessory 

pigment phycocyanin, present only in cyanobacteria, to quantify blue-green algae specifically 

and delineate HABs from healthy phytoplankton growth (Miller, 2006; Marion et al., 2012; Qi et 

al., 2014).  Phycocyanin has a characteristic reflectance minimum at 625 nm, making it possible 

to separate from a normal chlorophyll spectrum.  However, this characteristic feature of 

phycocyanin is only detectable at high chlorophyll-a concentrations and requires high spectral 

resolution to distinguish from normal chlorophyll reflectance spectra. Because of the problems 

with phycocyanin, most studies of HABs remote sensing models rely on chlorophyll-a 

concentration alone as a bloom indicator.  This study in particular will focus on chlorophyll 

anomalies as HAB indicators, an alert framework designed to work in conjunction with the 

current monitoring protocol in Lake Champlain, and expanding the potential for initial 

identification of algal blooms.  

A number of studies have successfully modeled recent HABs in the Great Lakes, 

particularly after the recent toxic events in western Lake Eerie. Vincent 2004 successfully used 

Landsat TM and ETM+ data to assess the concentration and spatial distribution of cyanobacteria 

blooms in Lake Erie through step-wise linear regression using in situ measurements.  Other 

studies (Pozdnyakov 2005, Becker et al. 2009, Weghorst 2008, Wynne 2008, McCullough 2012, 

Zhang 2012) applied MODIS and MERIS sensors to derive cyanobacteria abundances at a lower 

spatial but higher temporal resolution within the Great Lakes.  

Within Lake Champlain, a number of studies have attempted to quantify algal bloom 

growth in recent years. Wheeler (2011) used MERIS observations to test semi-analytical 

algorithms for phycocyanin and chlorophyll-a concentrations, as well as developing empirical 

models from a QuickBird (a DigitalGlobe product) image. Isenstein (2014) employed Landsat 

ETM data for regression modeling of Lake Champlain chlorophyll-a, and Torbick (2015) applied 

Landsat TM, Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) 

data to develop empirical models for chlorophyll-a concentration in Lake Champlain.  Despite 
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the success of these studies, however, all previous remote sensing of Lake Champlain HABs 

has relied on one or two images for calibration and validation.  This study expands upon this 

previous research, looking at a three-year time interval of in situ chlorophyll measurements and 

satellite imagery, as well as assessing the potential of the currently operational Landsat 8 and 

MODIS sensors for ongoing HAB monitoring and detection. 
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1.3 Atmospheric Correction for Water Quality Remote Sensing 
1.3a Introduction 

Accurate atmospheric correction, critical in all remote sensing studies, is especially 

important for remote sensing of water quality, as the brightness variation of water bodies is far 

less than that of land surfaces.  Rather than recording water-leaving radiance, space-borne 

remote sensors observe the total radiance exiting the top of the atmosphere (TOA), at least 90% 

of which is scattered sunlight from aerosols and air molecules that never penetrated the water 

surface (Hu et al., 2001) [Figure 3]. In order to retrieve water-leaving radiance from observed 

TOA images, these overwhelming atmospheric effects must be modeled and removed, 

accounting for differences in aerosol optical thickness and properties and the way in which they 

influence the apparent reflectance. 

A number of different atmospheric correction methods have been developed to measure 

and remove heterogeneous atmospheric effects (Gordon and Wang, 1994; Wang et al., 2009). 

Standard NASA atmospheric correction algorithms are based on Gordon and Wang (1994)’s 

approach, which models the TOA radiance over water as the sum of atmospheric, surface, and 

subsurface contributions [Equation 2]. 

 

𝐿𝑡 𝜆 = 𝐿𝑟 𝜆 + 𝐿𝑎 𝜆 + 𝑡 𝜆 𝐿𝑓 𝜆 + 𝑇 𝜆 𝐿𝑔 𝜆 + 𝑡 𝜆 𝐿𝑤(𝜆)    Eq. 2 

 

Where λ denotes the sensor spectral band wavelengths, Lr(λ) is the Raleigh scattering by 

air molecules in the absence of aerosols, La(λ) is the multiple scattering from aerosols in the 

absence of Rayleigh as well as Rayleigh–aerosol interactions, t(λ) and T(λ) are the diffuse and 

direct atmospheric transmittance from surface to sensor, Lf(λ) is the contribution from whitecaps 

and foam on the surface that is diffusely transmitted to the TOA, Lg(λ) is the specular reflection 

(glint) from the surface that is directly transmitted to the sensor field of view, and Lw(λ) is the 

water-leaving radiance that is diffusely transmitted to the TOA. The Raleigh scattering and 

specular reflectance in a scene are predictable based off solar and sensor characteristics, leaving 

the water-leaving radiances (Lw(λ)) and the aerosol radiance (La(λ)) as the two primary 

unknowns in this equation, with the goal of atmospheric correction being to model the latter and 

retrieve the former. 
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Figure 3: The impact of atmospheric noise on ocean color spectra.  A least 90% of the at-
sensor radiance (Sensor-Measured) is due to atmospheric noise and must be removed in order 
to measure ocean/water color (taken from Wang et al., 2001). 
 
 
The SeaWiFS Data Analysis System (SeaDAS) software package distributed by NASA’s 

Ocean Biology Processing Group has been designed for the processing and viewing of ocean 

remote sensing data, and, within SeaDAS, the l2gen code can be used to atmospherically correct 

Level 1 ocean data.  Originally designed for the SeaWiFS satellite, over the past few years, the 

software has been expanded to support the processing of other sensors, including MODIS, 

VIIRS, HICO, MERIS and, in 2015, Landsat 8 (NASA	SeaDAS	manual,	n.d.)   

 

1.3b Approaches to Modeling Aerosol Radiance 

In order to retrieve water-leaving radiance (Lw(λ)), the aerosol radiance (La(λ))  must be 

modeled based on scene-specific information.  This scattering from aerosols can be modeled 

through multiple approaches, including a suite of atmospheric correction algorithms included 

within the SeaDAS l2gen package. 

The standard aerosol correction algorithm used by NASA's Ocean Biology Processing 

Group (OBPG) relies on the Gordon and Wang model, with aerosol radiance computed from the 

ratio of two bands for which the water-leaving radiance is negligible (generally two or more NIR 

bands).  This assumption of complete radiance absorption in the near infrared (NIR) has been 

demonstrated to prove true over Case 1 (clear ocean) waters (Gordon & Wang, 1994) but can 

lead to errors when applied to Case 2 (turbid and inland) waters (Ruddick et al., 2000).  This 

concept is illustrated in Figure 3, as the ‘Blue Ocean’ spectra has a reflectance of close to zero 

for all wavelengths greater than 800nm.  Therefore, aerosol optical thickness (and aerosol 

radiance) can be modeled by the difference between the blue ocean and sensor-measured spectra 



Midzik  

	

14	
in the NIR.  This calculated aerosol optical thickness can then be extrapolated back to lower 

wavelengths, allowing the atmospheric correction models to remove atmospheric noise from the 

overall spectral shape.  As is evident in Figure 3, the green ocean spectra (that of case 2, high 

sediment load/chlorophyll water) has non-zero reflectance in the NIR. Therefore, this 

atmospheric correction approach generally overcorrects for aerosol radiance over inland water 

bodies, where NIR signals cannot be assumed to be zero, and are affected by in-water 

constituents, as well as aerosol scattering. 

