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Satellite-based Permafrost Mapping and Climate Trend Analysis in northern North America 
Daniel Monteagudo 

Abstract 

 The role of permafrost in the carbon cycle remains a major unknown in the study of 

climate change. Permafrost stores carbon as frozen organic matter within soil, but as rising 

global temperatures cause it to thaw, the stored carbon is able to decay and escape into the 

atmosphere. These thaw-based emissions may contribute to further warming and thus further 

thawing, in a positive feedback loop. In order to understand how severely this may impact future 

warming scenarios, scientists need to know where permafrost is, how much of it is melting, and 

how fast. This study contributes to this effort by focusing on large-scale mapping of permafrost 

in North America over the past 20 years. However, measuring permafrost with traditional 

methods (e.g. bore-holing) is difficult and expensive, meaning most permafrost datasets suffer 

from coarse spatial and/or temporal resolution. In this study we design a new approach to work 

around these measurement limitations by utilizing satellite imagery to provide nearly continuous 

data. We use a classification algorithm, trained using a 1997 base-map of known permafrost 

extent, to correlate the presence and extent of permafrost with three key MODIS-derived climatic 

variables —land surface temperature (LST), vegetation (NDVI), and snow (NDSI)— and two 

temporally constant variables— elevation (GTOPO30), and latitude. The algorithm succeeded in 

reproducing the base-map with an overall accuracy of 85% and kappa value of 0.75. With a 

three-year moving buffer, we apply this model to the last 20 years of MODIS data to produce 

yearly maps of permafrost extent over North America. We then analyze the spatial and temporal 

trends of the raw data, as well as permafrost, by using unsupervised clustering to identify regions 

with similar behavior over the 20-year period. We find that zones with similar climates do not 

necessarily have similar trends, highlighting the highly localized nature of permafrost’s response 

to changing climates. Notably, we also observe a consistent decline in inferred regions of 

“continuous” permafrost, partially mirrored by an increase in “discontinuous” permafrost over 

the same time period, and we identify other “flashpoints” of permafrost freezing and thawing. 



 of 3 29

Contents 
1. Introduction 4 

2. Data 5 

2.1. Data Handling and Sources 5 

2.1.1. MODIS-derived Datasets 5 

2.1.2. Permafrost Dataset 8 

2.2. Study Area and Climatology 9 

3. Methodology 12 

3.1. Designing the Permafrost Prediction Model 12 

3.1.1. Threshold Classification 12 

3.1.2. Supervised Classification 12 

3.1.3. Validation and Model Improvement 15 

3.2.  Data Collection and Analysis 18 

3.2.1. Clustering to Define Regions of Analysis 18 

4. Results 20 

4.1. Raw Data Trends By Region 21 

4.2. Permafrost Trends By Region 22 

5. Discussion 23 

5.1. Efficacy of Approach 23 

5.2. Interpretations and Implications of Trends 24 

6. Summary 26 

7. Acknowledgements 27 

8. References 27 

9. Appendices 29 

9.1. Appendix A: Image Time-Series: Permafrost Extent 29



 of 4 29

1. Introduction 

Permafrost is defined as ground that has been frozen for at least two consecutive years, for 

natural climatic reasons (Van Everdingen, 1998). Permafrost regions underly 22% of exposed 

land in the Northern Hemisphere, and are classified by extent into the categories: 

“continuous” (100-90%), “discontinuous” (90-50%), “sporadic” (50-10%), and 

“isolated” (<10%). In total, this means permafrost actually underlies between 17 and 12 million 

square kilometers. Trapped within it is around 1500 gigatons of carbon (Zimov, 2006), making 

permafrost research a key area of study as current warming trends threaten to thaw permafrost 

and release this carbon into the atmosphere (Biskaborn et al, 2019). With the threat of new thaw-

based carbon emissions (Schuur et al., 2015), the motivation for this study comes from the need 

to know how much permafrost will thaw, where, and how fast, in order to help determine how 

much greenhouse gas emissions we may be expected to deal with as a result. 

