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ABSTRACT 

General Circulation Models (GCMs) are critical to understanding our climate system but 

expensive to run and sometimes difficult to interpret. This study investigates the potential for a 

simple, physically based climate model, based on one differential equation, to perform some of 

the most important functions of GCMs: reproducing and predicting variations in global mean 

surface temperature (GMST). The model used in this project incorporates three forcings: 

equivalent carbon dioxide concentrations, shortwave reduction caused by volcanic eruptions, and 

effects of climate variability related to ENSO. These inputs are sufficient to reproduce observed 

GMST variations since 1880 with a root mean square error of only 0.08 C. In order to determine 

how to improve and understand this result, and investigate whether GCM data can be reproduced 

and predicted by the simple model, we ran a variety of experiments, altering both the equation 

and its inputs. The results indicated, for example, that in reproducing observed GMST, 

incorporating the Atlantic Multidecadal Oscillation did not significantly reduce error. For GCM 

data, in a majority of cases, the simple model reproduced GMST with a high degree of accuracy. 

Using combined Nino 3, 4 data with the warming trend removed provided the best results; so did 

selecting either atmospheric or equivalent carbon dioxide concentrations based on the GCM’s 

aerosol interactivity. The model was less successful in predicting GCM temperature data into the 

future based on the historical period; adding another term to the model representing deep ocean 

temperatures helped to improve those predictions in many cases. Overall, the accuracy of these 

experiments demonstrates that while GCMs are extremely complex, when it comes to GMST, 

they essentially boil down to the same factors as the simple model and follow the basic physics 

of global warming. This has the potential to make climate modeling more accessible and easier 

to comprehend, with implications for policy and education.  
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1. INTRODUCTION  

 

a. Background on Simple Model  

In their paper “The Extreme El Nino of 2015-2016 and the end of global warming hiatus,” 

published in 2017, Alexey Fedorov and Shineng Hu used a simple model, based on one equation, 

to investigate recent patterns in global mean surface temperature (2017). Following the year 

2000, rates of increase of global mean surface temperature (GMST) slowed; this has been 

dubbed the “global warming hiatus.” Since the year 2014, however, rapid warming resumed. Hu 

and Fedorov note that “a number of physical mechanisms were proposed to explain the hiatus, 

including but not limited to eastern Pacific cooling, Walker Cell strengthening, enhanced ocean 

heat uptake, and changes in stratospheric water vapor and aerosols” (2017). In order to 

investigate the cause of these recent fluctuations, they built a simple, physically based model to 

reproduce GMST data during the 1880-2015 time period.  
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This model builds off of the connection between GMST and El Nino - Southern 

Oscillation, or ENSO, which defines the fluctuations in sea surface temperature in the equatorial 

Pacific. ENSO has a significant effect on interannual climate variability; generally, the “warmer 

or cooler than normal ocean temperatures can affect weather patterns around the world by 

influencing high and low pressure systems, winds, and precipitation” (Hu and Fedorov, 2017). 

Swings in ENSO affect vertical energy convergence in the Pacific, which in turn modulates 

heating rates of the tropical atmosphere and GMST. The model developed by Hu and Fedorov--a 

first-order differential equation--takes into account this connection, as well as two other crucial 

climate forcings: volcanic eruptions and carbon dioxide concentrations. While greenhouses gases 

other than carbon dioxide are also play an important role in global warming, it was initially 

assumed that their effect on GMST would be compensated by aerosols. The authors also noted 

that incorporating the Atlantic Multidecadal Oscillation (AMO)--a mode of natural variability 

quantified by sea surface temperatures in the North Atlantic--into the model might improve 

accuracy, as the model’s errors “coincide with the negative and positive phases of the AMO” 

(Hu and Fedorov, 2017; NCAR).  

While it simplifies the climate system to only three key forcings, this model reproduces 

GMST anomalies over the course of the 1880-2015 system very closely, with RMS error of 

approximately 0.08 C. Error decreases in the period after 1950, when observations became more 

accurate due to improved technology. The global warming hiatus and subsequent temperature 

rise are well captured as well, and isolating the forcings can indicate what caused these 

phenomena. Suppressing ENSO, and leaving carbon dioxide and volcanic aerosols, models a 

warming trend with GMST decreases due to volcanic activity; under these simulations, the 

global warming hiatus is not present. Running the model with volcanic forcing suppressed and 

ENSO activated, on the other hand, closely reproduces the hiatus and the return of global 

warming that followed. The authors conclude that volcanic activity did not contribute to the 

hiatus, but rather that “ENSO-related anomalous heating originating in the tropical Pacific act to 

modulate GMST on interannual to interdecadal time scales, shaping the hiatus and the 

subsequent temperature increase” (Hu and Fedorov, 2017). Training the model using the 
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1880-1995 time period and then predicting GMST variations through 2015 confirms these 

results.  