Building off of these NIR models, Wang and Shi developed a short wave infrared 

(SWIR)-based atmospheric correction.  Unlike the NIR wavelengths, SWIR reflectance can be 

assumed to be near zero for both Case 1 and Case 2 waters.  The Wang and Shi model employs a 

turbid water index to determine which aerosol model (SWIR versus NIR) should be used within 

a scene. However, due to the low signal-to-noise of most SWIR bands, this method often 

includes large uncertainties in aerosol radiance and fails over highly productive waters (Wang 

and Shi, 2007). 

Due to these inherent problems in both NIR and SWIR correction, the Remote Sensing 

and Ecosystem Modeling team developed MUMM (Management Unit of the North Sea 

Mathematical Models) atmospheric correction method for SeaWiFs application over turbid 

waters. The method assumes spatial homogeneity of the SeaWiFs 765 nm/865 nm band ratios for 

aerosol reflectance and for water-leaving reflectance (Ruddick et al., 2000).  For MODIS, the 

two NIR bands centered at 748 nm and 869 nm are used, while in Landsat 8 MUMM correction 

bands 4 (640 nm) and 5 (850-880 nm) are used.   

All three atmospheric correction methods (NIR, SWIR, and MUMM) were examined for 

application to Landsat 8 and MODIS remote sensing of Lake Champlain, with the best 

atmospheric correction being used to estimate chlorophyll-a concentration and HAB abundance. 
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Section 2: SITE DESCRIPTION AND IN SITU SAMPLING 

 

Figure 4: New England Region with Lake Champlain from MODIS imagery. 

 

2.1 Site Description: Lake Champlain 
2.1a Lake Champlain Atlas Data  

Lake Champlain is the sixth largest freshwater lake in the United States.  Located 

between New York and Vermont, and extending into Canada in the North, the lake is 120 miles 

long with a surface area of 1127 km2 and a volume of 25.8 km3 (https://www.epa.gov) [Figure 4].  

More than 550,000 people reside in the Lake Champlain watershed, over 200,000 of whom 

depend on the lake for drinking water. Approximately 4,149 draw water directly from Lake 

Champlain for individual use, as well as 99 public water systems that source water from the lake. 

In addition, Lake Champlain is a major recreational area, with 54 public beaches and hundreds of 

private homes and recreational beaches, which contribute to a fishing and recreation economy of 

nearly $4 billion annually. Although the average depth of the Lake Champlain is 19.5 meters, the 

lake reaches depths of over 122 meters in the area between Charlotte, Vermont, and Essex, New 

York and can be as shallow as 4.5 meters in areas such as Missisquoi and St. Albans Bay [Figure 

5] (LCBP Lake Champlain Basin Atlas).  



Midzik  

	

16	
 

Figure 5: Lake Champlain Bathymetry Map (from Lake Champlain Basin Program Atlas) 

 

 
2.1b Spatial Variation in Algal Blooms and Eutrophication  

Since the death of several dogs in 1999 and 2000, algal toxins have emerged as an area of 

study in Lake Champlain. However, these toxic blooms remain concentrated in a small area of 

the lake, as in situ sampling studies have identified dense seasonal blooms predominantly in 

Missisquoi and St. Albans Bays, the large, shallow embayments of the lake’s Northeast Arm 

(Boyer et al., 2004; Mihuc et al., 2006; Smeltzer et al., 2012).  Furthermore, Mihuc (2006) 

analyzed the species composition of Lake Champlain algal populations and found that all sites in 

the Northeast Arm of the lake contained primarily blue-green algae species, with Microcystis (a 

toxic algae species) making up the dominant taxa.    

The Northeast Arm of Lake Champlain makes up about one-quarter (269km
2
) of the 

lake’s surface area, but has a mean depth of only 13m (LCBP Lake Champlain Basin Atlas).   

Studies of eutrophication in Lake Champlain have historically focused on this area, as 

eutrophication of the lake first manifested in St. Albans and Mississquoi Bays in the 1960s 

(Myers and Gruendling, 1979). In fact, between 1979-2009, phosphorus concentration increased 

by 72% and chlorophyll concentrations doubled in Mississquoi Bay (Smeltzer et al., 2012).  

Furthermore, based on sediment cores taken from the Northeast Arm of the Lake, Levine et al. 

(2012) concluded that these patterns of geochemical and biological change were due primarily to 

eutrophication by nutrients from urban and agricultural sources, as the large catchment area of 

the Northeast Arm (particularly that of Mississquoi Bay) has seen significant agricultural 

development over the past century (Levine et at., 2012). Figure 6 illustrates the location of these 
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two bays, as well as the the watershed areas of Mississquoi and St. Albans Bays, which 

together make up the catchment of Lake Champlain’s Northeast Arm. Based on these 

characteristics, St. Albans and Mississquoi Bay were selected as areas of focus for this study.   

 
Figure 6: Locations in Lake Champlain Northeast Arm from Levine 2012 (left) and watershed areas of 
Mississquoi and St. Albans Bays, which combine to make up the entire Northeast Arm drainage area of 
Lake Champlain (from LCBP Atlas). 

   

 

2.2 Lake Champlain In Situ Sampling  
2.2a LTMP Sampling Protocol 

Sine 1992, the VT DEC has conducted the Long-Term Water Quality and Biological 

Monitoring Project (LTMP), focused on providing regular limnological surveys of Lake 

Champlain and detecting long-term environmental change in the region.  The LTMP collects 

field measurements at 15 lake stations, visiting these stations regularly from late April through 

October each year [Figure 7].  Sampled parameters include temperature, dissolved oxygen, pH, 
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alkalinity, total phosphorus, dissolved phosphorus, total nitrogen, dissolved silica, chloride, 

chlorophyll, phytoplankton, and zooplankton.  Three years of biological and water quality 

measurements (between 2013 and 2015) were used for this study, focusing on the algal bloom 

indicator of chlorophyll-a. 

Within the LTMP protocol, chlorophyll-a samples are collected using a vertically-

integrated hose-sampler beginning at the lake surface to a depth representing twice the Secchi 

depth. Samples are then filtered in the field (100 ml on 47mm diameter GF/A glass fiber filters 

wrapped in 90 mm No.3 glass fiber filters) and placed in a dark container on ice for transport to 

the laboratory, where they are measured using a hydrolab fluorometer. These chlorophyll-a 

samples are reported in concentrations of µg/L (VTDEC, 2006). 
 

Figure 7:  Lake Champlain sampling location position and depth (from VT DEC protocol)  

Lake	Station Latitude Longitude Depth	(m)

2 43.71483333 -73.383 5
4 43.95166667 -73.4078333 10
7 44.126 -73.4128333 50
9 44.24216667 -73.3291667 97
16 44.42583333 -73.232 25
19 44.471 -73.2991667 100
21 44.47483333 -73.2316667 15
25 44.582 -73.2811667 32
33 44.70116667 -73.4181667 11
34 44.70816667 -73.2268333 50
36 44.75616667 -73.355 50
40 44.78533333 -73.1621667 7
46 44.94833333 -73.34 7
50 45.01333333 -73.1738333 4
51 45.04166667 -73.1296667 5
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Table 3: summary of Mississquoi and St. Albans Bay characteristics.  Bay characteristics from 
LCBP Atlas, Catchment/Watershed statistics from Levine 2012, Water Chemistry Calculated 
from LTMP dataset from 1992-2015. 

 

 
2.2b Analysis of in situ LTMP trends 

Despite regular sampling since 1992 by the LTMP, this data has primarily served to 

monitor local run-off regulation and eutrophication, and few comprehensive analyses have been 

conducted on the dataset.  Smeltzer et al. analyzed LTMP data from 1992-2012 to document 

water quality and biological changes in the lake. However, no analysis has been documented for 

the subsequent years of data. Therefore, in order to obtain a more comprehensive understanding 

of water quality and algal dynamics in the years of study, in situ lake data was evaluated for site-

based trends.    

