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Abstract 
Suspended solids concentration (SSC) is a key determinant of water quality in coastal and 

estuarine waters. High SSC in the San Francisco Bay estuary necessitates consistent and 

thorough monitoring to mitigate adverse effects on ecosystems and water resources; however, 

the current in situ monitoring program collects only monthly samples from fixed locations. This 

paper presents remote sensing tools for optical suspended solids measurement, working towards 

establishing a method for continuous, synoptic water quality monitoring in the Bay. Section I 

tests semi-analytical and empirical SSC algorithms using data from the Hyperspectral Imager for 

the Coastal Ocean (HICO); the greatest predictive power is found in a linear model derived from 

the 634nm band. Modeled SSC is applied to predict the spatial distribution of trace element 

pollutants. To improve on the spatial and temporal limits of HICO, Section II derives a statistical 

SSC model from Landsat 8 data that accounts for the optical effects of environmental factors 

including bottom depth, wind speed, tide phase, and temporal offset between in situ and satellite 

measurement. The model verifies the significance of near infrared reflectance, bottom depth, and 

temporal offset in predicting in situ SSC from optical measurement, but it is not generally 

applicable beyond the calibration dataset. Section III investigates the optical behavior of the most 

disruptive environmental factor—seafloor reflectance—using spectrometry. An optical model is 

developed to calculate the backscatter properties of suspended solids over low- and high-

reflectivity backgrounds. The model is unsuccessful where the reflectance of the suspended 

solids and of the background are of a similar magnitude, suggesting particular environmental 

conditions that are problematic for optical algorithms. 
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Introduction 
 Suspended solids are an important component of the San Francisco Bay estuarine 

ecosystem. The silts, clays, and sands that form the benthic substrate are often transported in 

suspension, carrying nutrients necessary for biological productivity as well as potentially toxic 

trace metal and organic pollutants adsorbed to suspended particles (Domagalski and Kuivila 

1993; A.R. Flegal et al. 1991; Hammond et al. 1985). Annual suspended sediment flux to the San 

Francisco Bay has been estimated at 1.2 million metric tons, with over 85% entering as fluvial 

discharge from the Central Valley watershed (McKee, Ganju, and Schoellhamer 2006). 

Suspended solids distribution throughout the estuary depends on salinity gradient, bottom 

topography, tidal currents, and wind-wave resuspension (Schoellhamer 1996). 

Suspended solids concentration (SSC) measures the quantity of particles larger than 2 

microns in a volume of water, including inorganic and organic sediment as well as living 

microorganisms (U.S. Geological Survey 2014b). Despite the importance of sediment to estuary 

biology and geomorphology, high levels of SSC in the San Francisco Bay can be detrimental to 

both estuarine ecosystems and anthropogenic activities: suspended solids carry adsorbed 

contaminants, attenuate sunlight in the water column, and deposit on tidal marsh and intertidal 

mudflats as well as in ports and shipping channels (Buchanan et al. 2014; Schoellhamer 1996). 

 To monitor SSC in the San Francisco Bay, the U.S. Geological Survey (USGS) operates 

an in situ sampling program, acquiring measurements from 36 fixed locations in the Bay and 

surrounding estuary on a monthly scientific cruise (Figure 1). Optical measurements of turbidity 

are made at various heights in the water column as a proxy for SSC and results are projected to 

predict SSC for the full water column at that site (Buchanan et al. 2014; U.S. Geological Survey 

2014a). Although the USGS SSC sampling program provides essential data for environmental 

management in the Bay, its data are limited temporally and spatially to fairly narrow windows; it 

is difficult to understand the full scheme of SSC transport from monthly measurements at 

discrete locations. In addition, the sampling cruises are a significant expense for this publicly-

funded organization. 
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Figure 1: USGS SSC sampling sites. From San Francisco Estuary Institute (2014). 

 Autonomous optical measurement can serve as a tool to enhance SSC monitoring. In 

addition to the monthly water sampling cruise, USGS also operates seven in situ optical sensors 

that automatically measure turbidity at 15-minute intervals (U.S. Geological Survey 2014b). 

These sensors have very high temporal resolution but narrow spatial coverage. Satellite remote 

sensing, on the other hand, provides synoptic spatial coverage of the San Francisco Bay estuary, 

with spatial, temporal, and spectral resolution varying by sensor. Previous work has been done to 

supplement USGS in situ measurement of SSC with optical assessment using data from NOAA’s 

Advanced Very High Resolution Radiometers (AVHRR). The 1.09km spatial resolution of these 

sensors is useful for detecting large features such as Bay-scale SSC gradients and sediment 

plumes, but large pixels prohibit detection in proximity to land features and obscure small-scale 

patterns integral to local ecosystem functions (Ruhl et al. 2001). Moreover, only two of 

AVHRR’s broad spectral bands are within the wavelength range of ocean color sensing, limiting 

precision of SSC measurement (National Oceanic and Atmospheric Administration n.d.). While 
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useful for studying broad trends in the distribution of suspended solids, the AVHRR method was 

not able to replace monthly in situ sampling. 

 In the past five years new satellite sensors with higher spectral and spatial resolution have 

been developed, enhancing capacity for remote monitoring of SSC. This paper investigates 

remote sensing tools using the recently-launched Hyperspectal Imager for the Coastal Ocean 

(HICO) and Landsat 8 sensors to establish a method for continuous and synoptic water quality 

monitoring in the San Francisco Bay. Statistical and optical approaches are used to develop, 

assess, and apply methods of measuring SSC from satellite imagery.  
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Section I: Hyperspectral measurement of suspended solids for remote trace 
element monitoring in the San Francisco Bay estuary 

Introduction 
 The concentrations of total and dissolved trace elements in the water column are key 

determinants of water quality for estuarine and coastal waters. High concentrations of trace 

elements in the San Francisco Bay adversely affect both biological and anthropogenic systems 

by contaminating organisms and ecosystems and rendering estuaries unsafe for human use (A.R. 

Flegal et al. 1991; Luoma and Phillips 1988). Toxic levels of trace metals discovered in 

phytoplankton, fish, waterfowl, and sediment within the Bay's drainage basin prompted the 

establishment in 1993 of the Regional Monitoring Program (RMP) by the San Francisco Estuary 

Institute to monitor trace element levels regionally (San Francisco Estuary Institute n.d.). 

Elevated levels of trace elements are attributed largely to anthropogenic activity, but episodic 

events such as floods, storms, and algal blooms may have significant and as-of-yet not 

understood impacts on biogeochemical cycles (A Russell Flegal et al. 2005; Nichols et al. 1986). 

Understanding the spatial and temporal distribution of trace elements is essential to identifying 

their sources, motions, and effects. 

 Benoit, Kudela, and Flegal (2010a) studied the concentrations of 13 trace elements (Ag, 

As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) and methylmercury (MeHg) sampling 

during the first 10 years of RMP monitoring and demonstrated correlation between in situ 

measurements of SSC and the measured concentrations of these trace elements. From these 

relationships, predictive models based on SSC were developed to estimate the distribution ratio 

D—a measure of degree of extraction in solid versus aqueous form—as well as water column 

total concentration (WCT) and water column dissolved concentrations (WCD) of each element. 

The influences of geographic location within the bay and season of sampling were also 

incorporated into the models. 

 Modeling dissolved trace element concentrations is valuable for monitoring 

biogeochemical cycling within the estuary on a regular basis, as well as predicting fluxes to 

adjacent coastal waters where few in situ measurements exist. The modeling method of Benoit, 

Kudela, and Flegal (2010a) is limited in that it relies on in situ samples of SSC collected monthly 

by the USGS at discrete, fixed monitoring stations in the San Francisco Bay. Remote sensing, 
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however, can provide synoptic coverage to better capture spatial and temporal patterns of SSC, 

and consequently, to better predict trace element concentrations. 

Methods and Results 
Satellite imagery of the San Francisco Bay was chosen to align with the dates of annual 

RMP trace metal sampling. Image 8054 from the Hyperspectral Imager for the Coastal Ocean 

(HICO) containing the area of interest was taken on September 17 2011, during the RMP 

sampling period from September 13-21 2011. HICO, mounted on the International Space 

Station, collected data from 2009 to 2014 in 87 bands from 400 – 900 nm at 5.7 nm spectral 

resolution with spatial resolution of approximately 100m in a 6.92° (42 x 192 km) field of view 

(“HICO - Sensor and Data Characteristics” n.d.; Lucke et al. 2011). L1B imagery was processed 

by Dr. Raphael Kudela at UC Santa Cruz using the Tafkaa algorithm for atmospheric correction. 

The image was georeferenced with a HICO rad_geom file and tuned using Google Earth as a 

reference image for ground control points. The area of interest was selected in a spatial subset. 

 
Figure 2: 87-band image cube of HICO image 8054; 42-27-11-RGB in front. 
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Figure 3: Area of interest with non-water pixels masked. 

 Coastal from NOAA’s GSHHS shoreline database were subset in GEODAS and 

combined with the boundaries of the area of interest in ArcMap to create a polygon covering 

land areas, which was used to mask land pixels in ENVI. Maximum likelihood classification was 

used to mask non-water pixels containing clouds, surf, and man-made objects like bridges (Figure 

3). 