 
Figure 1:​ Figure from Hu and Fedorov depicting the results of using the simple model and suppressing certain 

forcings (2017). Black indicates GMST calculated from the simple model; red indicates GMST from observations. a) 

All forcings used. b) Model error (differences between model and observations) for scenario a. c) Simple model with 

ENSO suppressed. d) Simple model with volcanic aerosol forcing suppressed. 

 

b. General Circulation Models and CMIP5 

Climate models are the most important tools available to scientists to understand our ocean and 

atmosphere. General Circulation Models (GCMs) are the most comprehensive and complex type 

of climate model, providing numerical simulations on a three-dimensional grid with a typical 

horizontal resolution of 250-600 km and many layers in the atmosphere and ocean (IPCC Data 

Distribution Center). In order to provide simulations on this grid, the models solve a set of 

fundamental equations, including conservation of momentum, mass, energy and moisture, and 

equations of state.​ ​GCMs often take into account atmospheric chemistry and circulation, ocean 
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circulations, atmosphere-ocean interactions, the cryosphere and land surface, ecological changes, 

the carbon cycle, anthropogenic forcings, and other factors; the details can vary between models 

(Tel Aviv University). The IPCC suggests that “there continues to be very high confidence that 

models reproduce observed large-scale surface temperature patterns (pattern correlation of 

~0.99), though systematic degrees are found in some regions” (Stocker, 2013, p. 743). In their 

assessment of coupled models, Reichler and Kim note that while current models are not yet 

ideal, considerable progress has been made since the earliest generation of climate models; they 

attribute these advancements to more sophisticated model parameterizations and to improved 

computational resources (2008). The authors also note that the multimodel mean, obtained by 

averaging the data produced by all simulations, usually provides more accurate results than any 

individual GCM.  

The Coupled Model Intercomparison Project (CMIP5) provides a framework for 

scientists to systematize climate modeling experiments. The project provides a standard set of 

simulations so that researchers may evaluate model performance in both replicating the past and 

predicting the future. CMIP5’s structure also allows scientists to identify and explain the 

differences in model predictions (Taylor et al., 2012). CMIP5 simulations are split into several 

groups: a “core” category, as well as “tiers” 1 and 2. (This is summarized in Figure 3). All 

groups complete the core simulations. The tier 1 simulations “examine specific aspects of 

climate model forcing, response, and processes” and the tier 2 experiments investigate those 

models in greater detail (Taylor et al., 2012). CMIP5 includes two focus areas: one near-term, or 

decadal, and one long-term, or over a century or more. This paper will mention only the 

long-term simulations. For these long-term experiments, the core experiments include 

Representative Concentration Pathways 4.5 and 8.5, and tier 1 and 2 simulations include RCPs 

2.6 and 6.0, extensions of all RCPs to to the year 2300, and experiments quantifying aerosol 

forcing, among others.  

These Representative Concentration Pathways are “based on selected scenarios from four 

modeling teams/models (NIES/AIM, IIASA/MESSAGE, PNNL/MiniCAM, and PBL/IMAGE),” 

known as Integrated Assessment Models (IAMs) (RCP Database; Meinshausen et al.). They 

complement and replace scenario-based projections from earlier stages of the Intercomparison 
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Project, and are used in the CMIP5 simulations (Meinshausen et al., 2011). Meinshausen et al. 

note that because the IAMs used to produce the concentrations differed from each other, it was 

necessary to compile historical concentrations and harmonize emissions “to common 2000-2005 

emission levels,” and then project to 2100; data past 2100 are known as ECPs (2011). The 

resulting atmospheric carbon dioxide and equivalent carbon dioxide for the RCPs are shown in 

Figure 2. Each pathway describes a different scenario. The RCP with the least warming, 2.6, 

includes GMST increases of 1.5 degrees C by 2100; the one with the most warming, 8.5, 

includes warming of 2.5 degrees by that time. 