In order to gain a spatial understanding of water quality parameters, LTMP samples from 

1992-2015 were analyzed by site.   Analyses were carried out in R statistical software.  

The areas of Missisquoi and St. Albans Bay have significantly higher algal biomass than other 

areas of the lake (mean 16.51 and 13.82 µg/L for all years, as opposed to a lake-wide mean of 

6.37 µg/L).	The two Missisquoi Bay stations (Station 50 and 51) also had significantly higher 

total phosphorus and nitrogen measurements across all years. Areas in the southern region of the 

lake (Stations 2 and 7), also had high chlorophyll-a, phosphorus and nitrogen levels. However 

Mississquoi	Bay St.	Albans	Bay

Surface	area	(km2) 77.5 7.2
Mean	depth	(m) 2.8 8
Max	depth	(m) 4 12
Volume	(km3) 0.22 0.023

Area	(km2) 3105 130
%	forest 62 24
%	agriculture 25 56
%urban 5 14
P	load	(kg/km3/yr) 1931 940

Total	P	(mg/L) 0.048 0.027
Total	N	(mg/L) 0.7 0.44
TN:TP 15 16
Dissolved	Si 2.07 0.65
Chlorophull	a	(μg/L	) 14.7 5.4
Chlorophyll	a:total	P 0.31 0.37

Bay	characteristics

Catchment/Watershed

Water	Chemistry
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these areas are dominated by river input from the Poultney and Mettawee Rivers and likely 

reflect more direct runoff sampling than the rest of the stations [Figure 8].   All other measured 

parameters (Alkalinity, Chloride, Dissolved Inorganic and Organic Carbon, Dissolved Silica, and 

Total Suspended Solids) did not prove significantly different for the Northeast Arm of Lake 

Champlain. 

 

 
 
 

Figure 8: Boxplots for sampled water parameters 1992-2015, showing increased 
concentrations of Chlorophyll-a, Total Phosphorus and Total Nitrogen at Northeast 
Arm sampling stations. 

 

Data for 2013-2015 (the years of focus for this study) were then analyzed separately for 

water quality trends and algal bloom indicators.  As mentioned earlier in this paper, chlorophyll 

content is used as the primary bloom indicator in the current Lake Champlain HAB monitoring 

protocol.  Chlorophyll anomaly “bloom” events showed a clear seasonal trend for all years of 

study, with chlorophyll concentration reaching extremely high levels in Mississquoi Bay during 

late August of 2014 and 2015 and September of 2013 (with another apparent “bloom” spike in 
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early August of 2013.  These in situ sample trends are consistent with alert statuses from the 

DEC’s Algal tracking map, with “high alert” statuses for St. Albans and Mississquoi Bay (times 

when high levels of cyanotoxins were quantitatively sampled) closely aligning with peak 

chlorophyll in LTMP sample results [Figure 9].  This demonstrates a clear relationship between 

chlorophyll spikes and harmful algal bloom events in both St. Albans and Mississquoi Bay, a 

trend closely correlated due to the dominance of toxin-producing taxa in these regions. In 

addition, this relationship suggests that chlorophyll-a remote sensing alone could provide 

valuable information about potential toxic events in the Northeastern Arm waters. 
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Figure 9: In situ chlorophyll 
measurements for sites 40, 50 and 51 
(St. Albans and Mississquoi Bay) for 
2013-2015.  Red stars indicate “High 
Alert” status from Vermont Blue 
Green Algae Tracker. 
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SECTION 3: LANDSAT 8 
 

3.1 Methods 
3.1a Introduction: Sensor Description and Characteristics 

Landsat-8 is part of a lineage of Landsat satellites in operation from 1972 to present, 

providing the longest record of Earth observation from space.  These satellites have been 

designed almost exclusively for terrestrial remote sensing, with both coverage areas and 

instrument specifications focusing on geological and ecological terrestrial applications  (NASA 

Landsat, n.d.)  However, the Operational Land Imager (OLI) on Landsat-8 offers the potential 

for expansion of the Landsat suite to aquatic remote sensing applications due to its improved 

radiometric sensitivity and spectral resolution (Pahlevan, 2012, Gerace, 2013; Vanhellemont, 

2014a,b,c; 2015; Franz et al., 2015; Concha, 2015).   

Landsat 8 Operational Land Imager (OLI) was launched into orbit February 11, 2013 as 

the next generation of the Landsat Data Continuity Mission (LDCM). OLI collects seven spectral 

bands at 30-m spatial resolution between 430 and 2290 nm, one panchromatic (500 to 680 nm) 

band at 15 m and two thermal infrared (TIRS) channels (10,600 to 11,190; 11,500 to 12,510 nm) 

at 100-m resolution (Table 4). The increased radiometric sensitivity of Landsat 8 can be defined 

by its average signal-to-noise-ratio (SNR). This increased SNR is due to the pushbroom sensor 

design of OLI, in contrast to the whiskbroom design of previous Landsat satellites.  This design 

creates a longer integration time and, therefore, improved sensitivity (USGS, 2013; Schott, 

2012).  Based on on-orbit characterization and pre-launch simulation, the high SNR of OLI has 

been shown to be comparable to that of ocean color missions such as SeaWIFs and MODIS (Hu 

et al., 2013).   
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Table 4: Landsat 8 band designations and resolutions 

 

 

3.1b Acquisition and Atmospheric Correction  

14 cloud-free Landsat 8 Level 1T images for path 19, row 29 were obtained from the 

U.S. Geological Survey Earth Explorer website, spanning a time interval from May 16th, 2013 to 

September 27th, 2015.  Landsat Level 1T (Standard terrain correction) images have been 

corrected for radiometric and geometric accuracy by incorporating ground control points from 

the GLS2000 data set and employing a Digital Elevation Model (DEM) for topographic accuracy 

(http://landsat.usgs.gov/).   

Landsat scenes were subset to an area that includes Missisquoi and St. Albans Bay and 

converted to netcdf format for processing in SeaDAS. Basic Landsat 8-OLI processing was 

added to the SeaDAS l2gen code in September, 2015, and since implementation, few studies 

have investigated the potential of this atmospherically corrected Landsat data, with varying 

results (Vanhellemont, 2014a,b,c, 2015; Concha, 2015).  For this study, the NIR, SWIR, and 

MUMM algorithms (as described in the introduction) were tested for Lake Champlain Landsat 8-

OLI atmospheric correction.  

For NIR atmospheric correction of Landsat 8 imagery aer_opt was set to 1- Multi-

scattering with 2-band model selection, with bands 4 and 5 (655 and 865 nm) set to the long and 

short aerosol wavelengths.  This model assumes that NIR water-leaving radiance is zero and 

therefore is expected to overcorrect the atmosphere above turbid lake water (Gordon & Wang, 
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1994). The Landsat 8 image from September 27th, 2015 (LC80140292015270LGN00) was 

selected for atmospheric correction evaluation.  

Wang and Shi SWIR processing was tested using Landsat 8 bands 6 and 7 (1609 and 

2201 nm).  The increased radiometric sensitivity of Landsat 8 OLI SWIR bands compared to 

other Landsat sensors makes this correction method a feasible approach for OLI (Vanhellemont, 

2014a).   

The MUMM approach was also applied using the SWIR bands  (Ruddick et al., 2000).  