 The problem is that permafrost is difficult to study, since it is underground. This makes 

direct data collection, including methods such as bore holing or ice coring, expensive and 

difficult. As a result, permafrost datasets are often very limited in their temporal and spatial 

resolution. This makes it hard to perform any long term or scalable analyses on the potentially 

changing state of permafrost, a hindrance if we are to develop the insight we need to understand 

how permafrost will respond to ongoing and future climate change. However, other variables 

related to permafrost —climatological ones, for instance— are much easier to measure, and can 

be used to study permafrost indirectly (Obu et al., 2019). From satellites, one can obtain frequent 

and spatially-continuous measurements that effectively eliminate the need for extrapolation (Ran 

et al., 2015).  

 The first part of this project focuses on developing a methodology for predicting the 

presence of permafrost using such satellite measurements. In our study we focus on three key 

temporally changing variables —land surface temperature, vegetation, and snow cover— and 

two unchaining variables— elevation and latitude. 

 The second part of this project applies this methodology to the full 20 years of available 

satellite data, creating maps of inferred permafrost extent for each year. We then analyze the 

trends in the raw data, as well as in the permafrost maps we produced, by region. These regions 

were defined using clustering, to identify areas with similar characteristics and trends. 
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2. Data 
2.1. Data Handling and Sources 

This study uses Google Earth Engine (GEE) as its platform for all data manipulation, analysis, 

and collection processes. GEE was chosen both for its ability to process large amounts of data 

(achieved by outsourcing processing tasks to numerous Google server computers in parallel), and 

for the extensive datasets that Google has made readily available for import. This allowed us to 

work with the most spatially and temporally expansive dataset utilized in the field to date, to our 

knowledge. Our study makes use of five satellite derived datasets, and one non-satellite derived 

permafrost dataset. We aim to use the descriptive local information given by satellite data, which 

refreshes frequently and is available almost everywhere, to act as indicators of the presence of 

permafrost, which we verify using the much less-easily obtained permafrost dataset. 

2.1.1. MODIS-derived Datasets 

For our study we used data collected by the Moderate Resolution Imaging Spectroradiometer 

(MODIS). Although we could have chosen newer, higher resolution imagery, or made good use 

of data from satellites like GRACE , we decided upon MODIS because of its relatively long 1

history in the remote sensing world— with data available from as early as the turn of the century. 

Furthermore, the coarse spatial resolution of MODIS allowed for faster processing, which was 

useful in designing and adjusting this study’s proof-of-concept methodology. 

 Land Surface Temperature (LST) was the single most important piece of information 

used for our permafrost modeling and predictions, due to the direct physical link between 

ambient temperature and the freeze-thaw state of soil (Li et al., 2019). For LST, the 

“MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day Global 1km” collection 

was used (Fig. 1). 

 Researchers have successfully used groundwater content to detect changes in the freeze-thaw 1

state of permafrost. Furthermore, soil oxygenation (controlled primarily by wetness) plays a key 
role in determining whether microbes release CO2 or methane as they digest the organic matter 
in thawed permafrost.
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Fig. 1) Twenty-year mean LST, with hillshade overlay

Fig. 2) Twenty-year mean NDSI, with hillshade overlay
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Fig. 3) Twenty-year mean NDVI, with hillshade overlay
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Fig. 4) Digital Elevation Model, with hillshade overlay
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 Despite the near causal relationship between LST and permafrost, there is not perfect 

correspondence between the two. Using other variables in addition to LST helped our data paint 

a more complete picture of the local physics. Snow cover, for example, changes the albedo of 

soil drastically. Acting as an insulator, snow can either keep soil warmer or colder than it would 

otherwise get, depending on the ratio of incoming solar radiation to outgoing thermal radiation 

(Zhang, 2005). For snow cover data, we used the Normalized Difference Snow Index (NDSI) 

obtained from the “MOD10A1.006 Terra Snow Cover Daily Global 500m” collection (Fig. 2). 

 The other key variable in our analysis was vegetation. Plants can alter soil 

thermodynamics in many ways, such as by providing shade or regulating water content. Based 

on the fact that different plants require different depths of available topsoil for their roots, 

incorporating vegetation data was thought to provide additional information about below-surface 

properties of the soil— which are still very relevant to the existence of permafrost, but which are 

invisible in the LST and NDSI signatures. For vegetation data, we used the Normalized 

Difference Vegetation Index (NDVI) taken from the “MID13Q1.006 Terra Vegetation Indices 16-

Day Global 250m” collection (Fig. 3).  