 

 
Figure 2:​ Atmospheric carbon dioxide and equivalent carbon dioxide concentrations for the Representative 

Concentration Pathways, years 1880-2500.  
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Figure 3​: Diagram summarizing the core, first and second tier experiments of the CMIP5 long-term simulations. 

  

c. Aerosols  

Aerosols--solid or liquid particles suspended in the atmosphere--affect Earth’s radiation balance 

by scattering and absorbing solar radiation. These particles can be both natural or anthropogenic, 

and are either emitted into the atmosphere directly or formed from gaseous precursors. The IPCC 

separates atmospheric aerosols into several categories: inorganic species, mineral species, 

organic species, black carbon and primary biological aerosol particles (Stocker, 2013, p. 595). 

The main natural source of aerosols is volcanic emissions, which primarily emit sulphate 

aerosols to the atmosphere. Other natural sources include terrestrial ecosystems and wind 

erosion. Anthropogenic sources span from combustion of fossil fuels and biofuels to agricultural 

practices (Stocker, 2013, p. 597). 

The effects of aerosols on the atmosphere are still relatively poorly understood, and have 

a hand in some of the largest uncertainties in climate predictions (Stocker, 2013, p. 574). 

“Climate Change 2013: The Physical Science Basis,” the first report in which the IPCC 

systematically assessed clouds and aerosols, notes that “our inability to better quantify 

non-greenhouse gas RFs [radiative forcings], and primarily those that result from aerosol-cloud 

interactions, underlie difficulties in constraining climate sensitivity from observations even if we 

had a perfect knowledge of the temperature record” (Stocker, 2013, p. 576). Overall, however, 

research suggests that anthropogenic aerosols have a net cooling effect, and have decreased the 
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amount of global warming that the atmosphere has experienced thus far (Stocker, 2013, p. 623). 

Because aerosols are often co-emitted with greenhouse gases, this complicates future efforts to 

fight global warming. For example, in their study on the impacts of removing anthropogenic 

aerosol emissions, Samset et al. indicate that removing anthropogenic aerosols would induce a 

global mean surface heating of 0.5 - 1.1 C (2018). 

For experiments requiring greenhouse gas or aerosol data, the Integrated Assessment 

Model Consortium provides the “concentrations, emissions and time-evolving land use changes 

to be used in the simulations” (Van Vuuren et al., 2011). Aerosol data are included in the data 

provided by each Representative Concentration Pathway repository, along with data on land use, 

greenhouse gas concentrations, and other important factors; many of the most advanced climate 

models now take advantage of this dataset. For these simulations, the Community Atmosphere 

Model 3.5 generated the necessary gridded concentration data. Concentrations were provided for 

the historical period, RCP period (2005-2100) and the extension (2100-2300). Some of the 

GCMs involved, however, may not use the aerosol input from the RCPs.  

The most recent IPCC Physical Science Basis identifies three categories of GCMs in 

relation to their usage of aerosol concentrations: fully interactive, semi-interactive and 

noninteractive. Interactivity implies “a physically based prognostic equation and at least a 

two-way coupling with another component, allowing climate feedbacks” (Stocker, 2013, p. 747). 

In the case of some GCMs--the iterations of GISS models in particular--aerosol interactivity may 

vary between different model runs. For models that do take into account aerosol effects, many 

“now include the basic features of the sulphur cycle” and several “are currently capable of 

simulating the mass, number, size distribution and mixing state of interacting multi-component 

and aerosol particles” (Stocker, 2013, p. 752). Despite these advancements, however, the IPCC 

identifies the usage of aerosol particles as a crucial source of uncertainty in CMIP5.  

 

d. Equivalent ​CO​2 

There are two primary methods of quantifying the climate perturbations that result from 

changing the concentrations of greenhouse gases or aerosols in the atmosphere. The first, 

radiative forcing, is measured in watts per square meter, and in the context of gases and aerosols 
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represents a difference in irradiance at the tropopause following a concentration change (Gohar 

and Shine, 2007). Gohar and Shine note that global mean surface temperature (GMST) is 

correlated to radiative forcing (RF) using the following equation:  

T RFΔ s = λ  

(Equation 1) 

where represents GMST change, is climate sensitivity (to be discussed in depth later on inTΔ s λ  

this paper), and RF is the radiative forcing (2007). Instead of measuring perturbations in terms of 

change in irradiance, equivalent ​CO​2​ describes the concentration of ​CO​2​ required to achieve the 

same radiative forcing. This metric is measured in terms of ​CO​2​ concentrations because “it is 

currently believed to be the largest contributor to anthropogenic radiative forcing.” While 

radiative forcing is a useful metric, the authors argue that equivalent ​CO​2​ is easier for 

policymakers and the general public to understand.  