The method was applied using implementation in SeaDAS (aer_opt=-10), using bands 4 and 5 

(655 and 865 nm) and setting the calibration parameter α = 1.95 for OLI as suggested by 

Vanhellemont, 2014a.   

 

3.1c Processing and Selection of Sampling Points 

Following the evaluation of atmospheric correction methods, all 14 Landsat 8 OLI scenes 

were processed using the MUMM model. Atmospherically corrected images were converted to 

hdf format and exported from SeaDAS to ENVI for further data analysis.  A land mask was 

created by buffering SWIR reflectance, as SWIR water-leaving radiance is approximately 

negligible, and this mask was applied to all images.  An xml file was created with locations for 

stations 40, 46, 50 and 51 and imported into ENVI as regions of interests (ROI).  These single-

pixel sampling points were then buffered to a 3x3 pixel area (90m x 90m) in order to help 

account for time lags between image acquisition and in situ sampling and heterogeneity of water 

masses. 

MATLAB code was written to export spectra at each sample location, and in situ 

chlorophyll samples from the VT DEC dataset were matched to corresponding images. In situ 

samples were considered matchups within a ± 2 day window, based on time gap 

recommendations from Stadelmann et al. (2001).  A total of 37 sample matchups were used in 

the development of chlorophyll algorithms.  

In order to test the other possible variables affecting water spectral properties, ancillary 

variables were collected for the Northeastern Arm of Lake Champlain.  In order to model 

bottom-effect water depth (in m) for each sample location, sample depth was obtained from VT 

DEC sampling protocol, with depth for all locations varying between 4-7 meters. Meteorological 

data for wind speed data (WSPD, m/s) and wave height (WVHT, m) were acquired from NOAA 

Buoy Station 45166, located in the center of Mississquoi Bay.  All meteorological data was 
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acquired for the date of overpass at 11:30 EST/15:30 GMT, as Landsat overpass time for Lake 

Champlain is at approximately 15:38 GMT.  In addition, mean discharge rates (in cubic feet per 

second) for the 7 days prior to image acquisition were calculated for the each image.  River 

discharge rates were obtained for the USGS Gages at Pike River (Gage 04294300) and 

Mississquoi River (04294000) [Figure 9].  These rates were used as a proxy for riverine sediment 

discharge and therefore possible suspended sediment loads, in the Northeastern Arm of Lake 

Champlain, as no coincident measurements of total suspended solids or turbidity exist for LMPT 

sampling. 
 

 
Figure 9: Location of USGS Gages at Pike River (Gage 04294300) and Mississquoi 
River (04294000), tributaries Mississquoi Bay and the entire Northeast Arm of Lake 
Champlain 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5: Data predictors used for Landsat 8 model development 
 
Sample Chl-a In situ Chl-a measurements in μg/L from LTMP sampling 

042943
	

042940
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Sample Date Date of in situ sampling MM/DD/YY 

Time lag Time difference: Date of image acquisition - Date of in situ sampling 

Wind speed Wind speed at Buoy Station 45166 (m/s) 

Wave height Average of the highest one-third of all of the wave heights (in m) during the 20-minute sampling 
period at Buoy Station 45166 

Mean river discharge Discharge rates from USGS gages on Pike and Mississquoi Rivers (in cubic ft/sec), averaged for 7 
days prior image acquisition from 

Sample location depth Depth of sample location (m) from LTMP protocol 

B1  Landsat 8 Band 1, Coastal Aerosol, 420-450 nm (Rrs) 

B2  Landsat 8 Band 2, Blue, 450-510 nm (Rrs) 

B3  Landsat 8 Band 3, Green, 530-590 nm (Rrs) 

B4  Landsat 8 Band 4, Red, 640-670 nm (Rrs) 

B5  Landsat 8 Band 5, NIR, 850-880 nm (Rrs) 

B6  Landsat 8 Band 6, SWIR I, 1,570-1,650 nm (Rrs) 

B7  Landsat 8 Band 7, SWIR II, 2,110-2,290 nm (Rrs) 

B9  Landsat 8 Band 9, Cirrus,  1,360-1,380 nm (Rrs) 

B10  Landsat 8 Band 10, TIRS I, 10,600-11,190 nm (BT)  

 

 

3.1d Analysis 

Linear least squares regression analysis was performed for bio-optical algorithm development 

using Minitab statistical software.  Based on existing NASA chlorophyll algorithms and previous 

research, Landsat bands 1, 2, and 3 were expected to correlate with chlorophyll.  Band ratio 

algorithms, rather than simple band reflectance values, were employed to normalize reflectance 

spectra between scenes.  Best subsets regression was performed between log(Chlorophyll), band 

ratio combinations, and other predictors [Table 5] to develop a model of chlorophyll remote 

sensing for the Northeast Arm of Lake Champlain. 

 

 

3.2 Results 
3.2a Evaluation of Atmospheric Correction Models 

Fig.1 shows a subset of the Landsat 8 scene for the Northeast corner of Lake Champlain 

for September 27th, 2015 after processing using NIR (bands 4 and 5), SWIR (bands 6 and 7) and 
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MUMM atmospheric correction.  The relative noise in the SWIR bands of Landsat OLI is 

apparent in the corrected images, with the SWIR-corrected image appearing speckled and poor-

quality [Figure 10].   

Spectra were extracted within a 3x3 buffer around each station pixel [Figure 11].  The 

overcorrection of both NIR and SWIR atmospheric correction models is apparent in these 

spectral plots, as these atmospheric correction methods produced negative reflectance values for 

bands 1-3 (wavelengths of 442-561 nm) at most sites.  Negative reflectance values are the result 

of the aerosol modeling approach, as NIR and SWIR correction methods incorrectly recognize 

the high reflectance values of turbid water as atmospheric effects, over-modeling aerosol 

contributions to the local atmosphere.  The MUMM correction method, on the other hand, 

replaces assumptions of zero water-leaving radiance with an assumption of spatial homogeneity 

at bands 4 and 5.  The success of this method is clear from this study, as only MUMM correction 

was capable of retrieving realistic marine reflectance values. 
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Figure 11: Station pin spectra extracted from SeaDAS for NIR, SWIR and MUMM correction methods 

A	 B	

C	 D	

Figure 10: SeaDAS atmospheric 
correction results: a) location of station 
locations 40, 46, 50 and 51; b) SeaDAS 
SWIR correction results for Rrs 561 
nm; c) SeaDAS NIR correction results 
for Rrs 561 n; d) SeaDAS MUMM 
correction results for Rrs 561 nm 
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3.2b Regression Analysis 

Initial plots of chlorophyll concentration (in μg/L) revealed heteroscedasticity, and 

therefore log(Chlorophyll) was used as a response variable for all models.  All possible band 

ratios were calculated using Minitab software.  Figure 12 is a matrix plot showing potential 

correlations between logChl and all available band ratios.  Red lines represent regression lines 

for each relationship.  

 

 
Figure 12: Matrix plot of log(Chl) versus all potential band ratio algorithms for model development. 
Based on visual evaluation, the matrix plot confirms previous literature, with ratios of b1/b3 
(440nm/560nm) and b2/b3 (480nm /560nm) showing strong correlations to measured chlorophyll. 
 
 

A backwards-stepwise regression model could not be initially developed due to the high 

correlations between various band ratios (those with common numerator or denominators). 