 We also utilized an elevation dataset retrieved from the “GTOPO30: Global 30 Arc-

Second Elevation” dataset (Fig. 4). Elevation was thought to play a role in terms of its effects on 

the other variables (for example, an inverse relationship with temperature), but also potentially in 

its own right as a determinant in ground water flow, and insolation (Kenner et al., 2019). 

 For our study we also applied a water mask (not pictured) to every image and collection 

before analysis. We used the the “MOD44W.006 Terra Land Water Mask Derived from MODIS 

and SRTM Yearly Global 250m” product for this purpose. 

2.1.2. Permafrost Dataset 

 Much of the analysis is also based upon a permafrost map downloaded from the 

International Permafrost Association’s website, created by Brown et al. in 1997. This map is the 

most recently available of its kind, and was created manually based off of the synthesis of many 

sources of in-situ measurements and interpolated climatic data. Originally subdivided further, 

this study focuses on just the broader category of “permafrost extent,” which ascribes regions 
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with a percentage of permafrost cover, rather than precise mapping (Fig. 5). The thresholds are as 

follows: “continuous” (100-90% permafrost), “discontinuous” (90-50%), “sporadic” (50-10%), 

“isolated” (<10%), “land” (0%), and “glacier” (which we omit from our analyses). 

2.2. Study Area and Climatology 

The study area for this project encompasses the majority of the northern region of mainland 

North America. A region of interest was defined, bounded to the south by the line passing 

roughly between Los Angeles and Philadelphia, around 37ºN, and extending northwards beyond 

the Northwestern Passages until reaching the Labrador Sea, Beaufort Sea, or Baffin Bay. 

 In order to better understand the climatology of the area, preliminary investigations were 

performed, which included the mapping and visual examination of the four main variables of 

interest (LST, NDVI, NDSI, elevation). Twenty-year means were calculated and plotted against 

Land 
Isolated 
Sporadic 
Discontinuous 
Continuous 
Glacier

Fig. 5) Permafrost Extent Zones, with hillshade overlay

(data from 
Brown, 1997)
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each other in order to understand the correlations between variables (Fig 6). In general, it was 

found that LST and NDVI correlated positively with elevation, while NDSI correlated with it 

negatively (a-c). LST, NDVI, and NDSI were all tightly correlated with each other as well, with 

NDSI correlating negatively again with the other two (d-f). This confirmed physical expectations 

that vegetation should grow better in warm temperatures, and that snow cover should increase 

with lower temperatures. Twenty-year standard deviations were also mapped and plotted (Fig. 7) 

in an attempt to understand the seasonal cycles of the variables. All three variables saw higher 

a] Elevation (m) by Mean LST (K) c] Elevation (m) by Mean NDSIb] Elevation (m) by Mean NDVI

f] Mean NDSI by Mean NDVIe] Mean NDSI by Mean LST (K)d] Mean NDVI by Mean LST (K)

Fig. 6) Correlation of Means — Scatterplots show first variable in each pairing on the y-axis, the second on the x-axis.

d] Standard Deviation NDVI by Std Dev. LST (K) e] Standard Deviation NDSI by Std Dev. LST (K) f] Standard Deviation NDVI by Std Dev. NDSI

a] Elevation (m) by Standard Deviation LST (K) c] Elevation (m) by Standard Deviation NDSIb] Elevation (m) by Standard Deviation NDVI

Fig. 7) Correlation of Standard Deviations — See Fig. 6 for description. Variable pairings plotted per pixel.
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variance at lower altitudes (a-c). The standard deviation of LST correlated positively with that of 

both NDVI and NDSI, suggesting that changes in these variables happen in parallel (d,f). 

 Other correlations were plotted as well (Fig 8), with some possible explanations. Notably, 

it was found that mean LST & NDVI correlated negatively with the standard deviation of NDSI 

(e,f). It may be said then that at high temperatures, there is little variance in snow cover because 

there is rarely snow, and as temperatures decrease, snow becomes more and more frequent, 

increasing the standard deviation. However, if this were the case, we would expect to see the 

standard deviation fall again at very low temperatures, when snow cover becomes almost 

constant. The signal is repeated with NDVI because it is directly correlated with LST. A similar 

explanation may be attributable to [a] and [b], where mean NDVI falls and mean NDSI rises 

with increasing standard deviation of LST. This may be due to the fact that the LST seasonal 

cycle increases with latitude. As latitude increases, it gets colder, explaining the corresponding 

changes in NDVI & NDSI. However, these two plots (a,b) appear to be parabolic, which 

complicates this theory. This climatological analysis helped inform later decisions in the study. 