Based on the review of methods for calculating SSC from remote sensing data in 

Odermatt et al. (2012), several different algorithms appropriate for a range of approximately 5 – 

30 g/m3 total suspended material were tested using bandmath in ENVI. The results of these 

algorithms were compared to in situ measurement of SSC  from September 20 2011 in the USGS 

dataset on Water Quality of the San Francisco Bay (U.S. Geololgical Survey n.d.). Matlab code 

was written to compare measured SSC values at geographic coordinates of sampling with 

modeled SSC of the corresponding pixel using ordinary least squares regression. The semi-

analytical method of Nechad, Ruddick, and Park (2010) failed to tune to the area of interest, and 

no meaningful results were obtained. Empirical algorithms tested include a band ratio of near 

infrared and visible wavelengths suggested by Doxaran, Froidefond, and Castaing (2002) 
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(Equation 1), and single band proxies in the visible and NIR, suggested by Miller and McKee 

(2004) (Equation 2) and Binding et al. (2010) (Equation 3), respectively. 
𝑅𝑟𝑠(852)
𝑅𝑟𝑠(548)

; R2 = 0.02 

 

1 

𝑅𝑟𝑠(749); R2 = 0.50 

 

2 

𝑅𝑟𝑠(668); R2 = 0.74 

 

3 

 

The relative success of single band methods, although originally designed for sensors with 

broader spectral resolution, prompted the testing of all narrow HICO bands in the visible and 

NIR range for correlation with SSC (Figure 4). Remote sensing reflectance (Rrs) in the 634nm 

band had the best predictive power (R2 = 0.794) for in situ SSC. 

 
Figure 4: R-squared values of linear models created from Rrs in individual HICO bands, with the visible spectrum in the 

background. Models based on red wavelengths (600-700nm) exhibit highest predictive power. 

The model calculated with ordinary least squares regression (Equation 4) was applied using 

bandmath to calculate an SSC band (Figure 5). 

SSC = 0.10795 × 𝑅𝑟𝑠(634) + 0.514968 4 
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Figure 5: Map of Rrs at 634nm(left) and the calculation of SSC in mg/L (right) based on 4. 

The models of Benoit, Kudela, and Flegal (2010a) calculate water column total 

concentration (WCT; μg/L) and distribution ratio (D; L/kg) from linear relationships with SSC 

(mg/L), and then water column dissolved concentration (WCD; μg/L) from these two values 

according to Equations 5-7. 

δεα ++++×= bm SSCWCT  5 

δεα ++++×= bmD rootSSClog  6 

6

6

10SSC
10WCTWCD
+×
×

=
D

 7 

 

The models predict 12 trace elements measured annually by the RMP1: Ag, As, Cd, Co, Cu, Fe, 

Hg, Mn, Ni, Pb, Se, Zn. Equations were applied in Matlab with coefficients m and b for each 

element’s equations as well as parameters to adjust for geographic region of the bay (α), season 

(ε), and interactions of the two (δ) taken from the supporting information (Benoit, Kudela, and 

Flegal 2010b). The models account for 7 geographic regions in the San Francisco Bay estuary as 

shown in Figure 6 and 3 seasons; the area of interest in this image, taken during the summer 

period, includes 4 geographic regions. Maps for the ten elements yielded meaningful non-

negative results for WCT and the six for WCD are shown in Figure 7 and Figure 8, respectively. 

1 As noted above, Benoit, Kudela, and Flegal (2010a) also examines Chromium and methylmercury but are unable 
to create a statistically significant model for WCT or WCD of these pollutants. 
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Figure 6: Geographic regions in the San Francisco Bay Estuary. From Benoit, Kudela, and Flegal (2010a). 

 
Figure 7: Maps of modeled WCT for As, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, and Zn. 
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Figure 8: Maps of modeled WCD for As, Cd, Co, Cu, Ni, and Zn. 

Matlab code was written to compare in situ WCT and WCD values from the 2011 RMP 

sampling period at geographic coordinates of sampling with modeled values of the 

corresponding pixel using robust regression2. Data were available from 6 – 16 sampling sites 

within the area of interest, varying by pollutant. Table 1shows the wide spread of R2 values in the 

initial models, from 0.18 to 0.70 for WCT and 0.41 to 0.62 for WCD. Few models were 

significant to the p < 0.01 level. 

 

 

 

 

 

 

 

 

 

 

2 Supporting information describes the use of robust regression in developing and testing models to minimize the 
influence of outliers for data with a non-normal distribution (Benoit, Kudela, and Flegal 2010b). 
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Element 
WCT WCD 

R2 p R2 p 
Ag - - - - 
As 0.70510 0.00005 0.56354 0.00081 
Cd 0.49784 0.00226 0.55339 0.00095 
Co 0.29633 0.05857 0.50234 0.40502 
Cu 0.36750 0.01280 0.62717 0.00240 
Fe 0.24818 0.08830 - - 
Hg 0.18152 0.47276 - - 
Mn 0.22187 0.08992 - - 
Ni 0.36302 0.02578 0.41508 0.01473 
Pb - - - - 
Se - - - - 
Zn - - 0.48018 0.15299 

Table 1: Predictive power and significance of initial models for WCT and WCD. 

To assess the success of the models, normal quantile plots were created in Matlab for 

sampled and modeled populations. Sample populations for Co, Cu, Fe, hg, Mn, Ni, and Pb (WCT 

and WCD), as well as Zn (WCD only) exhibited a logarithmic distribution, and were transformed 

before repeating the robust regression. This improved fit, but many models still exhibited 

discrete grouping in the data, as seen in the characteristic banding in the map on the left in Figure 

9. This was determined to be an effect of geographic region. Numerous models retained 

geographic groups that introduced non-uniform variance into the modeled concentrations, acting 

as influential points and distorting the line of best fit. 
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Figure 9: Four modeled geographic regions (left) and corresponding quantile regression lines (right) for WCD of Ni. The 

top quantile (in red) introduces non-uniform slope, indicating non-uniform variance in the model. 

To determine which region was the source of the outlier group, quantile regression was 

run to estimate the line of best fit at each subset boundary, or quantile, in the cumulative 

distribution function, displaying the independent contribution of each geographic region to the 

full regression; an example is shown in Figure 9. Models whose quantile regression lines had 

uniform slopes were confirmed to have uniform variance for all regions. For models that 

exhibited a wide spread or large variation in the slopes of quantile regression lines, quantile 

regression was re-run removing each of the four regions in turn to determine which was 

introducing non-uniform variance. For each model, plots of every combination of three out of the 

four geographic regions were examined and the combination that exhibited the most uniform 

quantile regression line slopes was selected, as in Figure 10. Co, Fe, Hg, Mn, and Ni required the 

removal of region C. 
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Figure 10: Quantile regression for WCD of Ni removing each of the four geographic regions in turn. Removing region C 

(upper left) leads to the most consistent slopes across quantile regression lines. 

In every case, it was found that the quantile regression excluding region C exhibited the most 

uniform slopes and the narrowest spread; it was therefore determined that this region, North Bay 

(west), was introducing non-uniform variance and influential points into the model. Comparing 

the calculated SSC band with a USGS cross section of measured SSC in the water column, high 

values in the North Bay were identified as false-positives from sunglint. Sunglint is visible in this 

area in the original image, justifying the removal of points in region C from the model. With 

populations adjusted by transformation and regional selection as necessary, robust regression 

was run a final time to determine the predictive power of the models for in situ element 

concentrations. Appendix 1. 

Table 2 shows significantly improved predictive power for most models. Slope (m) and intercept 

(b) values for the final models can be found in Appendix 1. 
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Table 2: Predictive power and significance of models for WCT and WCD after log transformations and sun-glint 
adjustments applied as necessary. 

Element 
WCT WCD 

R2 p R2 from 
Benoit et al. R2 p R2 from 

Benoit et al. 
Ag - - 0.592 - - 0.01 
As 0.70510 0.00005 0.444 0.56354 0.00081 0.47 
Cd 0.49784 0.00226 0.125 0.55339 0.00095 0.08 
Co 0.73653 0.00017 0.785 0.44311 0.01301 0.20 
Cu 0.51844 0.00166 0.552 0.62717 0.00240 0.55 
Fe 0.73009 0.00020 0.946 - - 0.03 
Hg 0.65356 0.00082 0.547 - - 0.05 
Mn 0.61231 0.00157 0.532 - - 0.38 
Ni 0.77249 0.00008 0.690 0.77498 0.00008 0.45 
Pb 0.68190 0.00094 0.846 0.37348 0.01550 0.03 
Se - - 0.351 - - 0.59 
Zn 0.58573 0.00372 0.858 0.40972 0.00995 0.06 

 

Discussion 
Statistically significant (p < 0.01) results for WCT were found for 10 elements—As, Cd, 

Co, Cu, Fe, Hg, Mn, Ni, Pb, and Zn—with R2 values between 0.49 and 0.77. Predictive power 

was greater that of the original models in Benoit, Kudela, and Flegal (2010a) for five of these 

elements. WCD was successfully modeled for six elements—As, Cd, Co, Cu, Ni, and Zn—with 

R2 values between 0.37 and 0.77, and predictive power for each element exceeding that of the 

original models. These results suggest that this method can significantly predict total and 

dissolved trace element concentrations in the San Francisco Bay, and demonstrate the potential 

of monitoring programs using remote observation of trace element concentrations. Table 3 

compares modeled WCT values with EPA water quality criteria. Concentrations of three 

elements—As, Fe, and Pb—were found to exceed EPA water quality criteria, and four others—

Cd, Cu, Mn, and Ni—were present at more than 50% of the recommended concentration (U.S. 