The IPCC’s Climate Change 2001 report provides the following simplified expression for 

calculating the radiative forcing due to carbon dioxide:  

F ln( )Δ = α C
C0

 

(Equation 2) 

where represents change in radiative forcing, is the present carbon dioxide concentration,FΔ C

represents the pre-industrial carbon dioxide concentration of 278 ppm, and the constant  isC0 α  

equal to 5.35 W/m​2​. The RCP Concentration Calculation & Data Group provides the same 

expression with its equivalent carbon dioxide data for the Representative Concentration 

Pathways, used in General Circulation Models (RCP Database). Other sources, however, may 

use slightly different values; for example, the Stern Review used = 280 ppm (Gohar andC0  

Shine, 2007).  Using the Equation 2, Gohar and Shine derive the following expression to 

calculate equivalent carbon dioxide: 

O eq e  C 2 = C0 α
RF  

  

(Equation 3) 

This equation assumes that a certain value of radiative forcing due to any number of factors is 

known, and gives the carbon dioxide concentration required to achieve the same amount of 

radiative forcing.  
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The IPCC provides in its reports updated values for the radiative forcing caused by 

relevant gases and aerosols (Stocker, 2013). Using this information, different groups of forcings 

can be used to calculate equivalent carbon dioxide. For example, the Representative 

Concentration Pathway datasets provide two types of equivalent carbon dioxide values: one 

using all anthropogenic forcings, aerosols and tropospheric ozone, and one using only 

greenhouse gases controlled under the Kyoto Protocol (RCP data source). Generally, however, 

equivalent carbon dioxide takes into account forcing by greenhouse gases, tropospheric ozone 

and aerosols and does not represent natural forcings (Hare and Meinshausen, 2006). 

 

e. Climate Sensitivity 

Climate sensitivity describes the temperature change resulting from doubling the amount of 

carbon dioxide in the atmosphere (Stocker, 2013, p. 16). The two most important metrics for 

describing this value are equilibrium climate sensitivity and transient climate response. 

Equilibrium climate sensitivity (ECS) is defined as the change in GMST at equilibrium resulting 

from doubling the amount of carbon dioxide in the atmosphere relative to preindustrial levels. 

The IPCC puts the equilibrium climate sensitivity as likely to be in the range of 1.5 to 4.5 C 

(Stocker, 2013, p. 16). The transient climate response (TCR), on the other hand, represents the 

change in GMST following from carbon dioxide increases of 1% per year until concentrations 

are double those of preindustrial levels; the TCR is measured using the difference between the 

beginning of the time period studied and a 20-year period centered on the time in which carbon 

dioxide is doubled (Stocker, 2013, p. 817). The IPCC report “Climate Change 2013: The 

Physical Science Basis” provides the climate sensitivity values used in this project. For the 

models in CMIP5, TCR and ECS are shown to be linearly correlated (Stocker, 2013, p. 817) 

The IPCC’s climate sensitivity values are derived using the method of Gregory et al., 

who proposed performing a linear regression of the net downward heat flux over time against 

GMST (Stocker, 2013, p. 817).  This regression is used to obtain the coefficient , which is thenα  

applied to calculate the equilibrium climate sensitivity with the following equation:  

T /αΔ  
eqm = F 2x  

(Equation 4) 
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Where  is the positive downward imposed forcing due to a doubling of the carbon dioxideF 2x  

concentration in the atmosphere. This strategy is corroborated by other methods of obtaining 

climate sensitivities, and overcomes the challenge of determining the imposed forcing in orderF  

to determine the coefficient ; it also allows for climate sensitivity to be determined from theα  