Therefore, as a first step, linear regressions were performed between each band ratio and log(chl) 

to quantitatively assess which bands proved to be the best predictors of chlorophyll 

concentration. Band ratios b2/b3 (480nm /560nm) and b1/b3 (440nm/560nm) proved significant 

predictors of chlorophyll concentration (R-squared=64.64% and 54.14%, with p=0) [Table 6]. 
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Next, backward stepwise regressions were performed for the band ratio that showed 

the most promise as a remote sensing predictor of chlorophyll concentration (b2/b3 and b1/b3). 

Wind speed, wave height, sample depth, time difference, and river discharge were included as 

continuous covariates, and sample date was included as a categorical factor.  For each step of the 

regression, the variable with the highest p-value was removed until all variables were significant 

predictors (p<.05) of measured chlorophyll concentration.  After completing backwards-stepwise 

regression, only band ratio proved to be a significant predictor of chlorophyll concentration, as 

all other variables were removed due to insufficient correlation. Predictors were removed in 

order as follows: wind speed, wave height, time difference, sample date river discharge, and 

depth.   In addition, polynomial regressions were tested for band ratio b2/b3, none of which 

resulted in a more significant regression fit.  Although the quadratic model resulted in a slightly 

higher R-squared (64.67%) than the linear model, neither predictors were significant (p= 0.616, 

0.873) and visual analysis of the data did not reveal a quadratic trend. Finally, an indicator 

variable was created for the data for site 40 on 6/4/14 due to the extremely low chlorophyll 

content of the sample (the lowest of all samples 2013-15 for sites 40, 50 and 51).  With the 

inclusion of the indicator variable, the final model achieved in this study [Equation 3] has a R-

squared of 71.30% [Figure 13]. Residual plots [Figure 14] demonstrate a normal distribution of 

residuals, indicating that the model meets regression assumptions.  Full regression results are 

included in the appendix of this paper. Figure 15 demonstrates the success of this model in 

monitoring bloom events, with the 2015 HAB event clearly visible in the modeled Landsat 

imagery. 

 

Log(Chlorophyll-a) = 2.738 - 2.084 log(Rrs490nm/ Rrs555nm)  Eq. 3 
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Table 6: Initial linear regression results between Landsat band ratios and log(chl). 
Band2/Band3 ratio was the most significant predictor of chlorophyll concentration. 

 

 

 
Figure 13: Model-predicted log(Chlorophyll) using Equation 3 and all available 
sample matchups versus measured log(Chlorophyll) concentration.  6/4/14 
Measurement is shown in red circle and given indicator variable in final model. 
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Band 
Ratio R-sq R-sq 

(adj) p

b2/b3 64.64% 63.63% 0
b1/b3     54.14% 52.83% 0
b2/b4 21.86% 19.63% 0.004
b1/b4 14.11% 11.66% 0.026
b1/b5 14.07% 12.18% 0.032
b3/b4 13.76% 11.30% 0.085
b4/b5 10.21% 7.00% 0.264
b2/b5 8.97% 7.23% 0.532
b3/b5 7.12% 5.89% 0.809
b1/b2 0.17% 0.00% 0.828

R-sq=	71.30%	 
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Figure 14: Residual plots for final model, demonstrating normality of residuals and glm 
assumptions. 
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Figure 15:  Landsat chlorophyll model applied to June 4th and September 24th, 2014 images, taken during 
non-bloom and bloom conditions (as defined by in situ chlorophyll sampling and VT DEC Algal Tracker 
“High Alert” status. 
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3.3 Conclusion 

A band ratio bio-optical algorithm was successfully developed for Landsat 8 OLI remote 

sensing of harmful algal blooms in the Northeastern Arm of Lake Champlain (R-squared 

=71.3%).  The linear model developed in this section was accurate for all 14 Landsat images and 

unaffected by changes in wind speed, suspended sediment, or other temporally variable factors, 

demonstrating the strength of the model for continuous and accurate HAB monitoring.  This 

study contributes to the recent developments in Landsat 8 OLI aquatic remote sensing, further 

illustrating the increased potential of the next generation of Landsat sensors for water quality 

applications and the benefits of increased radiometric sensitivity in aquatic remote sensing.  

Furthermore, the atmospheric corrections tested within this study demonstrate the success of the 

MUMM approach to atmospheric correction over the Case 2 waters of Lake Champlain and the 

success of Landsat 8 OLI MUMM implementation in NASA’s SeaDAS software.  With 

Landsat’s relatively high spatial resolution (30m), this model has the potential to dramatically 

increase the extent of local HAB monitoring, providing a spatial understanding harmful algal 

bloom extent with each cloud-free Landsat overpass.   
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SECTION 4: MODIS 
4.1 Methods 
4.1a Introduction: Sensor Description and Characteristics 

The Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument was launched 

in 1999 on the Terra satellite and in 2002 on the Aqua satellite.  MODIS was designed to provide 

improved monitoring for land, ocean, and atmospheric research, with spectral measurements in 

36 bands between 0.405 μm and 14.385 μm, including seven bands designed for land remote 

sensing, seven bands designed for ocean color, and the other 22 bands designed for the lower 

atmosphere remote sensing. These bands vary in spatial resolution. Bands 1 and 2 have 250 m 

resolution, bands 3-7 have 500 m resolution, and bands 8-36 have 1 km resolution [Table 7]. 

MODIS Terra and Aqua have a viewing swath width of 2,330 km and view the entire surface of 

the Earth every one to two days.  In addition, MODIS has high radiometric sensitivity, with 12-

bit quantization of both MODIS sensors.  The spectral band range and primary uses of the 

MODIS data are shown in Table 2.2. MODIS Aqua images were selected for this study due to 

the degraded response functions (as much as 40%) of the MODIS Terra sensors since initial 

launch calibrations (NASA MODIS, n.d.).   

MODIS’s high temporal resolution makes it an ideal sensor for algal bloom events, as 

MODIS remote sensing has the potential for daily HAB evaluation.  MODIS remote sensing 

models have been applied to marine HABs along both the Florida and Southern California Coast 

(Hu, 2005; Kahru, 2005; Anderson, 2009). However, perhaps because of its low spatial 

resolution, applications of MODIS to inland water quality have been limited.  A few studies have 

evaluated the performance of MODIS data to mapping cyanobacteria blooms in the Great Lakes 

(Weghorst, 2008: Becker, 2009; Zhang, 2012; McCullough, 2012). However this study 

represents a novel attempt to apply MODIS water quality remote sensing to smaller water bodies 

and, to this author’s knowledge, the smallest scale application of MODIS to aquatic remote 

sensing to date. 
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Table 7: MODIS Band Specifications: bandwidth (in nm) and 
resolution.  Bands used in this study highlighted in grey. 

 

4.1b Acquisition, Atmospheric Correction, and Processing: 

MODIS Aqua Level 1 images data from May 2013 to October 2015 were downloaded 

from the Level 1 and Atmosphere Archive and Distribution System (LAADS).  These images 

were visually evaluated for clouds, and 66 cloud free images were retained for processing. 

MODIS Level 1A data were processed to Level 2 water-leaving radiance using the SeaDAS 

Multi-Level processor and batch processed on a Linux computer system, with Unix computer 

code adapted from Zhang (2012) and SeaDAS online materials (NASA SeaDAS, n.d.). Final 

processing code is included in the Appendix and an outline of processing steps is provided in 

Figure 16.  

Level 1A MODIS images contain raw radiance data for 36 MODIS spectral bands.  Prior 

to processing, all data was subset to a rectangular area covering the Lake Champlain Area 

defined by the coordinates 45ºN, 43.5ºS, -72ºE and -75ºW in order to reduce runtime. A 

geolocation data file was then generated for each Level 1A image. 