Environmental Protection Agency 2014b). Under the National Recommended Water Quality 

Criteria, Arsenic was present at 28425% of the concentration recommended for human health 

and Iron was present at 114% of the concentration recommended for aquatic life; Lead was 

present at 72750% of the concentration listed in National Primary Drinking Water Regulations 

(U.S. Environmental Protection Agency 2014a). All elements were present at high 
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concentrations in South Bay (south), or region F in Figure 6. Despite a high density of sampling 

sites in this area of the Bay, the highest concentrations of trace elements are found to the west of 

all in situ sampling sites, and therefore were not detected by RMP monitoring. This is one 

significant benefit of the synoptic spatial coverage that can be achieved with this monitoring 

method. 
Table 3: Comparison of modeled WCT values with limits set by EPA water quality standards. 

Element Max. WTC (µg/L) EPA Limit3 (µg/L) WCT/Limit 
As 5.117 0.018^ 28425% 

Cd 0.138 0.250
Ɨ
 55.0% 

Cu 2.005 3.10
Ɨ
 64.66% 

Fe 1141.8 1000.0
Ɨ
 114.18% 

Hg 0.0051 0.94
ƗƗ
 0.54% 

Mn 30.454 50.0^ 60.91% 

Ni 6.509 8.20
Ɨ
 79.38% 

Pb 0.728 <0.001
ƗƗ
 72750% 

Zn 5.232 81.0
Ɨ
 6.46% 

Conclusion 
 This section validates a method for remote trace element monitoring using hyperspectral 

imagery. Successful trace element models using HICO data expand the spatial range of in situ 

measurement with synoptic coverage of the entire San Francisco Bay estuary, but are limited in 

in spatial resolution by the sensor’s 90m pixel size and temporal resolution by its to-order 

imaging. More frequent images are necessary to establish typical SSC and trace element 

conditions, observe change over time, understand their function in biogeochemical cycling, and 

analyze conditions following episodic events such as storms, floods, and algal blooms (A Russell 

Flegal et al. 2005). For these reasons, the extension of the method developed in this section to 

other satellite sensors is an essential step to realizing a remote water quality monitoring program.  

3 ^ National Recommended Water Quality, Human Health Criteria 
Ɨ  National Recommended Water Quality, Aquatic Life Criteria 
ƗƗ National Primary Drinking Water Regulations 

 

                                                           
 



   Press 19 
 
 

Section II: Assessing the effects of environmental conditions in Landsat 8 
measurement of suspended solids concentration 

Introduction 
 The most significant barrier to extending remote water quality monitoring to different 

sensors is the determination of an algorithm using remote sensing reflectance to calculate SSC, 

which is both the key determinant of the accuracy of remote trace element monitoring and a 

significant water quality parameter in itself. To detect suspended solids from satellite imagery, a 

relation must be established between patterns in reflectance across bands—a pixel’s spectral 

shape—and SSC. The reflectance of water is highly influenced by its constituent components; in 

particular, chlorophyll from phytoplankton, color dissolved organic material (CDOM), and 

suspended solids control the reflectance spectrum of optically complex case II waters (Morel and 

Prieur 1977). Reflectance can also be influenced by environmental factors; for example: high 

wind can produce white-capping waves, shallow water can exhibit bottom effects from the 

seafloor, or thin cirrus clouds can alter reflectance across the spectrum (Frouin, Schwindling, and 

Deschamps 1996; Gao et al. 2002; Lyzenga 1981). Understanding the behavior of remote 

sensing reflectance is thus complicated by a multiplicity of factors that can influence spectral 

shape. However, algorithms have been developed to isolate the signature of suspended solids 

under specific conditions. These semi-empirical SSC algorithms are usually unique to a single 

location with characteristic water constituents and environmental conditions. 

 Whereas HICO acquired images to-order, Landsat 8 presents the opportunity to acquire 

regular, synoptic data on the San Francisco Bay. Launched in April 2013, Landsat 8 captures an 

image of the full San Francisco Bay estuary every 16 days. The new USGS sensor collects 

images covering over 31,000 square kilometers at a spatial resolution of 30 meters. Ultraviolet, 

visible, and infrared light reflecting off the Earth is captured in 11 bands (U.S. Geololgical 

Survey n.d.). These data are calibrated with sun radiance at the time of imaging to acquire 

remote sensing reflectance or brightness temperature (BT). 

Landsat 8 is at present one of the most powerful satellite sensors in existence, but because 

it is relatively new, few algorithms have been developed to take advantage of its extended 

spectral range. Using Landsat 8 for water quality monitoring is advantageous because of this 

sensor’s higher spatial and temporal resolution, but requires the development of new SSC 
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algorithms specific to the sensor’s unique bands and calibrated to the San Francisco Bay. This 

stage of the project aims to develop a statistical algorithm to calculate SSC in the San Francisco 

Bay Estuary from Landsat 8 data accounting for environmental factors including water depth, 

wind speed, tide phase, and cloud conditions. 

Methods 
Images for this study were obtained from the USGS Earth Explorer database. Table 4 lists 

the five Landsat 8 images that were selected out of the data available as of October 2014 for Path 

44 Row 34, containing the entire San Francisco Bay estuary. The selected images are largely 

cloud-free and taken within four days of USGS in situ sampling. The images were 

radiometrically corrected in ENVI 5. Bathymetry data were acquired as a regional DEM from the 

NOAA National Geophysical Data Center. Nine Landsat 8 bands4 and the DEM were stacked, 

sampled to 30 meter resolution, and spatially subset to the area of interest. Pixels with elevation 

greater than -0.000001 meters—representing land area—were masked. 

Table 4: Images used in this study 

Image ID Date 

LC80440342013266LGN00 09/23/2013 

LC80440342013298LGN00 10/25/2013 

LC80440342014013LGN00 01/13/2014 

LC80440342014109LGN00 04/19/2014 

LC80440342014157LGN00 06/06/2014 

4 Panchromatic Band 8 was excluded because its wavelengths are already sampled by the visible bands. TIRS Band 
11 was excluded due to corrupt data from a sensor malfunction. 
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Figure 11: Landsat 8 432-RGB images, atmospherically corrected and with land pixels masked. Clockwise from top left: 

09/23/2013, 10/25/2013, 01/13/2014, bathymetry, 06/06/2014, 04/19/2014. 

 
In situ SSC data at 1 meter depth from the five corresponding dates were acquired from 

the USGS Water Quality of San Francisco Bay database. The dates examined span from 

September 2013 to June 2014, and 162 samples were collected in total. ArcGIS was used to 

create a vector file of the coordinates of in situ sampling which was overlain on the five images. 

Numerical data values from all bands at the pixels at those coordinates were extracted and 

reported as remote sensing reflectance or brightness temperature. Sampling sites were classified 

into seven geographic regions based on the scheme in Figure 6. 

Water depths at each sampling site were extracted from the DEM acquired from NOAA. 

Site depths were binned into six depth categories: very shallow, less than 5 meters; shallow, 5 to 

10 meters; moderate, 10 to 15 meters; deep, 15 to 25 meters; and very deep, greater than 25 

meters. Because of the Bay’s bathymetry, site depth is often correlated with geographic region. 

 



   Press 22 
 
 

Weather and tide data at each sampling point were acquired from the NOAA Center for 

Operational Oceanographic Products and Services from the closest of five Bay area weather 

stations, calculated geometrically from site coordinates. Code was written to select weather and 

tide data from the times nearest to imaging and sampling time. These data are available at 6-

minute intervals, and times of selected data usually fall within three minutes of the 

corresponding image or sample data point. Variables that adjust for differences in environmental 

conditions between the time of imaging and sampling were calculated in Excel. Water level 

difference was calculated from tidal data as meters difference between water level at time of 

image and time of sample. Difference in time between imaging and sampling was divided into 

days and hours, and the magnitude of each was determined using absolute value. 

Table 5: Data parameters used for model development 

Bay Region Geographic region according to Benoit, Kudela, and Flegal (2010a) 
Depth Category Very shallow, shallow, moderate, deep, or very deep  
Sample Date Sample date, MM/DD/YYYY 
Sample SSC In-situ SSC at 1m depth from USGS measurements 
Day difference Absolute value of time difference rounded to the nearest day 
Hour difference Absolute value of hours between image time of day and sample time of day 
Image wind speed Wind speed at closest weather station at time of image (m/s) 
B1 Landsat 8 Band 1, Coastal Aerosol, 0.43-0.45 microns (Rrs) 
B2 Landsat 8 Band 2, Blue, 0.45-0.51 microns (Rrs) 
B3 Landsat 8 Band 3, Green, 0.53-0.59 microns (Rrs) 
B4 Landsat 8 Band 4, Red, 0.64-0.67 microns (Rrs) 
B5 Landsat 8 Band 5, NIR, 0.85-0.88 microns (Rrs) 
B6 Landsat 8 Band 6, SWIR I, 1.57-1.65 microns (Rrs) 
B7 Landsat 8 Band 7, SWIR II, 2.11-2.29 microns (Rrs) 
B9 Landsat 8 Band 9, Cirrus, 1.36-1.38 microns (Rrs) 
B10 Landsat 8 Band 10, TIRS I, 10.60-11.19 microns (BT) 
Water level difference Meters difference between water level at time of image and time of sample 
 

 Analysis of HICO data suggests that out of the visible and near infrared wavelengths, red 

bands have the highest predictive power for measured SSC (Figure 4). Therefore, Landsat 8 Band 

4 is expected to be a significant predictor of SSC. Because the algorithm’s purpose is to utilize 

remote sensing data, at least one band must be used as a predictor. 
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Because of varying environmental conditions in different areas of the bay—from shallow 

estuarine environments in regions A, B, F, and G to deeper water with considerable through flow 

in regions C, D, and E—geographic region is expected to be a significant predictor. Because 

reflectance of the seafloor can dominate remote sensing reflectance at shallow water depths, it is 

expected that water depth will affect accuracy of the SSC prediction (Lyzenga 1981). 