Atmosphere-Ocean GCMs that are also used to make historical simulations and climate 

projections (Gregory et al., 2004). In the previous Physical Science Basis report, on the other 

hand, climate sensitivities had been determined using “slab models,” or atmosphere GCMs 

coupled with mixed-layer oceans; such simulations equilibrate within only 10-20 years, making 

them cheaper to use (Stocker, 2013, p. 817). In those cases, after being run to equilibrium 

following instantaneous carbon dioxide concentration doubling, the slab models were used to 

determine the coefficient (Gregory et al., 2004).α  

In their paper, Gregory et al. acknowledge that  may change over time. The authorsα  

note that if this change does occur, then in their linear regression of net downward heat flux 

against GMST, “the variation of the slope provides a means of diagnosing the dependence of the 

feedbacks on climate state” (Gregory et al., 2004). In investigating these changes, the metric of 

“effective climate sensitivity,” or equilibrium climate sensitivity given that the feedbacks of a 

given point in time remain constant, is helpful. Some other studies corroborate this suggestion 

that climate sensitivity can change considerably over long periods of time. Senior and Mitchell, 

for example, ran a coupled ocean-atmosphere experiment over 800 years with doubled carbon 

dioxide concentrations; the effective climate sensitivity was found to increase by 40% over the 

course of the simulation (2000). If true, the time dependence of climate sensitivity poses 

challenges for simpler models, which will struggle to properly reproduce warming due to carbon 

dioxide over long periods of time. A later study by Williams et al., however, posited that “much 

of the apparent variation in effective climate sensitivity identified in previous studies is actually 

due to the comparatively fast forcing adjustment” (2008).  
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2. DATA AND METHODS  

 

a. One-temperature Model and Observations  

The version of the simple model developed by Hu and Fedorov and used in the first part of this 

project is represented by the following equation: 

− og(CO /CO ) AODdt
dT g = τ

T g + a * l 2 2ref + b * T NINO + c * S + d  

 (Equation 5)  

where the left-hand side of the equation represents the rate of change of annual mean GMST; if 

an initial value is known, the equation predicts and reproduces variations in GMST (2017). In the 

equation, Tg indicates GMST; CO₂ indicates atmospheric carbon dioxide concentrations; the 

natural logarithm is taken, as this function best represents the way in which CO₂ forces the 

atmosphere.  corresponds to atmospheric heating anomalies associated with ENSO withT NINO  

the long-term warming trend removed, and  represents shortwave scattering byAODS  

stratospheric sulfate aerosols resulting from volcanic eruptions. The first term on the left-hand 

side describes linear damping with an e-folding time scale tau; in the original version of the 

simple model, tau was set to 2 years. The last part of the equation contains a constant term, 

which relates to the value of , here chosen to be 320 ppm. Doubling the term​ ​inOC 2ref O  C 2  

the equation will result in a temperature change of: 

T n(2)  Δ = a * τ * l  

(Equation 6) 

which represents a value for climate sensitivity, or the temperature change resulting from a 

doubling of carbon dioxide, as described previously.  

The Earth observation data used in the historical period are the same as the data used by 

Hu and Fedorov (2017). GMST was taken from the Goddard Institute for Space Studies Surface 

Temperature Analysis with 1200 km smoothing (Goddard Institute for Space Studies Surface 

Temperature Analysis Team, 2017). ENSO variations were taken from the Extended 

Reconstruction Sea Surface Temperature v4 SST product; the T-NINO was calculated by 

“averaging SST anomalies within a large equatorial Pacific domain between 160 E - 90 W and 5 

13 



S - 5 N. This index incorporates both the Nino 3 and Nino 4 regions” (Hu and Fedorov, 2017). 

Mauna Loa in situ measurements downloaded from NOAA ESRL provided carbon dioxide data 

for years 1959-2015 (NOAA-ESRL). For years before that, data was taken from Law Dome 

DE09 and DE08-2 ice core reconstructions (CDIAC). For volcanic eruption data, a NASA GISS 

stratospheric aerosol optical depth data set is used (Sato et al., 1993).  

The above datasets for atmospheric carbon dioxide concentrations, shortwave scattering 

by stratospheric sulfate aerosols, and atmospheric heating anomalies associated with ENSO for 

the 1850-2015 time period were used in the “simple model,” Equation (1). The results were 

compared to the observational GMST data by calculating the Root Mean Square Error (RMSE). 