 The 66 Level 1A images were then processed to generate geolocation files and Level 1B 

images using the SeaDAS software.  Level 1B images contain at-sensor radiances, calibrated and 

geolocated based on Level 1A data raw digital counts and calibration look up tables (LUTs) 

included in the SeaDAS program.  Although Level 1B images contain all 36 MODIS bands, the 

data is split into 3 files based on spatial resolution: MYD02QKM, MYD02HKM and 

MYD021KM, with resolutions of 250 m, 500 m, and 1 km respectively. 

 Level 1B at-sensor radiances were then processed to generate Level 2 water-leaving 

radiances and atmospherically corrected remote sensing reflectance (Rrs) using the SeaDAS 

l2gen code.  The l2gen atmospheric correction module has been recently extended to support not 

Band Bandwidth Resolution

1 620	-	670 250	m
2 841	-	876 250	m
3 459	-	479 500	m	
4 545	-	565 500	m	
5 1230	-	1250 500	m	
6 1628	-	1652 500	m	
7 2105	-	2155 500	m	

8-19 Multispectral 1	km
20-36 Thermal 1	km
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only the traditional ‘ocean color’ bands of MODIS, which have 1km resolutions, but also the 

lower spatial resolution ‘land bands’ at resolutions of 500 and 250m.  SeaDAS’ l2gen code has 

the ability to process images to a 1km, 500m or 250m resolutions, using bilinear interpolation of 

the lower resolution bands (Franz, 2006). 

Because of the small scale of Lake Champlain, images were processed to a 250m 

resolution.  In addition, only bands 1-7 were used in MSL12 processing, as interpolation of 

higher 1km bands to 250m resolutions resulted in high spectral mixing from shore and lake 

pixels and lowered spectral purity.  MODIS data was processed in the l2gen using NIR, SWIR, 

and MUMM atmospheric correction models, and results were analyzed to determine the most 

effective approach. 
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Figure 16: Flowchart of MODIS processing methods in SeaDAS software. 

 

4.1c In Situ Correlation and Analysis 
Due to the larger spatial resolution of the MODIS imagery (as compared to Landsat), the 

embayment of St. Albans Bay (site 40) could not be resolved, and therefore only sampling sites 

50 and 51 were included in the model. In addition, only MODIS bands 3 (469 nm), 4 (555 nm), 

and 1 (645 nm) were included in analysis, as these are the only visible bands with original 

resolutions of 250 or 500m (the rest of MODIS’ multispectral bands having a 1km resolution). 

MODIS images were matched to corresponding (within a ± 2 day window) chlorophyll 

samples from the VT DEC dataset, following the methods used for Landsat algorithm 
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development in Section 3.   In addition, water depth (from VT DEC sampling protocol), wind 

speed, wave height (from Buoy Station 45166), and river discharge rate (from USGS Gages 

04294300 and 04294000) were included in the model.  A total of 73 matchups were recorded for 

the three years of MODIS imagery.  The number of matchups was limited by the frequency of in 

situ sampling (rather than the acquisition of MODIS imagery), as only 106 total in situ samples 

were taken at sites 46, 50, and 51 combined over the three years of study.  This demonstrates the 

potential benefit of MODIS algal monitoring, as the rapid revisit time of MODIS has the 

potential for frequent and continuous monitoring of chlorophyll anomalies. 

The quality of data for all 73 in situ matchups was examined prior to regression 

modeling, and four sample location-date points removed due to contamination from cloud or 

cloud shadows in the image.  MODIS band ratios for the remaining 69 match-ups were 

calculated in Minitab, and backwards-stepwise regression was run to determine the best model 

for chlorophyll concentration from MODIS imagery. 
 
 
Table 8: Data predictors used for MODIS model development 
 
Sample Chl-a In situ Chl-a measurements in μg/L from LTMP sampling 

Sample Date Date of in situ sampling MM/DD/YY 

Time lag Time difference: Date of image acquisition - Date of in situ sampling 

Wind speed Wind speed at Bouy Station 45166 (m/s) 

Wave height Average of the highest one-third of all of the wave heights (in m) during the 20-minute sampling 
period at Bouy Station 45166 

Mean river discharge Discharge rates from USGS gages on Pike and Mississquoi Rivers (in cubic ft/sec), averaged for 7 
days prior image acquisition from 

Sample location depth Depth of sample location (m) from LTMP protocol 

B1 MODIS Band 1, 645 nm (Rrs) 

B3 MODIS Band 3, 469 nm (Rrs) 

B4 MODIS Band 1, 555 nm (Rrs) 
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4.2 RESULTS 
4.2a Evaluation of Atmospheric Correction Models 
 Figure 17 shows a subset of the MODIS scene for the Northeast corner of Lake 

Champlain for July 21, 2013 after processing using NIR (bands 4 and 5), SWIR (bands 6 and 7), 

and MUMM atmospheric correction.  Spectra were extracted within a 3x3 buffer around each 

station pixel [Figure 17].  Results were consistent with Landsat 8 atmospheric correction testing, 

with both NIR and SWIR methods resulting in an overcorrection of aerosol radiances, and 

therefore negative reflectance values within the visible range. 

 
 

 

 
 

 
 

 

A	 B
	

C	

A	 B
	

C	

Figure 17: SeaDAS MODIS atmospheric correction results: A) SeaDAS NIR correction results for 
Rrs 555 nm and spectra; b) SeaDAS SWIR correction results for Rrs 555 nm and spectra; d) 
SeaDAS MUMM correction results for Rrs 561 nm and spectra 
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4.2b Regression Analysis 

Band ratios were calculated in Minitab to normalize scene-dependent reflectance.  Linear 

regressions were then performed between each band ratio and log(chlorophyll concentration) in 

order to assess the relative predictive power of each band combination.  The ratio of band 4/band 

3 (555/469) had the highest correlation to in situ measurements and was used in further model 

development [Table 9]. 

 

Table 9: Initial MODIS band ratio regression results 
Band 
Ratio R-sq R-sq (adj) p 

555/469 34.65% 33.47% 0.000 

555/645 15.67% 13.95% 0.005 

645/469 13.86% 12.29% 0.004 
 

Backwards-stepwise regression was run, with band ratio 555/469, wind speed, wave 

height, river discharge, and depth as continuous predictors, and sample date and sample site as 

categorical factors.  After removing each variable with the highest p-value, only band ratio was 

found to be a significant predictor of chlorophyll-a, with other variables removed stepwise as 

follows: wave height, sample date, wind speed, sample site, depth, and river discharge. 

The band ratio (555/469) was then log transformed in order to increase the spread of the 

data, and backwards stepwise regression was re-run with all included predictors.  Within this 

model, band ratio still proved the only significant predictor (p=0), and the R-squared increased 

slightly (R-sq = 35.27).  The log-transform also revealed a trend between wind speed and model 

predictions, and the six points with negative log(555/469) also had the highest recorded in situ 

wind speeds.  An indicator variable was created for all observations with a wind speed larger 

than 7 m/s.  The inclusion of this indicator variable in the model increased R-squared to 38.34%, 

with both log(555/469) and the wind speed indicator as significant predictors.  Finally, a 

quadratic model was tested [Equation 4] and found to slightly increase the predictive power of 

the model to an R-sq of 39.44%.  This model was used in final image analyses [Figure 18]. 

Residual plots [Figure 19] demonstrate a normal distribution of residuals, indicating that the 

model meets regression assumptions.  Full regression results are included in the appendix of this 
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paper. Figure 20 demonstrates the success of this model in monitoring bloom events, with the 

2015 HAB event (for comparison, the same dates as the Landsat example in Section 2), clearly 

visible. 