Results 
After initial scatter plots of SSC versus band values displayed heteroskedasticity, 

log(SSC) was used as the response variable. Figure 12 is a matrix plot with regression lines that 

confirms previous observations that B4 is highly correlated with SSC. Also notable is the high 

level of correlation between many of the bands, especially those adjacent to each other. 

 
Figure 12: Correlation between log(SSC) and Landsat 8 bands shown in matrix of scatter plots with regression lines. Each 

cell plots the variable listed in the same column on the x-axis the variable listed in the same row on the y-axis. 

Figure 13 suggests an interaction between water depth and bay region. To test if there is a 

significant difference in log(SSC) between sampling sites in different regions and depth 
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categories, one-way ANOVA was applied to a concatenated variable combining bay region and 

water depth category (Appendix 2). 

 
Figure 13: Interaction plot for Bay region and depth category variables. The different slope of each of the depth category 

lines illustrates that the effect of depth depends on the level of the Bay region variable. 

The ratio of variances between categories did not exceed 3.4, which was accepted as 

meeting the ANOVA assumption of equal variance due to the low number of observations (as 

few as 2) in some categories. It was found that the combined bay region and depth categories do 

exhibit significant differences. The residual plots in Figure 14 also meet the assumptions of 

ANOVA, displaying an approximately normal distribution of residuals (bottom left); however, 

an order effect is visible with residuals of larger magnitude for later observations, suggesting that 

differences between sampling dates may also be influencing the model (bottom right). To 

account for this effect, a categorical variable was created for sampling date. 
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Figure 14: Residual plots for ANOVA between Bay region and depth catgory. 

 General linear model analysis was used to assess which variables are significant 

predictors of suspended solids concentration in the San Francisco Bay. A stepwise subtractive 

procedure was performed, beginning with bay region, depth category, and date as categorical 

factors and B1 through B10, day difference, hour difference, image wind speed, and water level 

difference as continuous covariates. A cross-effect between bay region and depth category was 

initially included, but could not be calculated by Minitab. At each step, the variable with the 

highest p-value was removed until all variables were significant to a level of α=0.05. The 

sequence of variables removed was as follows: image wind speed, B4, B1, B2, B3, water level 

difference, bay region, B9, B7. The model arrived upon includes seven significant predictors—

depth category, date, B5, B6, B10, magnitude of day difference and magnitude of hour 

difference—and has an adjusted R2 value of 64.87%. The standardized residual plots in Figure 15 

demonstrate normally distributed residuals (bottom left), meeting general linear model 

assumptions. Observation 151 is an outlier with a residual greater than 4 standard deviations 

from the mean; it is accounted for with an indicator variable. 
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Figure 15: Standardized residual plots for general linear model. 

The final model predicts log(SSC) from eight significant variables—depth category, 

sampling date, B5, B6, B10, magnitude of day difference, magnitude of hour difference, and an 

indicator variable for observation 151—and has an adjusted R2 of 0.6933. The model coefficients 

are listed in Table 6 and the model is detailed in full in Appendix 3; the predicted log(SSC) is 

plotted against measured values in Figure 16. 
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 S R-squared R-squared (adjusted) 

 
0.369476 72.01% 69.33% 

Coefficients 
     

Term Coefficient 
Coefficient 

Standard Error 
T-

Value 
P-

Value VIF 
Constant -37.92 8.35 -4.54 0   
B5 50.3 9.16 5.49 0 33.32 
B6 -54.2 11.4 -4.76 0 34.59 
B10 0.133 0.0292 4.56 0 11.97 
abs(day_dif) 0.624 0.127 4.92 0 43.52 
abs(hour_dif) 0.132 0.0256 5.15 0 1.91 
151 1.802 0.381 4.73 0 1.06 
Depth Category 

    
  

deep -0.0862 0.0721 -1.2 0.234 1.66 
moderate 0.0434 0.0638 0.68 0.498 1.44 

shallow -0.413 0.123 -3.35 0.001 1.42 
very deep -0.181 0.139 -1.3 0.196 1.69 

Date 
    

  
1 -0.729 0.129 -5.63 0 8.09 
2 1.241 0.265 4.68 0 34.46 
3 1.713 0.262 6.55 0 30.01 
4 -1.091 0.206 -5.29 0 19.96 

Table 6: Coefficients of general linear model terms 
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Figure 16: Fit of statistical model predicting SSC, detailed in Table 6. 

 

Discussion 
This model uses three Landsat 8 bands: near infrared (NIR) in B5, short wave infrared 

(SWIR) in B6, and thermal infrared (TIRS) in B10. Log(SSC) increases with a stronger signal 

from B5 and B10, and decreases with a stronger signal from B6. The exclusion of B4, expected 

to be highly predictive of SSC, can be explained by the high level of correlation between B4 and 

B5. It is also well-established that the near infrared is a good predictor of SSC (Novo, Hansom, 

and Curran 1989). Figure 17 shows spectra which represent characteristic spectral shapes for 

various ranges of SSC. The B5 NIR range is highlighted, showing Rrs increasing strongly with 

increasing SSC. Tolk, Han, & Rundquist (2000) suggest that NIR wavelengths are better than red 

wavelengths for measuring SSC if there is significant reflectance from the seafloor. This study 

found that reflectance in the 740 to 900 nanometer range is dominated by suspended solids rather 

than seafloor brightness, explaining why B5 has high predictive power for SSC in the 

predominantly shallow Bay. The physical significance of the B6 and B10 variables cannot be 

explained optically and are likely due to environmental conditions. 
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Figure 17: Examples of measured spectra at various SSC: a) 0.013 g/L; b) 0.023 g/L; c) 0.062 g/L; d) 0.355 g/L;  

e) 0.651 g/L; and f) 0.985 g/L. The B5 range is highlighted. Adapted from Doxaran, Froidefond, and Castaing (2002). 

 
The effects of SSC on reflectance and brightness temperatures at wavelengths above 

1100 nanometers—including the SWIR and TIRS ranges of B6 and B10—have not been 

significantly studied, because these wavelengths are known to be more sensitive to water 

absorbance and thermal emissivity, respectively (U.S. Geololgical Survey n.d.). The significance 

of these bands as predictors in this model cannot be explained physically, and may be due to 

factors correlated with the distribution of SSC in the Bay rather than SSC itself. However, since 

this is an empirical model designed only for local use, this is not problematic as long as 

environmental conditions remain similar. 

Although depth is a significant variable, the shallow water category is the only significant 

predictor. It requires a negative correction5, indicating that the strongest depth effects occur in 

shallow waters. At depths less than 10 meters, a negative correction to SSC is required to 

account for bottom reflectance. In water deeper than 10 meters, depth category is not significant 

and no correction is needed. This comports with the physical understanding of bottom effects in 

remote sensing (Doxaran, Cherukuru, and Lavender 2005). 

5 Although this correction is relative to very shallow water, the very shallow category has the fewest observations 
and therefore likely has high error. Regardless, the coefficient for shallow water is greater in magnitude than that of 
any other category. 
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Date is a significant predictor of SSC, requiring a positive correction for samples taken 

on some dates and a negative correction for others. This is likely due to widespread differences 

in SSC across the Bay between the time of in situ sampling and the time of remote measurement 

that reflect numerous environmental factors. For each date the image was captured within four 

days before or after in situ sampling, but in that time winds, tides, and currents can change 

significantly. While the individual effect of changes in each environmental condition cannot be 

quantified, the date variable encompasses their net effect. This variable may also account for 

systematic error in the water sampling process within each cruise date.  

Both time difference variables contribute a positive correction to SSC. The direction is 

not meaningful; rather, the fact that as the time between imaging and sampling increases, 

environmental conditions change more and a correction of larger magnitude is require for SSC. 

Because each imaging/sampling pair had a constant day difference for all observations on that 

date, an attempt was made to include in the model interactions between magnitude of day 

difference and sampling date. Minitab was unable to estimate this variable and it was therefore 

not included. 

 
Figure 18: Standardized residual plots for final model. 
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Residual plots for the final model are shown in Figure 18. All residuals in the final model 

fall within three standard deviations of the mean (top right) and display an approximately normal 

distribution (bottom left), meeting assumptions for general linear models. As evident in the 

residual plots below, there are still trends in observation order corresponding with the order of 

water sampling. This suggests that hour difference did not account fully for sampling order and a 

correction for the order of sample collection on each date may be appropriate. 