h] Standard Deviation LST (K) by Latitudeg] Mean LST (K) by Latitude

c] Mean NDSI by Standard Deviation NDVIb] Mean NDSI by Standard Deviation LST (K)a] Mean NDVI by Standard Deviation LST (K)

d] Standard Deviation NDVI by Mean LST (K) f] Standard Deviation NDSI by Mean NDVIe] Standard Deviation NDSI by Mean LST (K)

Fig. 8) Other Correlations 
See Fig. 6 and 7 for description. 
Means & Standard Deviations 
calculated using all available 
data (i.e. each pixel depicts 20-
year mean for its location).
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3. Methodology 

3.1. Designing the Permafrost Prediction Model 

The first part of the study was aimed at developing a model to predict the presence and extent of 

permafrost based on the variables detailed above. This work was done based off of the 1997 

reference map of permafrost by Brown et al., which we simplified from its original format by 

aggregating regions based solely upon permafrost extent, as defined and depicted above (Fig. 5). 

3.1.1. Threshold Classification 

First, the potential of the study variables to predict permafrost was tested using simple threshold 

classifications. Characteristic thresholds —delineating between classes of permafrost extent 

based on the value of a single variable— were determined and chosen based on scatter plots (Fig. 

9) obtained by overlaying 2001-2004 satellite data over the reference map of permafrost extent. 

Predictive maps of permafrost extent were made using each variable by itself, with four 

thresholds defined for each one, resulting in five classes (Fig. 10). 

 Alone, both elevation and latitude thresholds were highly ineffective as permafrost 

predictors. LST, NDVI, and NDSI, on the other hand, could replicate some of the correct spatial 

distribution of permafrost. Of these, LST performed the best (Fig. 11).  

3.1.2. Supervised Classification 

The next method attempted to combine the input of multiple variables at a time, with the hope 

that this would provide greater nuance and result in better classification overall. In order to this, 

we used supervised classification techniques to train an algorithm to recognize the signature of 

permafrost within the non-permafrost data that it was given. We trained this classifier against the 

1997 reference map using the euclidean minimum-distance method, again using climate data 

from 2001-2004. When LST, NDVI, and LST were combined in this way, the accuracy of the 

model improved. With latitude included, the accuracy increased further. At this stage, including 
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elevation did not improve the results. As such, the map and confusion matrix of the LST, NDVI, 

NDSI, and Latitude trial are included, along with those of the one-variable threshold trials from 

the previous section (Figs. 10, 11). 

 These preliminary results indicated that LST was the main indicator of permafrost extent, 

but that the other variables could still provide extra information that helped the model. It was 

initially unclear how valuable the contributions of NDVI and NDSI would be in addition to LST 

data. Given the high correlations explored above in the data section, they were expected to be 

fairly redundant. However, NDVI and NDSI actually proved to be complementary to LST, 

despite each performing worse individually. This suggested that the two variables might capture 

additional aspects of the physics involved in permafrost formation. The physical reason for 

latitude’s effectiveness in the model was less clear, since its ‘signature’ should have been picked 

up by the other variables (i.e. higher latitudes = lower insolation = lower LST & NDVI, and 

higher NDSI). Elevation should have operated similarly, acting as more of a forcing agent on the 

other variables, and the reason for its detrimental impact on the model’s accuracy was unclear. 

Fig. 10) Predictive Permafrost Map — Initial Test Trails

c] d]

b]a]
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3.1.3. Validation and Model Improvement 

3.1.3.1. Internal Model Improvements 

 After testing the viability of both methods of classification, the supervised classification 

model’s prediction capabilities appeared to be more desirable than those of the threshold-based 

model. The next stage of the project was therefore to 1) improve the internal workings of the 

supervised classification model and 2) attempt to understand the physical nature of the key 

variables’ influences on it. The first step involved applying a more extensive water mask than the 

one used in the original reference map. Section 2.1.1. of this report describes this mask, which 

was applied consistently for the remainder of the study. This was particularly important for 

reducing error caused by the Great Lakes, which were left unmasked by the original reference 

map (included in the “land” class since they lay outside the permafrost zone), and were therefore 

consistently misclassified by the model. The original classification trials described above were 

redone with the new mask, and accuracy increased across the board. 