The coefficients found by Hu and Fedorov to minimize the RMSE for this time period were a = 

1.76 C/yr, b = 0.122 1/yr, c = -1.47 C/yr, and d = 0.0134 C/yr; tau was set to 2 years, and the 

resulting RMSE was 0.08 C (Hu and Fedorov, 2017). In order to verify these coefficients and to 

test different values for tau, the damping timescale, we tested out the simple model for a range of 

values for each coefficient, and determined the combination that created the lowest error. To 

determine how a specific coefficient affected RMSE, we plotted the range of values of that 

coefficient against error; the error values used were from the combination of other coefficients 

that gave the lowest RMSE possible. We performed this test for multiple time periods: 

1880-2015, 1880-1950, and 1950-2015, since the data varies in quality between these time 

periods. To test how pairs of coefficients changed the error, we did the same for two coefficients 

at a time, creating contour plots with a vertical RMSE axis. These contour plots were used to 

investigate how different variables constrained each other. We performed this operation for 

different combinations of a, tau and b.  

In order to investigate whether adding the effects of the Atlantic Multidecadal Oscillation 

to the model would make the results more accurate, a new term was added to the model:  

− og(CO /CO ) AOD MOdt
dT g = τ

T g + a * l 2 2ref + b * T NINO + c * S + d + e * A  

(Equation 7)  

Where AMO represents the AMO index, which is based on the weighted temperature average of 

the North Atlantic, from 0 to 70 N (NOAA - ESRL). The provided datasets had monthly SST 

values; we calculated the annual mean to use in the simple model, with each year being 
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considered to be from July to June (i.e, the year 2015 is from July of 2015 to June of 2016). The 

optimal value for coefficient was tested by running the simple model for a range ofe  

coefficients; the range was predicted by comparing the error found with a plot of the AMO 

index. We then calculated the lowest RMSE possible between the simple model and the 

observations resulting from incorporating the AMO term. We tried this with both smoothed and 

unsmoothed datasets from NOAA-ESRL.  

 

b. Reproducing and Predicting GCM Data 

In the next phase of the project, the simple model (Equation 5) was used to reproduce data from 

General Circulation Models. For the first steps of the this phase, we used monthly GMST data 

from each model for Representative Concentration Pathway (RCP) 4.5. The data used was 

downloaded from World Data Center for Climate​ ​and spanned the years 1850-2100, combining 

the results of preindustrial forcings (the same for every RCP) with future forcing, past the year 

2005. We also used El Nino SST data from the simulations to provide measurements for ENSO 

(GCM Data Source). El Nino data was provided for the Nino 3, 4, and combined regions. For 

each type of data, we calculated annual means, once again with each year being considered to be 

from July to June. Annual atmospheric carbon dioxide and equivalent carbon dioxide 

concentrations were downloaded from the RCP Database. Here, equivalent carbon dioxide 

concentrations were calculated using the method described in the Introduction and taking into 

account all anthropogenic forcings including greenhouse gases, aerosols and tropospheric ozone 

(RCP Database). Another equivalent carbon dioxide value is provided incorporating only 

forcings caused by gases controlled by the Kyoto Protocol; this value was not used. The volcanic 

aerosol measurements used depended on the particular GCM. The two primary datasets used 

were those of Sato et al. (1993), the same as previously used for running the simple model to 

reproduce observations, and Amman et al. (2003). We selected the appropriate dataset for each 

experiment depending on which was used by the original GCM (Driscoll et al.). While 

reproducing GCM data, we always used GMST output from RCP 4.5 and run r1i1p1.  

For the carbon dioxide term, we used both equivalent and atmospheric carbon dioxide 

concentrations, in different runs of the model. Initially, Nino 3 data were used for the ENSO 
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term of Equation 5; this is data for the 5N-5S, 150W-90W region of the Pacific (NCAR - Nino 

SST Indices). During this phase, the only calculation performed on the ENSO data was to 

determine annual averages. Later, we switched to using the combined Nino 3-4 data, which 

incorporates both the Nino 3 region and the Nino 4 region of 5N-5S, 160E-150W, and better 

encompasses the ENSO signal (NCAR - Nino SST Indices). Similarly, in the earlier phase, the 

Nino 3-4 data were used to calculate annual averages, and not altered further. During a later part 

of the project, the warming trend was removed from the Nino 3-4 before being used in the simple 

model. At first, this operation was performed using the Matlab “detrend” function. Later, we 

removed the warming trend by performing a linear regression of the ENSO data against the 

natural logarithm of carbon dioxide, determining the linear function that characterized the 

connection between the two, and subtracting that function from the ENSO SST data. The 

resulting detrended data were then used as the ENSO term in Equation 5. When equivalent 

carbon dioxide data was used for the CO​2​ term, equivalent carbon dioxide was also used to 

remove the warming trend from the ENSO data. (Figure 4 depicts the process of removing the 

warming trend.)  

a)  
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b)  

c)      

 

Figure 4:​ An example of calculations performed on El Nino data, for the GISS-E2-H General Circulation Model, 

RCP 4.5. a) Nino 3, 4 combined annual means plotted over the 1880-2099 time period. b) Linear regression of 
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logarithm of atmospheric carbon dioxide against annual means of Nino 3, 4 combined. c) Nino 3, 4 combined 

annual means with the warming trend removed using linear regression as seen in image b.  