Conclusion 
This section demonstrates the development of a linear statistical model for SSC based on 

remote optical measurement, as well as the limitations of such a model. The general linear model 

designed here is useful for predicting SSC throughout San Francisco Bay on the five dates 

sampled, but because date effects are significant in the model, SSC can be predicted for an image 

from a different date only if corresponding in situ data are available to calibrate the model. 

Therefore this model is more useful for spatial extension of measured SSC—where 

environmental conditions remain similar—than for temporal extension, where wind, tidal, and 

cloud conditions change. Although scientists in the field of ocean remote sensing are at present 

developing more advanced statistical techniques to address such dependence on training 

conditions, there is an alternative approach based on optics. By investigating the optical 

properties of water and various materials in the environment with experimental evidence and 

optical principles, an attempt can be made to identify within the measured remote sensing 

reflectance signal the contributions of water, water constituents, and environmental factors. 
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Section III: Empirical assessment of background effects in hyperspectral 
measurement of suspended solids 

Introduction 
In the statistical model of Section II, bottom reflectance proved the most influential 

environmental factor. Because it is also a largely static feature between images of the San 

Francisco Bay taken on different dates, understanding the optical behavior of the seafloor may 

enable a significant correction to measured remote sensing reflectance to better isolate the signal 

of water constituents. The optical effects of bottom reflectance depend on composition of the 

seafloor and depth of the water, as well as interaction with water constituents (Curtis D. Mobley 

1994). The goal of this portion of the project is to empirically investigate the optical interaction 

of suspended solids and various seafloor conditions. 

 Visible light attenuates in water according to the Beer-Lambert law. In open water longer 

wavelengths are absorbed most quickly, with 90% of red light absorbed in the first five meters of 

water (Gordon and McCluney 1975). Blue wavelengths penetrate deeper into the water column, 

causing open water to appear dark blue, but coastal waters such as those in the San Francisco 

Bay generally display a more complex absorption pattern due to the presence of CDOM, 

chlorophyll, and suspended solids as well as the influence of a shallow seafloor (Tolk, Han, and 

Rundquist 2000). It is therefore expected that bottom reflectance may have the greatest 

contribution to total reflectance in the shorter visible wavelengths. 

 If seafloor composition is approximately uniform in the Bay, brightness contributed by 

seafloor reflectance should follow the trends of water depth. In shallow water the seafloor causes 

the most pervasive distortion of water’s spectral shape, consistently adding to the reflectance 

from chlorophyll, CDOM, and suspended solids (Lyzenga 1981). By discerning the depth at 

which bottom effects become the dominant contributor to total reflectance, data in those areas 

can be discarded or appropriately adjusted before assessing SSC. The contribution of bottom 

effects to remote sensing reflectance is visible in comparing the five Landsat 8 images to the 

bathymetry map (lower right) in Figure 11, with deeper areas—including the ocean and the 

central north-south channel in the Bay—appearing darker, and shallower coastal areas appearing 

brighter. However, it is difficult to disentangle the influence of bottom reflectance from changes 

in water composition that may be related to depth through its influence on local circulation, as 

 



   Press 33 
 
 

evidenced by the significant cross-effects between geographic region and depth category in the 

general linear model developed in section II (Appendix 2). For example, shallow bathymetry in 

the south Bay (region F) both introduces bottom reflectance and causes the retention of high 

levels of suspended solids from low water circulation (Walters, Cheng, and Conomos 1985). 

Reflectance patterns that do not follow trends in bathymetry, on the other hand, are likely 

caused by water constituents. Figure 19 shows an example of bright pixels in eddy patterns that 

appear to be plumes of suspended solids following local fluid motion. This pattern can be seen in 

different locations in multiple images and confirms that reflectance from suspended solids is not 

controlled exclusively by depth. 

 
Figure 19: 432-RGB Landsat 8 image of the western inlet to the Central Bay on 9/23/2013. 

Methods 
 Scatterplots were made in ENVI to display depth in meters versus Rrs in each of the 

visible bands for all pixels in each image, and the dancing pixel feature was used to identify 

areas in the images corresponding to regions in the scatterplots. Figure 20 shows scatterplots for 

the September 2013 image, with Band 4 (red) on the left and Band 2 (blue) on the right. Regions 

(a) and (d) display low reflectance values that are not correlated with depth; these regions 
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contain ocean pixels. Regions (b) and (e) display somewhat higher reflectance values that are 

also uncorrelated with depth; these regions contain pixels from the Bay’s deeper central channel. 

Regions (c) and (f) display reflectance values positively correlated with depth; these regions 

contain pixels from most of the Bay excluding the central channel. Pixels outside of this region 

include areas near-shore ocean pixels containing sandy sediment, areas where sediment has been 

carried from the Bay into open water, and other anomalous areas. 

 
Figure 20: Scatter plots of all water pixels in the 9/23/2013 image. Left, depth versus Rrs in Band 4 (red); 

 Right, depth versus Rrs in Band 2 (blue). 

As discussed above, the open water of the ocean is darkest because it has low 

concentrations of CDOM, chlorophyll, and suspended solids; likewise, the central channel is 

darker than the rest of the Bay because it tends to contain low levels of suspended solids in 

accordance with bathymetric patterns. The range of reflectance values in region (c) is at least 

0.06, whereas the range of reflectance values in region (f) is less than 0.03 over approximately 

the same depth. Although reflectance values are lower in the red band due to rapid attenuation 

through water, the range of reflectance values between dark and bright pixels in the Bay is 

greater. In the red band, pixels from the shallowest areas of the Bay have relatively higher 

reflectance values compared to deeper pixels than in the blue band, indicating the presence of 

bottom effects. A bright seafloor composed of sand and sediment is more reflective at red 
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wavelengths than at blue wavelengths and the effect is more pronounced at shallower depths, 

giving the red-band scatterplot a longer tail on the right. 

 These scatterplots confirm that bottom effects are significant in much of the Bay. The 

magnitude of the effect, however, is controlled not only by depth but also by water composition 

and geographic region, introducing error into the positive correlation between depth and Rrs and 

causing regions (c) and (f) to appear as triangles rather than straight lines. Therefore, it is not 

possible to determine the necessary correction for bottom effects from scatterplots alone. 

To further investigate the effect of bottom reflectance across varying wavelengths and 

concentrations of suspended solids, an idealized lab-scale experiment was designed to model the 

interaction of reflectance from the seafloor and suspended solids. Varying levels of SSC were 

simulated with solutions of powdered milk in tap water, and reflectance was measured over low- 

and high-reflectivity backgrounds. In the low-reflectivity sequence, plywood covered in Behr 

Ultra Flat Black paint served as the control dark surface. In the high-reflectivity sequence, a 

layer of sand and gravel was added to completely cover a section of the painted plywood, 

forming the bright surface. A Pyrex baking dish above each surface served to hold water. 

Together, the plywood and dish formed the dark low-reflectivity background; the plywood, sand, 

and dish formed the bright high-reflectivity background. The spectra of both backgrounds are 

shown in Figure 21. 
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Figure 21: Spectra of the low- and high-reflectivity backgrounds. 

The Pyrex dish was filled to a depth of 1.8 centimeters with 1 liter of tap water. 

Powdered milk was added incrementally and reflectance was measured with an ASD FieldSpec 

Pro spectroradiometer. In each sequence, 30 measurements were taken at increments of 

approximately 100 mg/L between concentrations of 0-3000 mg/L to model the full range SSC 

seen in the environment. The spectrometer measured reflectance at 1nm intervals from 350-

2500nm, calibrated with a Spectralon target as the white reference. Figure 22 shows the 

experimental setup for both low- and high-reflectivity background sequences without suspended 

solids, and Figure 23 shows the experiment in progress where suspended solids obscure the high-

reflectivity background. 
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Figure 22: Experimental setup of painted plywood, Pyrex dish, and spectrometer with focused light source and pure 

water (0 mg/L SSC) over the low-reflectivity background (left) and high-reflectivity background (right). 

 

 
Figure 23: Experiment in progress with 3000 mg/L SSC over the high-reflectivity background. 

The experimental results were described with a three-layer model with total reflectance 

(Rt), background reflectance (Rb), transmission of the water layer (τ), and backscattered fraction 

from suspended solids (s) as the wavelength-dependent parameters. As shown in Figure 24, the 

experimental setup is modeled as an infinitesimally thin layer of suspended solids between two 

water layers of equal depth ½ D. This suspension is above the background which included the 

painted plywood surface, Pyrex dish, and—in the bright-background case—the sand layer. 

Specular reflectance of the surface is ignored. 
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Figure 24: Schematic of the experimental setup used to develop the theoretical model. 

A fraction 1 − 𝜏 of incoming irradiance I1 is absorbed by the upper water layer and the 

remaining fraction τ is transmitted to the suspended solids layer (Equation 8). A fraction 1 – s of 

the irradiance I2 that reaches the layer of suspended solids passes through, and the second water 

layer again transmits a fraction τ (Equation 9). The remaining fraction s of I2 is backscattered, 

passing through the upper water layer to reach the surface (Equation 11). A fraction Rb of the 

irradiance I3 that reaches the background is reflected (Equation 10), and the remainder absorbed. 

As the light again travels the reverse path through two water layers and the layer of solids to 

return to the surface, the irradiance is similarly modified. Equations 8 through 11 are used to 

derive Equation 12 for total reflectance as measured by the spectrometer. 