Fig. 11) Confusion Matrices 
L = Land, I = Isolated, S = Sporadic, D = Discontinuous, C = Continuous. 
Sampled pixels are placed in columns based on actual class, and rows based on predicted 
class. Therefore any pixels outside of the main diagonal have been misclassified.
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 The next thing done was to chose the best classification algorithm for the supervised 

model. The initial trials had been non-normalized, euclidian minimum distance classifications . 2

As such, we normalized the datasets in order to un-skew the calculations of euclidian distance. 

This was done by multiplying LST values by a factor of 0.02, latitude by 0.0028, and elevation 

by 0.00033, in order to reduce their ranges to that of the relevant values of NDVI and NDSI. In 

other words, all the data was now scaled roughly to values between 0 and 1, in order to prevent 

high-value or high-range inputs (such as LST, typically ranging from 230-320ºK) from 

dominating relatively less-dynamic inputs (such as NDVI, ranging between just -1 and 1) in the 

euclidian space. This dramatically improved the results. In particular, normalizing the data turned 

elevation into a useful variable, such that most of the classification performed from then on was 

improved by the inclusion of both latitude and elevation (which we will call “spatial” variables, 

as opposed to the “measured” variables). Next, various trials were performed using the 

mahalanobis maximum likelihood classification . This method improved accuracy and kappa 3

values significantly compared to euclidian minimum distance, but resulted in very visible 

misclassification of various permafrost zones as (perennially unfrozen) land. Despite this flaw, 

mahalanobis was chosen as the preferred classification scheme for the remainder of the study, 

due to its much more robust method of normalization. Spectral angle classification was also 

tested, but discarded as an option because its results were not useful. With these internal 

improvements —a new water mask, normalized datasets, and switching from euclidean to 

mahalanobis classification (which also allowed for effective incorporation of elevation data)—  

the model’s accuracy was brought up to 0.848, with a kappa value of 0.749. 

3.1.3.2. Physical Model Improvements 

 At this stage, the focus turned to selecting the most appropriate inputs for the model that 

would best capture the physics of permafrost formation and thaw. To this end, experimentation 

 Euclidean Minimum Distance classification plots data points with n input bands in an n-2

dimensional space, and assigns new points to the nearest cluster in that space.

 Mahalanobis classification uses a similar n-dimensional space, but includes built in 3

normalization. In addition, it considers variances and co-variances of variables within clusters, to 
determine the percentage likelihood that a new point belongs to a cluster or not.
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began with the datasets that aimed to utilize their seasonality more fully. The first such strategy 

was to convert the 8-day composite LST data into “thawing degree days” (TDD). This was done 

by taking the difference above zero degrees Celsius of every pixel in every LST image, and 

multiplying by 8 to convert to degree days. All negative values (from days where temperature 

was below zero) were set to 0. Then, for every pixel in the same location, these degree days were 

summed over three years (2001-2004, to be consistent with the date range of previous trials) to 

find the total number of thawing degree days— a measure of how much heat energy may have 

been absorbed over that span of time. Classification was then performed using this variable 

(TDD) in lieu of LST. When this was done alongside the other measured and spatial variables 

(i.e. with NDVI, NDSI, latitude, and elevation), TDD performed (marginally) better than LST, 

raising overall accuracy from 0.848 to 0.852, and kappa from 0.749 to 0.754. 

 The next strategy attempted to use standard deviation of LST rather than the mean, in 

order to make a classification based on seasonality instead of temperature alone. This was done 

over the same three year period as above, in conjunction with the same measured and spatial 

variables. The resulting overall accuracy and kappa values were nearly as good as the 

corresponding TDD trials: 0.852 and 0.753, respectively. 

 The third strategy was to run similar classifications as those attempted above, but using 

only data from either the winter months DJF, or the summer months, JJA. This was expected to 

reduce the noise that an entire year’s worth of data produces, and hone in on just the changes that 

mattered most (warming extent in summer months, and cooling extent in winter months). These 

time filters were applied across the board to all the measured variables, and classifications were 

run using each of the three LST-based variables (mean, standard deviation, and TDD), all 

alongside the spatial variables. Using TDD in either winter or summer produced worse results 

than with full-year data. For mean LST, using just summer months worsened results, but winter 

produced very good results with an accuracy of 0.860 and kappa of 0.764. Lastly, using standard 

deviation of LST in the summer was worse as well, but the winter trial produced the best results 

yet seen with overall accuracy 0.873 and kappa 0.785. 
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 While some of these input modifications improved the model’s performance, we decided 

not to use them for our eventual analysis. This is because the improvements were only marginal, 

and the mixing of spatial and temporal signals would have made the trends difficult to interpret. 