 

  

Log(Chlorophyll-a) = 0.663 + 3.41 log(Rrs555nm/Rrs469nm) - 2.56 (log(Rrs555nm/Rrs469nm))2 Eq. 4 
 

 

 
 
Figure 18: Model-predicted log(Chlorophyll) using Equation 4 for MODIS and all available sample 
matchups versus measured log(Chlorophyll) concentration.   
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Figure 19:  MODIS chlorophyll model applied to June 2nd and September 23rd, 2014 images, taken 
during non-bloom and bloom conditions (as defined by in situ chlorophyll sampling and VT DEC Algal 
Tracker “High Alert” status).  Bottom: plots of in situ chlorophyll samples from LTMP sampling showing 
seasonal variability. 
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4.3 Conclusion 

A band ratio bio-optical algorithm was successfully developed for MODIS remote 

sensing of harmful algal blooms in the Northeastern Arm of Lake Champlain (R-squared 

39.44%).  The quadratic model developed in this section was accurate for nearly all 69 MODIS 

images, however under high wind speeds (over 7 m/s) the model failed, suggesting that specular 

reflection from waves at high winds may result in poor chlorophyll retrieval.  The model was by 

all other temporally variable factors, however demonstrating the strength of the model for 

continuous HAB monitoring.  This study demonstrates the successful application of MUMM 

atmospheric correction for MODIS Case 2 aquatic remote sensing.  Furthermore, the application 

of MODIS imagery for HAB remote sensing represents the smallest scale application of MODIS 

imagery for aquatic remote sensing to date. The success of MODIS for Lake Champlain remote 

sensing has important implications for future research, suggesting that, even with its limited 

spectral resolution at 250 and 500m, MODIS has exciting potential for small-scale aquatic 

remote sensing.  This model has the potential to dramatically increase the frequency of HAB 

monitoring in Lake Champlain.  With MODIS’ revisit time of 1-2 days, this model suggests the 

potential application of MODIS data to rapid response monitoring of HAB events. 
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Summary and Future Work 

This project demonstrates the ability of both Landsat 8 and MODIS Aqua for remote 

sensing of Harmful Algal Blooms in Lake Champlain, VT.  The application of Landsat 8 to 

turbid, inland water bodies is a recent development in remote sensing, as Landsat 8 was launched 

in 2013 and atmospheric correction wasn’t implemented in NASA processing software until 

September of 2015.  The linear Landsat 8 models developed in this study represent a robust and 

accurate (Rsq= 71.3%) application of Landsat data for harmful algal bloom remote sensing.  

Furthermore, this study represents the smallest scale aquatic application of MODIS remote 

sensing.  The MODIS band ratio algorithm developed in this study further contributes to current 

HAB alert systems, with the potential for near-daily monitoring of chlorophyll concentration and 

bloom events within turbid lake waters. 

Although the general linear modeling techniques applied in this study proved successful, 

a number of other statistical techniques could be applied to the data for further analysis.  

Principle component analysis (PCA), Bayesian hierarchical regression, and neural network 

analysis have all proved successful in past aquatic remote sensing studies.  A comparison 

between these various techniques could prove fruitful in continuing to develop accurate algal 

bloom remote sensing models. 

Furthermore, although this study attempted to address the confounding variable of 

suspended solids through the quantification of local river discharge, more precise measurements 

of total suspended solids (TSS) could allow for a better understanding of the various factors 

influencing observed remote sensing reflectance.  For future model development, it would be 

beneficial to conduct a cruise aligned with Landsat and MODIS overpass dates, measuring TSS 

and turbidity, as well as chlorophyll, for model development.  Given the promising results of this 

study, such a campaign has great promise for further Lake Champlain HAB remote sensing. 

The success of MODIS models in this study suggests that future work should continue to 

apply this sensor in small-scale aquatic remote sensing.  Given the long time series available for 

MODIS data (2002-2016), this study has exciting implications for future work.  For example, 

future work could expand the results in this study to all available MODIS dates, allowing for a 

more comprehensive time series of HAB events in Lake Champlain and other inland water 

bodies affected by the toxic events. 
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Appendix 1: Landsat Regression Results 
 
 
 
Regression Analysis: log_Chl_a versus b2/b3, 6/4/14  
 
Method 
 
Categorical predictor coding  (1, 0) 
 
 
Analysis of Variance 
 
Source      DF  Adj SS   Adj MS  F-Value  P-Value 
Regression   2  4.1238  2.06188    42.23    0.000 
  b2/b3      1  3.3636  3.36355    68.90    0.000 
  6/4/14     1  0.3853  0.38528     7.89    0.008 
Error       34  1.6599  0.04882 
Total       36  5.7837 
 
 
Model Summary 
 
       S    R-sq  R-sq(adj)  R-sq(pred) 
0.220954  71.30%     69.61%           * 
 
 
Coefficients 
 
Term        Coef  SE Coef  T-Value  P-Value   VIF 
Constant   2.738    0.220    12.47    0.000 
b2/b3     -2.084    0.251    -8.30    0.000  1.02 
6/4/14 
  1       -0.635    0.226    -2.81    0.008  1.02 
 
 
Regression Equation 
 
6/4/14 
0       log_Chl_a = 2.738 - 2.084 b2/b3 
 
1       log_Chl_a = 2.103 - 2.084 b2/b3 
 
 
Fits and Diagnostics for Unusual Observations 
 
Obs  log_Chl_a    Fit   Resid  Std Resid 
  1      0.241  0.695  -0.454      -2.10  R 
  8      0.057  0.057   0.000          *     X 
 
R  Large residual 
X  Unusual X 
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Appendix 2: MODIS SeaDAS Processing Code 
Adapted from Zhang (2012) and SeaDAS online materials (NASA SeaDAS, n.d.). 

 

######################################## 
###Spatially subset MODIS files and generate associated geo files for 
MODIS L1A images with MODIS_geo code 
######################################## 
datDir=“/Desktop/Lake_Champlain_water_quality/L1ArawAqua” 
datoutDir="/Desktop/Lake_Champlain_water_quality/L1AsubAqua” 
cd $datDir 
for i in *.L1A_LAC 
do 
a="$i" 
echo $a 
b="${a:0:23}"".geo" 
export geofile="$b" 
echo $geofile 
#generate L1A *.geo file into the datDir folder 
$seadas/ocssw/run/scripts/modis_GEO.py “$i” -o 
"${datDir}/${geofile}" 
#generate *sub.hdf and *sub.geo files 
SWlon=-75 
SWlat=43.5 
NElon=-72 
NElat=45 
OutL1Asub="${a:0:23}""sub.L1A_LAC" 
OurL1Asubgeo=“${a:0:23}""sub.geo” 
echo $OutL1Asub 
echo $OutL1Asubgeo 
$seadas/ocssw/run/scripts/modis_L1A_extract.py “$i” “$geofile” 
“$SWlon”  
“$SWlat” “$NElon” “$NElat” “${datoutDir}/${OutL1Asub}” 
“${datoutDir}/${OutL1Asubgeo}” 
done 
######################################## 
 