𝐼2 = 𝐼1𝜏 8 

𝐼3 = 𝐼2𝜏(1 − 𝑠) 9 

𝐼4 = 𝐼3𝑅𝑏𝜏 10 

𝑅𝑡 = 𝐼4𝜏(1 − 𝑠) + 𝐼2𝜏𝑠 11 

𝑅𝑡 = 𝑅𝑏𝜏4(1 − 𝑠)2 + 𝑠𝜏2 12 
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Once total reflectance has been measured at each wavelength, parameters Rb and τ can be 

determined from the boundary cases of Equation 12. Using the background alone, Rb is measured 

with no fluid or suspended solids where 𝑠 = 0 and 𝜏 = 1 (Equation 13). 

𝑅𝑡 = 𝑅𝑏 13 

Using water with no suspended solids, τ is calculated with 𝑠 = 0 according to Equation 14. 

𝑅𝑡 = 𝑅𝑏𝜏4 14 

Solving for these parameters enables the calculation of the backscattered fraction from 

suspended solids, the quantity most pertinent to understanding the effects of suspended solids in 

situ. The value of s is both wavelength and concentration dependent. Solving Equation 12 at each 

wavelength with the calculated Rb and τ yields two roots, and the fractional real root is 

designated as s. 

Results 
Background and Total Reflectance 

Spectra were assessed in the visible and near infrared (NIR) range, from 400-1400nm; 

this range captured all significant trends. Above 1400nm, absorption by water overwhelms the 

reflectance of suspended solids, and below 400nm the signal is dominated by noise. 

Figure 25 shows selected measured spectra of the low-reflectivity background. The 

background itself has a reflectance of less than 0.1 throughout the visible and NIR range. The 

addition of 1 L water to the dish lowers reflectance in the visible wavelengths by 0.05 and even 

more significantly affects the NIR range, damping reflectance to almost zero at 975nm and 

above 1150nm. The addition of even a small amount of solids yields a spectral shape 

characteristic of the milk powder solution: bright in the visible wavelengths, with NIR showing 

the signature of water absorption. The solution’s highest reflectance is at 400nm, with an even 

descent to a trough at 975nm, a smaller peak at 1075nm, and consistent minimum reflectance 

above 1150nm. The smaller peak at 1075nm ranges from 23% to 36% of the maximum 

reflectance at 400nm. Figure 26 shows that as SSC increases reflectance increases across the 

spectrum. The slight concave shape of the curves for the visible wavelengths (400-700nm) 

indicate that the suspension is reaching optical saturation, where increasing concentration has a 

smaller marginal effect on total reflectance. 
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Figure 25: Rt vs. wavelength for a range of SSC values over the low-reflectivity background. 

 
Figure 26: Rt vs. SSC for a range of wavelengths over the low-reflectivity background. 
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Figure 27 and Figure 28 shows measured spectra of the high-reflectivity background, made 

up of the black-painted shingle, a layer of sand, and a Pyrex dish. The spectrum of the 

background is dominated by the optical properties of sand: a minimum reflectance of 0.12 at 

400nm, steadily increasing reflectance in the visible wavelengths, and then generally flat around 

0.4 above 600nm. This explains the sand’s orange appearance. There is a shallow trough and rise 

in the NIR, but reflectance remains in a range of 0.4-0.5. The addition of 1.8 cm water to the dish 

does not significantly affect reflectance in the visible wavelengths, but damps reflection 

considerably above 800nm so that the spectrum begins to exhibit a similar shape in the NIR 

range to the spectral shape of the low-reflectivity background. For 0 mg/L SSC, the characteristic 

trough at 975nm is 20% of the background reflectance, the peak at 1075nm is 68% of the 

background value, and the reflectance above 1150nm evens out at less than 9% of the 

background value. The addition of a small amount of solids raises reflectance compared to the 

background in the blue and green wavelengths, but lowers reflectance in the red and NIR 

wavelengths. 

Each solution has similar reflectance at 400nm as the solution of corresponding 

concentration over the low-reflectivity background. However, for low-concentration solutions on 

the high-reflectivity background, this is not the maximum reflectance; solutions with SSC up to 

1160 mg/L exhibit an increase in reflectance from 400nm to a maximum in the red wavelengths 

(600-700nml) and maintain elevated reflectance within 0.1 of the maximum until the trough at 

975nm. This elevated reflectance at 500-900nm evidences the persistent effect of the high-

reflectivity background overpowering the signal of the suspended solids. Higher concentration 

solutions have their maximum reflectance at 400nm, like the low-reflectivity sequence, but 

decrease more shallowly through the visible range. Above 700nm, the high-concentration spectra 

exhibit decreasing reflectance in a similar shape to spectra from the control sequence. In the peak 

from 975-1150nm, additional suspended solids actually diminish reflectance from the pure water 

curve. 
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Figure 27: Rt vs. wavelength for a range of SSC values over the high-reflectivity background. 

 
Figure 28: Rt vs. SSC for a range of wavelengths over the high-reflectivity background. 
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Water Absorptivity 

Figure 29 shows the absorption spectrum of water—calculated as 1 − 𝜏 where τ is derived 

from Equation 14—normalized per centimeter and compared to literature values (Palmer and 

Williams 1974; Pope and Fry 1997). Both measured spectra show similar spectral shapes, 

although the dark background curve is offset by 0.15 and contains more noise, likely as a result 

of precision limits of the spectrometer for measurement of low-magnitude signals. The 

absorption curve for the bright background closely follows established values from 400-950nm. 

From 950-1150nm there is a difference of less than 0.1, but above 1150nm the gap rapidly 

increases, indicating that measured τ is higher than established values. Therefore calculations of 

s in the NIR range are expected to be higher than actual values. 

 
Figure 29: Calculated percent absorption per centimeter by water over the low- and high-reflectivity backgrounds 

compared to literature values. 

Scattering by Solids 

The backscattered fraction s is a property of a suspension of a particular concentration, 
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appears a reasonable assumption. Figure 30  shows calculated s values from the low-reflectivity 

sequence compared to wavelength. Here s has larger values at higher concentrations and lower 

wavelengths, with a maximum value of 0.7 for the 3030 mg/L solution at 400nm. An 

approximately linear decrease in s is observed in all solutions—steeper for those of higher 

concentrations—from 400-900nm. Above 900nm, s exhibits the same characteristic trough and 

peak pattern as the total reflectance curves, with local maxima ranging from 25% to 36% of the 

maximum values at 400nm. Figure 31 displays the roughly linear correlation of s with SSC 

throughout the visible and NIR wavelengths, becoming shallower as wavelength increases. 

 
Figure 30: s vs. wavelength for a range of SSC values over the low-reflectivity background. 
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Figure 31: s vs. SSC for a range of wavelengths over the low-reflectivity background. 

Figure 32 shows calculated s values compared to wavelength from the high-reflectivity 

sequence. Unlike in the low-reflectivity background sequence, these s curves do not exhibit the 
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However, some vestiges of the total reflectance curves remain. In the visible range, greater s 
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1150nm at low positive s values. Figure 33 shows that only the blue, green, and high NIR 
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Figure 32: s vs. wavelength for a range of SSC values over the high-reflectivity background. 

 
Figure 33: s vs. SSC for a range of wavelengths over the high-reflectivity background. 
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Discussion 
Above 1150nm, absorption of water is so strong that reflectance of every solution is less 

than that of the dry background (Figure 25 and Figure 27). It is expected that increasing suspended 

solids concentration introduces more particles near the surface of the water, thereby increasing 

the backscattered fraction of light and total reflectance, but at these wavelengths suspended 

solids do not succeed in scattering light before it is absorbed by water. Figure 26 and Figure 28 

show that reflectance at 1100nm increases slightly with increasing concentration over the low-

reflectivity background and decreases over the high-reflectivity background, and reflectance at 

1300nm is approximately constant. This is indicative of multiple scattering, where light is not 

scattered back on the incoming path but rather scattered at numerous angles to encounter other 

scattering particles. This increases path length through water, enabling additional absorption. 

Here the model’s treatment of the scattering medium as an infinitely thin layer between two 

water layers may compensate somewhat for multiple scattering effects by imposing a path 

through the absorption medium regardless of concentration. The dominance of water absorption 

at longer wavelengths may explain the success of the model to derive s at 1300nm over the high-

reflectivity background (Figure 33); regardless of suspension concentration, most light is 

absorbed before reaching the bottom of the dish. 

Figure 30 displays curves for the backscattered fraction s that mirror trends in total 

reflectance: s increasing with SSC and generally decreasing with wavelength. Whereas the low-

reflectivity sequence yields expected results for the backscattered fraction, results from the high-

reflectivity background do not correspond with the sequence’s total reflectance in a 

straightforward way. In the theoretical model s should represent a positive fraction, but the high-

reflectivity background unexpectedly yields negative s values that do not have physical 

significance. The curves in Figure 32 exhibit asymptotic behavior increasingly as SSC decreases, 

suggesting that the calculation for s in the model does not isolate the optical signal of the 

suspended solids but rather captures and misinterprets the interaction of the background and the 

suspended solids. The model is not robust when the reflectance of the background is of a similar 

magnitude to that of the suspended solids, as seen with low SSC over the high-reflectivity 

background. However when the background reflectance is significantly lower than that of the 

suspended solids—such as in the low-reflectivity background sequence (Figure 31), or at higher 
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SSC in the high-reflectivity background sequence (Figure 33)—the problem of background-solids 

interaction is not as extensive, and s more frequently exhibits meaningful positive values. 