3.2.  Data Collection and Analysis 

In the previous section, we trained our classification and prediction model on data from 

2001-2004, the earliest three full years of MODIS data available. The model produced a map of 

inferred permafrost extent for those years, which matched the 1997 reference map with 85% 

accuracy. In this section we describe the second part of our study, in which we applied our model 

to the rest of the available data, in order to generate inferred maps of permafrost extent for each 

year from 2001 to the present. We used a three-year sliding window to reduce noise, such that the 

latest map generated uses data from the start of 2017 to the start of 2020. The inputs used for the 

model were mean LST, mean NDVI, mean NDSI, latitude, and elevation— all treated with a 

water mask. The model used the mahalanobis maximum likelihood classification method to 

assign pixels to their permafrost extent classes. We then analyzed the raw data alongside the 

inferred permafrost extent maps to identify and examine any long term trends. 

3.2.1. Clustering to Define Regions of Analysis 

We chose to organize our trend analysis by region, in order to identify zones which had similar 

characteristics and trends. Rather than attempting to do this by hand through visual analysis, we 

employed unsupervised classification (or “clustering”) to more rigorously sort the data, and find 

phenomena within the data that we may not have noticed otherwise. 

 Clustering works similarly to the supervised classification described in section 3.1.2., 

plotting each data point in an n-dimensional space —where n is the number of input bands— and 

assigning it to a class (or “cluster”) defined within that space. The difference is the lack of 

training data with which to define those classes. Instead, it defines its own automatically with a 
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Fig 12.) Clustering Regions, produced from flattened time-series of LST-means

Fig 13.) Clustering Regions, produced from flattened time-series of LST-anomalies
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clustering algorithm. We used the K-means algorithm  available in GEE , choosing to set k = 10 4 5

in order to define 10 classes— double the number of permafrost extent categories defined earlier. 

 We used clustering to define regions based on variations in LST data, as the most salient 

variable with regards to permafrost. We tried the clustering two different ways, differentiated by 

the input data we gave to the clusterer in each method. For the first method, we calculated a 

series of 17 mean-LST images, one for every 3-year window (starting with 2001-2004 and 

ending with 2017-2020, as with the permafrost maps). We then stacked them all on top of each 

other into one 17-band image, so that each pixel of this new image would contain data from the 

entire time-series across its bands. This final image is what was given to the clusterer, and 

resulted in classes defined mostly by differences in their mean LST values (Fig. 12, 14a). 

 For the second method, we followed the same procedure, but after calculating yearly LST 

means, we subtracted these from the 20-year mean to get yearly LST anomalies. Thus, the bands 

of each pixel in the 17-layer image contained only information about change over time at that 

point. The resulting classes were thus defined as areas with similarly shaped LST trends (Fig. 13, 

15a), rather similar mean LST values. With this method, one of the classes that was generated 

was extremely small, and not distinctive enough to warrant any conclusions as to why this was 

the case. As a result, we neglected the region ‘Z0’ from the rest of our analysis. 

4. Results 

Our study was focused on analyzing trends in twenty years of LST, NDVI, and NDSI raw data, 

as well as trends in the maps of inferred permafrost extent that we produced. The raw data is 

easily accessible online in the GEE catalogue. We have included the image time-series of our 

 The k-means algorithm picks k data points to become the initial centroids of k classes, assigning all 4

other data points to the class with the nearest centroid. Once the classes have been established, it takes the 
mean of the data points within each class to determine new centroids, and then assigns all the data points 
to new classes based on these centroids. This repeats iteratively until the centroids no longer move, at 
which point the classes have been optimized to have the minimum amount of intra-class variance.

 The k-means clusterer available in GEE actually uses “k-means++” (Arthur & Vassilvitskii, 2006), 5

which is a variation on the standard k-means algorithm that optimizes the initial choice of centroids. This 
ensures that every time the clusterer is run on the same inputs, the same outputs are achieved.
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generated maps of permafrost extent in appendix A. The results of our regional analysis of this 

data are plotted in the rest of this section. 