 
######################################## 
###Generate MODIS L1B files for 1KM HKM QKM Resolutions using 
modis_L1B.py code 
######################################## 
 
datDir="/Desktop/Lake_Champlain_water_quality/L1AsubAqua" 
outDir=“/Desktop/Lake_Champlain_water_quality/L1BAqua" 
cd $datDir 
for i in *.hdf 
do 
 a="$i" 
 echo $a 
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 L1Asub="${a:0:23}""sub.hdf" 
 L1Asubgeo="${a:0:23}""sub.geo" 
 OutL1B1KM="${a:0:23}"".L1B.1KM" 
 OutL1BHKM="${a:0:23}"".L1B.HKM" 
 OutL1BQKM="${a:0:23}"".L1B.QKM" 
 echo $L1Asub 
 echo $L1Asubgeo 
 echo $OutL1B1KM 
 echo $OutL1BHKM 
 echo $OutL1BQKM 
 $seadas/ocssw/run/scripts/modis_L1B.py "$L1Asub" "$L1Asubgeo" -o 
"${outDir}/${OutL1B1KM}" -h "${outDir}/${OutL1BHKM}" -q 
"${outDir}/${OutL1BQKM}" 
done 
 
######################################## 
 
######################################## 
###Generate MODIS L2 using l2gen code  
######################################## 
 
### using MUMM Atmospheric Correction 
 
datDir=/Desktop/Lake_Champlain_water_quality/L1BAqua 
geoDir=/Desktop/Lake_Champlain_water_quality/L1AsubAqua 
outDir=/Desktop/Lake_Champlain_water_quality/L2Aqua.MUMM.cldmsk 
cd $datDir 
for i in *.1KM 
do 
 a="$i"   #a is the file for L1B 1KM 
 echo $a 
 b="${a:0:23}""sub.geo" 
export geofile="$b" 
 echo $geofile 
 OutL2NWLR="${a:0:23}"".nwlr.hdf" 
 OutL2CREF="${a:0:23}"".cref.hdf" 
 OutL2RHOM="${a:0:23}"".rhom.hdf" 
 OutL2CHLA="${a:0:23}"".chla.hdf" 
 echo $OutL2chl 
 echo $OutL2ncref 
 echo $OutL2ncrad 
 echo "Determining ancillary data for Level-2 processing.." 
 echo "ms_met.csh $a" 
 ms_met.csh   $a 
 echo "ms_zone.csh $a" 
 ms_ozone.csh $a 
 ms_oisst.csh $a 
 parfile=MODISL1BtoL2seadas.par 
 echo "Generating L2 $a" 
 l2gen par=$parfile par=$a.met_list par=$a.ozone_list 
par=$a.sst_list ifile=${datDir}/$a geofile=${geoDir}/$b 
ofile1=${outDir}/${OutL2NWLR} ofile2=${outDir}/${OutL2CREF} 
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ofile3=${outDir}/${OutL2RHOM} ofile4=${outDir}/${OutL2CHLA} 
resolution=250 aer_opt=-10 maskcloud=1 mumm_alpha=1.94500 
mumm_gamma=1.00000 mumm_epsilon=1.00000 
done|tee VMODISL1BtoL2seadas.MUMM.cldmsk.log 
rm *_list 
echo "Done" 
######################################## 
 
######################################## 
###MODIS.par file for l2gen specs for converting MODIS L1B to L2 
######################################## 
 
l2prod1=Rrs_469,Rrs_555,Rrs_645,l2_flags 
spixl= 1 
epixl= -1 
dpixl= 1 
sline= 1 
eline= -1 
dline= 1 
ctl_pt_incr= 1 
proc_ocean= 2 
atmocor= 1 
proc_land= 0  
proc_sst= 1 
resolution= 250 
gas_opt= 11 
pol_opt= 3 
aer_opt= -3 
aermodmin= 0 
aermodmax= 0  
aermodrat= 0.00000 
mumm_alpha= 1.94500 
mumm_gamma= 1.00000 
mumm_epsilon= 1.00000 
aer_rrs_short= -1.00000 
aer_rrs_long= -1.00000 
aer_swir_short= 1240 
aer_swir_long= 2130 
aer_wave_short= 748 
aer_wave_long= 896 
aer_iter_max= 10 
brdf_opt= 7 
iop_opt= 0 
qaa_opt= 1 
glint_opt= 1 
outband_opt= 2 
filter_opt= 1 
filter_file=$OCDATAROOT/modisa/msl12_filter.dat 
no2file=$OCDATAROOT/common/no2_climatology.hdf 
land=$OCDATAROOT/common/landmask.dat 
water=$OCDATAROOT/common/watermask.dat 
icefile=$OCDATAROOT/common/ice_mask.hdf 



Midzik  

	

57	
gain=[0.9710,0.9848,1.0020,0.9795,0.9870,0.9850,0.9842,1.0049,0.9 
797,0.9776,0.9855,1.0304,1.000,1.055,1.000,1.115] 
offset=[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0 
.0,0.0] 
albedo=    0.0180000 
rhoamin=  0.000100000 
qaa_adg_s=    0.0150000 
chloc2_wave=[469,555] 
chloc2_coef=[0.1543,-1.9764,1.0704,-0.2327,-1.1404] 
chloc3_wave=[443,489,550] 
chloc3_coef=[0.283,-2.753, 1.457, 0.659,-1.403] 
chloc4_wave=[] 
chloc4_coef=[] 
chlclark_wave=[443,488,551] 
chlclark_coef=[0.789273,-3.925523,11.637764,- 
27.157997,27.936958,-10.398587] 
nlwmin= 0.150000 
wsmax= 8.00000 
tauamax= 0.300000 
epsmin= 0.850000 
epsmax=      1.35000 
glint=   0.00500000 
windspeed= -1000 
windangle= -1000 
pressure= -1000 
ozone=   -1000 
watervapor= -1000 
relhumid= -1000 
sunzen= 70.0000 
satzen= 60.0000 
maskland= 0 
maskcloud= 0 
maskglint= 0 
maskbath= 0  
masksunzen= 0  
masksatzen=0 
maskhilt=0 
maskstlight=0 
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Appendix 3: MODIS Regression Results 
 

Regression Analysis: logCHL versus log(555/469), 
555/469sq, High_wind  
 
Method 
 
Categorical predictor coding  (1, 0) 
 
 
Analysis of Variance 
 
Source          DF   Adj SS   Adj MS  F-Value  P-Value 
Regression       3  3.09738  1.03246    11.59    0.000 
  log(555/469)   1  0.28151  0.28151     3.16    0.081 
  555/469sq      1  0.01282  0.01282     0.14    0.706 
  High_wind      1  0.00415  0.00415     0.05    0.830 
Error           53  4.72300  0.08911 
Total           56  7.82039 
 
 
Model Summary 
 
       S    R-sq  R-sq(adj)  R-sq(pred) 
0.298518  39.61%     36.19%      31.99% 
 
 
Coefficients 
 
Term           Coef  SE Coef  T-Value  P-Value    VIF 
Constant      0.722    0.131     5.50    0.000 
log(555/469)   3.01     1.70     1.78    0.081  17.15 
555/469sq     -1.78     4.70    -0.38    0.706  13.69 
High_wind 
  1           0.047    0.218     0.22    0.830   2.44 
 
 
Regression Equation 
 
High_wind 
0          logCHL = 0.722 + 3.01 log(555/469) - 1.78 555/469sq 
 
1          logCHL = 0.769 + 3.01 log(555/469) - 1.78 555/469sq 
 
 
Fits and Diagnostics for Unusual Observations 
 
Obs  logCHL    Fit   Resid  Std Resid 
  2   0.622  0.744  -0.122      -0.46  X 
  3   0.529  0.762  -0.234      -0.89  X 
 14   1.688  1.579   0.109       0.44  X 
 21   0.765  0.643   0.122       0.46  X 
 42   1.335  1.567  -0.231      -0.91  X 
 
X  Unusual X 

 