The findings of this experiment have several implications for environmental remote 

sensing. The success of the model over the low-reflectivity background gives insight into the 

kind of environmental conditions that can be best assessed by simple single-constituent models. 

The requirement that reflectance from suspended solids exceed that of the background may be 

met where high SSC overpowers the optical signal of the seafloor: where there is a low-

reflectivity seafloor material such as mud or where bottom depth exceeds the penetration depth 

of light (Spitzer and Dirks 1987). However, it is difficult to affirm these conditions over a broad 

spatial and spectral extent given the complexities of the coastal and estuarine environment, 

which is characterized by the presence of multiple water constituents, non-uniform seafloor 

composition, and variation in water depth. 

With these limitations in mind, it is informative to examine a sample case of the model 

applied to remote sensing data. Pixels were selected from HICO image 8054 at several RMP 

sampling points with known in situ SSC values. In situ SSC ranged from 5 – 23 mg/L, with 

values of 7mg/L, 16mg/L, and 23mg/L at stations 21, 31, and 36, respectively. Water depth at 

these stations is 17.4m, 13.7m, and 7.9m. Figure 34 shows remote sensing reflectance spectra 

compared to measured reflectance of the lowest SSC suspensions over the low- and high-

reflectivity backgrounds. The spectra cover the range of the 87 HICO bands, spanning the visible 

and low NIR wavelengths from 400 – 900nm. Because SSC in the image is an order of 

magnitude smaller than the lowest concentrations in the lab experiment, reflectance is displayed 

on a logarithmic scale. 
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Figure 34: Rrs spectra for selected SSC sampling stations in HICO image 8054, compared to measured reflectance of the 

lowest SSC suspensions over the low- and high-reflectivity backgrounds. 

Remote sensing reflectance in the image does not align completely with the spectral 

shape of either of the lowest concentration suspensions. In the blue and green wavelengths Rrs 

displays a similar increase to the spectrum from the high-reflectivity sequence, both displaying a 

minimum at 400nm that is 26% to 37% of the maximum reflectance around 600nm. Whereas the 

image spectra then decline shallowly from 600-700nm and reach a steep trough at 750nm, the 

spectrum from the high-reflectivity sequence remains level and the spectrum from the low-

reflectivity sequence shallowly decreases until a trough at 950nm. The unique spectral shape of 

the image pixels may reflect some combination of the two background types, but also surely 

results from the optical influence of other water constituents and environmental factors. 

Wavelength (nm)

400 500 600 700 800 900 1000 1100 1200 1300 1400

R
ef

le
ct

an
ce

10 -4

10 -3

10 -2

10 -1

10 0
Measured Reflectance

station 21, 7mg/L

station 31, 16mg/L

station 36, 23mg/L

110 mg/L, bright background

50 mg/L, dark background

 



   Press 50 
 
 

 
Figure 35: s curves for selected SSC sampling stations in HICO image 8054 calculated with parameters of the low-

reflectivity background, compared to s for the lowest SSC suspension over the low-reflectivity background. 

 
Figure 36: s curves for selected SSC sampling stations in HICO image 8054 calculated with parameters of the high-

reflectivity background, compared to s for the lowest SSC suspension over the high-reflectivity background. 
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Figure 35 and Figure 36 display the backscattered fraction s for the HICO pixel spectra 

calculated with parameters (Rb and τ) from the low- and high-reflectivity sequences, 

respectively. All calculated s values are negative, likely because Rb measured in the lab 

experiment exceeded the remotely measured total reflectance of low-SSC conditions. Although 

the low-reflectivity s curves from the HICO pixels do not at all align with the shape of the s 

curves calculated from the experimental results, like the experimental low-reflectivity sequence, 

they mirror the shape of their total reflectance spectra (Figure 35). As expected, pixels at 

locations of higher SSC exhibit greater backscattering throughout the visible wavelengths. 

Despite the fact that negative s values do not have physical significance, the consistent shape 

between total reflectance and s curves validates that this model could be appropriate for 

assessing environments with a low-reflectivity background given the proper tuning. The high-

reflectivity s curves extend the asymptotic shape of the low SSC experimental curves (Figure 36), 

confirming that the model is not robust under conditions where background reflectance greatly 

exceeds total reflectance. 

Conclusion 
These results highlight the importance of accounting for bottom reflectance, as the 

interaction between reflectance of suspended solids and background is dependent upon the 

optical properties of each. The San Francisco Bay seafloor has varied composition including 

sand, bedrock, and mud and the sand used in this experiment is not representative (Barnard and 

Kvitek 2010); likewise, suspended solids in the Bay are unlikely to resemble milk powder. 

Rather than represent the environment, this experiment models the type of optical behavior 

expected with presence of suspended solids over two generalized seafloor conditions. Although 

the presence of additional water constituents and environmental factors as well as a smaller 

magnitude of SSC prohibit direct comparison of results from the remote sensing data with those 

from the experimental sequences, the fact that the HICO pixels’ s curves calculated with low-

reflectivity parameters display a similar shape to their remote sensing reflectance spectra and 

increase in value with increasing SSC indicates that the model does capture the signal of 

suspended solids, even if it is unable to isolate their optical effect from that of a bright 

background. 
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Regarding the work in Section I on various algorithms for remote measurement of 

suspended solids in the San Francisco Bay, the optical model in this section illuminates two 

possible explanations for the linear relationship found between the 634nm HICO band and SSC. 

It is clear that bottom reflectance is not relevant for the SSC in situ sampling points used to 

develop the model. The shallowest sampling point has a depth of 7.9m, and the penetration 

depth—defined as the layer in which 90% of the radiance is absorbed—of red light in case II 

water is less than 5m (Gordon and McCluney 1975). Thus the contribution of seafloor 

reflectance at this wavelength is minimal in these locations and water constituents are the 

dominant contributors to backscatter. At 634nm the minerals composing suspended solids have 

approximately twice the scattering capacity as chlorophyll, suggesting that the model is indeed 

capturing suspended solids in deep water (Curtis D. Mobley 1994). However, the model is in this 

case unlikely to be accurate where seafloor depth is less than the penetration depth of water, 

complicating the assessment of SSC in shallower waters. 

 
Figure 37: Bathymetry of the San Francisco Bay extracted from a regional DEM from the NOAA National Geophysical 

Data Center 
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The bathymetry in Figure 37 shows the full extent of the shallow area with the potential 

for bottom effects at 634nm. If the seafloor of  here is composed of low-reflectivity materials 

such as mud, suspended solids will persist as the dominant contributor to scattering, and remote 

sensing reflectance or the backscattered fraction may be used as linear predictors of SSC (C. D. 

Mobley 2001; Spitzer and Dirks 1987). This behavior is demonstrated where Rt and s are plotted 

against SSC over a low-reflectivity background in Figure 26 and Figure 31. On the other hand, if 

the seafloor is composed of high-reflectivity materials such as sand or vegetation, bottom 

reflectance may be a significant contributor to measured Rrs, interacting with reflectance from 

suspended solids in a complicated, wavelength-dependent manner. This non-linear behavior is 

demonstrated where Rt and s are plotted against SSC over a high-reflectivity background in 

Figure 28and Figure 33. 

Given the potential for vastly varying environmental conditions across the Bay, spatial 

extension of a linear model for SSC must therefore be taken with a grain of salt. This proves a 

significant limitation for remote monitoring as shallow bathymetry often fosters low circulation 

that supports retention of suspended solids, making shallow areas the most critical to monitor 

(Walters, Cheng, and Conomos 1985).   
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Future Work 
This project is among the first to use data from contemporary satellite sensors to assess 

SSC in coastal waters. In the five years that HICO was operational, several projects were 

undertaken to retrieve SSC but few papers been published. For the even younger Landsat 8 there 

is perhaps one publication at this time. While this project succeeds in identifying potential 

locations of high SSC in the San Francisco Bay estuary and highlighting environmental 

conditions that could produce these results, it encounters the limitations of both statistical and 

optical methods of modeling optically complex waters. 

Beyond the general linear modeling techniques applied here, principal component 

analysis (PCA) is often used to design models for remote sensing applications. This technique 

can better capture essential information from remote sensing spectra when spectral shape 

depends on numerous correlated factors. PCA can be used to design SSC algorithms that 

characterize spectral shapes of certain combinations of water constituents and environmental 

conditions, and may be an appropriate method of analysis for Landsat 8 and HICO data 

(Sathyendranath, Prieur, and Morel 1989). Partial least squares regression (PLSR) is a newer 

statistical method being tested for constituent retrieval in optically complex waters by Fichot et 

al. (2014) and Ryan & Ali (2014). PLSR combines features from PCA and multiple linear 

regression as well as optical information, and can perhaps be used to incorporate data from 

multiple sensors and across time series in algorithm development (Abdi 2010). By integrating 

hyperspectral data with Landsat 8 imagery and additional in situ measurement of optical 

properties, spectral profiles of the estuary waters under certain conditions may be established. 

The product would be a spectral library that can be searched using data from any sensor to 

extract turbidity conditions. Research in these methods in ongoing and much of the 

groundbreaking work is still unpublished. 