4.1. Raw Data Trends By Region 

 

Fig 15.) Raw Data Trends — Regions defined by clustering on LST anomalies 
    a]      b]                  c]       d]

Fig 14.) Raw Data Trends — Regions defined by clustering on LST means
    a]      b]             c]                d]
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4.2. Permafrost Trends By Region 

 

Fig 17.) Permafrost Trends — Regions defined by clustering on LST anomalies 
a]            b]               c]       d]             e]

Fig 16.) Permafrost Trends — Regions defined by clustering on LST means 
a]            b]               c]       d]             e]
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5. Discussion 

5.1. Efficacy of Approach 

One of the main goals of this study was to determine the feasibility of predicting 

permafrost extent based on satellite-derived measurements. The results of the supervised 

classification approach we designed and utilized above were promising in this regard. 

Both in terms of the accuracy and kappa statistics, and in terms of the visual quality of 

the maps produced, the performance of the model was satisfactory. 

 The statistics measured the extent to which the model was able to reproduce the 

original reference map that it was trained off of, and showed an overall accuracy of 

84.8%, with a kappa value of 0.749. This brings the model into the range of substantial 

(but not strong) correlation with the reference map. By adjusting the inputs to the model, 

better correlation was achieved (maximum accuracy achieved was 87.3%, and kappa 

0.785), although these versions of the model were not utilized due to the increased 

difficulty they would have introduced in interpreting the results (because of mixed spatial 

and temporal signals). These versions did, however, demonstrate the possibility of 

continued future improvements to the model. 

 The visual results seen in the model-generated maps of inferred permafrost extent 

were also promising. At a glance, they showed that the model was indeed staying 

relatively true to the original spatial distribution of permafrost classes seen in the 

reference map. Furthermore, when applied to subsequent years, the maps produced by the 

model continued to have similarly spaced (and similarly contiguous) classes as it did 

when applied to the first (training) year of data. This indicated that the model was not 

overly trained, and that it was behaving as it was supposed to. 

 The model did seem to have particular trouble conflating “sporadic” permafrost 

with “discontinuous” (and “isolated”) permafrost, as is visible in the encroachment of the 

yellow (and blue) zones into what should be the green zone on the reference map. 
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5.2. Interpretations and Implications of Trends 

The results of the unsupervised classification to find regions of interest and the analysis that 

followed highlighted first and foremost the highly localized, and non-generalizable nature of 

environmental responses to climate change. That the two sets of regions —one defined by mean 

values and the other by trend shapes— did not line up with each other suggests that areas with 

ostensibly similar mean climates can have varying sensitivities to climatic forcing. The regions 

defined by mean were stacked mostly horizontally (Fig. 12), which reflects latitude’s impact on 

LST. The regions defined by trend, however, cut across each other more vertically and in pockets 

(Fig. 13), possibly suggesting an influence of continentality. Elevation is also very different 

between trend-defined regions, suggesting that geographic features like mountain ranges or 

simply altitude also influence how a region is affected by climate change. 

 Plotting the raw data revealed surprisingly few, or at least weak, long term trends, but did 

shed light on the relationships between some of the key variables. The inverse relationship 

between LST and latitude was well known and expected, but confirmed here by observing that 

regions with higher mean LST had lower mean latitudes (Fig. 14a,d). Similarly, regions with 

high LST had low NDSI, and temporal changes in LST were reflected in upside-down mirror by 

temporal changes in NDSI (a,c). Both of these correlations were observed again even when the 

regions were not themselves defined by mean value (Fig. 15a,c,d), with some exceptions for 

latitude that seem to be explained by differences in elevation. Overall, NDVI was distributed 

among regions less systematically than the other variables. 

 Permafrost trends were analyzed by plotting the land area covered by each class of 

permafrost extent within each region. It should be noted that not every region was the same size, 

so the vertical stacking of lines in Fig. 16 & 17 does not necessarily indicate which regions were 

predominantly covered by one or another class of permafrost extent. For instance, region Z3 

appears above Z0 in Fig. 16a, indicating that it has more “land” pixels, even though Z3 is 

actually north of Z0 (Fig. 12) and contains “isolated” and “sporadic” pixels (Fig. 16b,c), while 

Z0 is purely “land.” 
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 Both Fig. 16 & 17 show instances of permafrost in certain regions shifting up a class 

(progradation) or down a class (degradation). Progradation is analogous to net freezing and an 

increase in percent permafrost cover, while degradation is analogous to net thawing and a 

decrease in percent permafrost cover. These processes can be observed whenever the contours of 

a particular region’s trend line in one class are mirrored upside-down by the same region’s trend 

line in an adjacent class. This mirroring is particularly visible in Fig. 16 with regions Z1 & Z3 on 

the border between “land” and “isolated,” and with regions Z2 & Z7 on the border between 

“discontinuous” and “continuous.” 