Further development of this project and other novel work in coastal remote sensing 

promise many exciting applications. A more robust algorithm for SSC retrieval in the San 

Francisco Bay not only supports thorough and cost-effective water quality monitoring, but also 

enables analysis of SSC following episodic events such as storms, floods, and algal blooms 

whose impact on biogeochemical cycling is not well understood. Consistent monitoring is 

essential to assess temporal trends in SSC and increase understanding of the effects of 

anthropogenic activity on distribution and transport of suspended solids in the estuary. As work 
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in this field continues within the next few years, remote SSC monitoring may become a valuable 

tool not only for scientific investigation, but also for water resource management in the Bay area.   
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Appendices 
 

Appendix 1: Calculated coefficients for trace element models 

Element 
WCT WCD 

m b m b 
Ag - - - - 
As 0.40562 0.48647 0.45098 0.56984 
Cd 0.51661 0.03440 0.34158 0.05617 
Co 6.41650 -3.33550 9.26500 -2.30970 
Cr - - - - 
Cu 0.42029 0.02746 1.85720 1.13560 
Fe 0.00194 1.62660 - - 
Hg 784.7100 -4.68050 - - 
Mn 0.18828 -2.85880 - - 
Ni 0.22095 0.11029 0.31271 -0.00334 
Pb 3.42600 -1.73200 45.74800 -2.12330 
Se - - - - 
Zn 6.78320 -15.31500 0.90826 -0.87517 

 

Appendix 2: ANOVA test of geographic region and depth category variables 
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Descriptive Statistics: log_SSC  
 
Variable  Combined        N  N⃰    Mean  SE Mean   StDev  Minimum      Q1  Median      Q3 
log_SSC   Amoderate      15   0   3.369    0.140   0.543    2.639   3.045   3.091   3.807 
          Ashallow        5   0   2.827    0.255   0.570    2.079   2.322   2.773   3.360 
          Bdeep           2   0   2.553    0.155   0.219    2.398       -   2.553       - 
          Bmoderate      20   0  3.0439   0.0891  0.3984   1.7918  2.9167  3.1133  3.2864 
          Cdeep          20   0  2.5931   0.0736  0.3290   2.0794  2.3026  2.6391  2.7565 
          Cmoderate      10   0   2.635    0.111   0.352    2.197   2.303   2.602   2.841 
          Ddeep          10   0  2.2395   0.0847  0.2679   1.7918  2.1344  2.1972  2.4397 
          Dmoderate       5   0  2.2247   0.0908  0.2030   1.9459  2.0127  2.3026  2.3979 
          Dvery_deep      8   0   1.982    0.174   0.492    1.386   1.609   1.869   2.413 
          Edeep          21   0   2.912    0.132   0.603    1.792   2.441   2.996   3.331 
          Emoderate      24   0   3.237    0.112   0.548    2.565   2.890   3.111   3.441 
          Fdeep           4   0   3.294    0.299   0.599    2.944   2.957   3.020   3.903 
          Fmoderate       9   0   3.604    0.225   0.674    2.996   3.107   3.296   4.203 
          Fshallow        4   0   3.494    0.126   0.251    3.258   3.302   3.434   3.746 
          Fvery_shallow   4   1   4.283    0.345   0.689    3.401   3.574   4.388   4.887 
 
Variable  Combined       Maximum 
log_SSC   Amoderate        4.277 
          Ashallow         3.584 
          Bdeep            2.708 
          Bmoderate       3.8067 
          Cdeep           3.2189 
          Cmoderate        3.332 
          Ddeep           2.7081 
          Dmoderate       2.3979 
          Dvery_deep       2.833 
          Edeep            4.205 
          Emoderate        5.176 
          Fdeep            4.190 
          Fmoderate        4.796 
          Fshallow         3.850 
          Fvery_shallow    4.956 
 

 
Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
Combined        N    Mean  Grouping 
Fvery_shallow   4   4.283  A 
Fmoderate       9   3.604  A B 
Fshallow        4   3.494  A B C D E F 
Amoderate      15   3.369  A B C 
Fdeep           4   3.294  A B C D E F G H 
Emoderate      24   3.237    B C   E 
Bmoderate      20  3.0439    B C D E F G H 
Edeep          21   2.912      C D E F G H 
Ashallow        5   2.827    B C D E F G H I 
Cmoderate      10   2.635          E F G H I 
Cdeep          20  2.5931        D   F   H I 
Bdeep           2   2.553    B C D E F G H I 
Ddeep          10  2.2395                  I 
Dmoderate       5  2.2247              G H I 
Dvery_deep      8   1.982                  I 
 
Means that do not share a letter are significantly different. 
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Appendix 3: General Linear Model for SSC 

General Linear Model: log_SSC versus B5, B6, B10, abs(day_dif), 
abs(hour_dif, 151,  
Method 
 
Factor coding  (-1, 0, +1) 
Rows unused    1 
 
 
Factor Information 
 
Factor          Type   Levels  Values 
Depth Category  Fixed       5  deep, moderate, shallow, very_deep, very_shallow 
Date            Fixed       5  1, 2, 3, 4, 5 
 
 
Analysis of Variance 
 
Source             DF  Adj SS  Adj MS  F-Value  P-Value 
  B5                1   4.120  4.1195    30.18    0.000 
  B6                1   3.099  3.0995    22.70    0.000 
  B10                1   2.841  2.8411    20.81    0.000 
  abs(day_dif)      1   3.309  3.3089    24.24    0.000 
  abs(hour_dif)     1   3.619  3.6186    26.51    0.000 
  151               1   3.050  3.0503    22.34    0.000 
  Depth Category    4   3.579  0.8946     6.55    0.000 
  Date              4   7.741  1.9352    14.18    0.000 
Error             146  19.931  0.1365 
Total             160  71.212 
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Model Summary 
 
       S    R-sq  R-sq(adj)  R-sq(pred) 
0.369476  72.01%     69.33%           - 
 
 
Coefficients 
 
Term               Coef  SE Coef  T-Value  P-Value    VIF 
Constant         -37.92     8.35    -4.54    0.000 
B5                50.30     9.16     5.49    0.000  33.32 
B6                -54.2     11.4    -4.76    0.000  34.59 
B10               0.1330   0.0292     4.56    0.000  11.97 
abs(day_dif)      0.624    0.127     4.92    0.000  43.52 
abs(hour_dif)    0.1320   0.0256     5.15    0.000   1.91 
151               1.802    0.381     4.73    0.000   1.06 
Depth Category 
  deep          -0.0862   0.0721    -1.20    0.234   1.66 
  moderate       0.0434   0.0638     0.68    0.498   1.44 
  shallow        -0.413    0.123    -3.35    0.001   1.42 
  very_deep      -0.181    0.139    -1.30    0.196   1.69 
Date 
  1              -0.729    0.129    -5.63    0.000   8.09 
  2               1.241    0.265     4.68    0.000  34.46 
  3               1.713    0.262     6.55    0.000  30.01 
  4              -1.091    0.206    -5.29    0.000  19.96 
 
 
Regression Equation 
 
Depth Category  Date 
deep            1     log_SSC = -38.74 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
deep            2     log_SSC = -36.77 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
deep            3     log_SSC = -36.30 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
deep            4     log_SSC = -39.10 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
deep            5     log_SSC = -39.15 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
moderate        1     log_SSC = -38.61 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
moderate        2     log_SSC = -36.64 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
moderate        3     log_SSC = -36.17 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
moderate        4     log_SSC = -38.97 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
moderate        5     log_SSC = -39.02 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
shallow         1     log_SSC = -39.07 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
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shallow         2     log_SSC = -37.10 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
shallow         3     log_SSC = -36.62 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
shallow         4     log_SSC = -39.43 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
shallow         5     log_SSC = -39.47 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_deep       1     log_SSC = -38.83 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_deep       2     log_SSC = -36.86 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_deep       3     log_SSC = -36.39 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_deep       4     log_SSC = -39.20 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_deep       5     log_SSC = -39.24 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_shallow    1     log_SSC = -38.02 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_shallow    2     log_SSC = -36.05 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_shallow    3     log_SSC = -35.58 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_shallow    4     log_SSC = -38.38 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
very_shallow    5     log_SSC = -38.42 + 50.30 B5 - 54.2 B6 + 0.1330 B10 + 0.624 abs(day_dif) 
                                + 0.1320 abs(hour_dif) + 1.802 151 
 
 
Fits and Diagnostics for Unusual Observations 
Obs  log_SSC    Fit   Resid  Std Resid 
 24    1.946  2.744  -0.798      -2.21  R 
 30    4.094  3.792   0.302       0.96     X 
 35    2.565  2.182   0.383       1.28     X 
 59    1.792  2.727  -0.935      -2.61  R 
 70    2.079  2.846  -0.766      -2.30  R 
 96    3.401  3.926  -0.524      -1.67     X 
113    2.833  2.137   0.696       2.07  R 
126    4.644  3.668   0.977       2.73  R 
127    4.796  3.835   0.961       2.69  R 
128    4.682  4.511   0.171       0.55     X 
130    2.565  3.082  -0.517      -1.76     X 
145    1.386  1.219   0.167       0.80     X 
146    1.609  2.376  -0.766      -2.28  R 
151    5.176  5.176  -0.000          -     X 
155    4.205  3.389   0.816       2.28  R 
160    4.956  4.904   0.052       0.17     X 
162    3.584  3.573   0.011       0.03     X 
 
R  Large residual 
X  Unusual X 
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