 Due to the regions being sorted by increasing LST (and latitude), Fig. 16 proves very 

insightful in showing us the thermal and geographic flashpoints for permafrost thaw. Z1 and Z3 

are adjacent to each other (Fig. 12), and are the only two classes to exhibit change in the “land” 

and “isolated” categories, showing that soil reaches the threshold for permafrost formation 

within their geographic bounds. The mean LST associated with these regions is between 275 and 

282ºK, on the cusp of freezing. The trend of the changes indicate degradation at this boundary. 

Similarly, the adjacent regions of Z2 and Z7 are the flashpoint for the degradation of 

“continuous” to “discontinuous” permafrost, with an average LST range of 264 to 270ºK. On the 

other hand, the boundaries between “isolated,” “sporadic,” and “discontinuous” are less clear for 

two reasons. The first reason is that permafrost has two options at these boundaries, progradation 

or degradation, so the mirroring is less obvious, as the signal may be split. The second reason is 

that these permafrost classes were the most likely to be conflated with each other, according to 

visual analysis of the model’s training trial with the original reference map. Despite this, 

evidence of degradation is discernible in region Z6, where permafrost goes from “discontinuous” 

to “isolated,” skipping “sporadic”.  

 Fig. 17 does not provide as many interpretable insights, but does give further evidence to 

the support the observation that “continuous” permafrost zones, in particular, are degrading 

heavily into “discontinuous” zones. 
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6. Summary 

 Our study aimed to develop a methodology with which to map permafrost using satellite-

derived measurements, and to examine trends in the past twenty years of this data to understand 

how permafrost and related environmental factors have responded to ongoing climate change. 

Using supervised classification, we were able to develop a model that reproduced its training 

data with an overall accuracy of 85% and kappa value of 0.749, with demonstrated room for 

improvement. We applied this model to the remaining data to generate yearly maps of inferred 

permafrost extent from 2001 to the present. 

 Defining regions of interest to organize our analysis, we found that regions with similar 

means do not necessarily have similar trends. Analyzing our raw data region by region 

highlighted the strong inverse relationships between LST and NDSI and between LST and 

latitude, while NDVI and elevation remained less systematically correlated to the other variables. 

Analyzing our inferred permafrost data by region helped identify “flashpoints” for permafrost 

degradation (net thawing) and progradation (net freezing) among regions defined by mean LST. 

Degradation from “isolated” permafrost to “land” (0% permafrost) was seen roughly between the 

275 and 282ºK isotherms, while degradation from “continuous” to “discontinuous” permafrost 

was seen roughly between the 264 and 270ºK isotherms. 

 Our results offer a proof of concept for our permafrost mapping methodology, which 

future work can improve upon. Using more advanced satellite imagery, including higher 

resolution imagery (Duguay et al., 2005) or ground penetrating sensors (Whitley et al., 2018), the 

accuracy of the model can be improved. If our results are robust, this methodology can easily be 

extended to be useful to climate scientists studying permafrost-thaw based greenhouse gas 

emissions. With some extra calculation, our results can be used to quantify the area amount of 

permafrost that has thawed or frozen in the past twenty years, and from there —with further 

research on air-soil gas fluxes— this information can be utilized to determine how much 

greenhouse gas emissions may have occurred during this time period. This will help climate 

scientists better understand how to incorporate the effects of permafrost thaw into predictions of 

future climate change, which will in turn help shape policy aimed at reducing carbon emissions 

by the required amount. 
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9. Appendices 

9.1. Appendix A: Image Time-Series: Permafrost Extent

Land 
Isolated 
Sporadic 
Discontinuous 
Continuous

Starting with 2001-2004 in top 
left, going down the column, 
then top middle (2007-2010), 
down the column, top right 
(2013-2016), down the column 
to bottom right (2017-2020).
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