 

For each experiment, we used a method similar to the one used to verify the best 

coefficients of the simple model to reproduce observations, but with annual GMST from GCM 

output. We tested a range of values for each coefficient, trying out each combination and 

determining which producing the lowest RMSE between the output of the simple model and the 

GCM. To determine the starting ranges for a, b and c, we started with ranges several integers 

away from the optimal values found for the observations; to determine the starting range of d for 

each model, we performed a linear regression of the GCM’s GMST output over time, and 

determined the temperature’s rate of change. We gradually reduced the range of values being 

evaluated, and decreased the step of each range, in order to test more precise values for each 

coefficient, until we tested coefficient values to margins of 0.01. For the majority of the trials, we 

fixed tau, the damping coefficient, at 2, and tested values for a, b, c and d. We found the 

coefficients that yielded the lowest RMSE for a variety of scenarios for each model, including 

different combinations of equivalent carbon dioxide vs. atmospheric carbon dioxide 

concentrations, untrended ENSO vs. detrended using the Matlab “detrend” function vs. 

detrended using a linear regression, and Nino 3 vs. combined Nino 3-4. For the later stage of the 

project, we continued performing trials of both atmospheric and equivalent carbon dioxide for 

each model, but mostly used Nino 3-4 and removed the warming trend by performing a linear 

regression against the natural logarithm of carbon dioxide.  

In terms of the time period of GCM data used, we performed three types of experiments. 

For the first, “historical” experiments, we used the historical time period of 1880-2005 to tune 

the simple model by determining the coefficients that best reproduced the GMST output, using 

the method outlined above. The starting year varied slightly based on the time period for which 

volcanic forcing data were available; for the GCMs relying on the Amman et al. data set, 

information was only available starting in 1890 (2003). Since the Sato et al. dataset indicates 

large eruptions in the 1880-1890 time period, we started GCM experiments relying on Amman et 

al. in 1890. The data also ended in 1998; initially we modeled GCMs using Amman et al. ending 

then, but as no large eruptions occurred in the 1998-2005 time period, we began to run the 
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simulations through the end of the historical period, without volcanic data for the last few years. 

For the “full period” experiments, we performed the same operation for the 1880-2099 or 

1890-2099 time range. After performing the historical and full period experiments, we calculated 

the result for climate sensitivity from Equation 6 for each trial, and compared it to known values 

for Equilibrium and Transient Climate Sensitivity for each GCM from the IPCC (Stocker, 2013, 

p. 818). We then executed “predictive” experiments: using the coefficients found from the 

historical period for a specific GCM, we tested how the simple model could reproduce the 

GMST results past 2005. We used the resulting RMSE to determine the success of using the 

simple model predictively in that case. For these predictive runs, the coefficients used were those 

found in the historical experiment with the same inputted data (for example, equivalent ​CO​2​ and 

Nino 3-4 combined detrended using linear regression).  

 
Figure 5:​ Stratospheric aerosol optical depth (SAOD) due to volcanic eruptions from two data sets, Sato et al. 

(1993) and Ammann et al. (2003). Sato et al. covers the 1880-2005 time range, whereas Amman et al. only covers 

1890-1998. The Sato et al. dataset demonstrates that SAOD was high during the 1880-1890 time period, indicating 

that simple model experiments using Amman et al. should start in 1890.  
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c. GCM Multimodel Mean 

During a later stage of the project, we compared simple model output with the multimodel mean 

of the GCMs for each Representative Concentration Pathway. In this case, the simple model was 

forced using only atmospheric or equivalent carbon dioxide; SAOD and ENSO were set to zero. 

The multimodel means of the GCMs for each RCP was calculated using data from Climate 

Explorer. We calculated several versions of the multimodel mean for each RCP. The first, Mean 

A, was calculated using all of the GCMs available for each pathway. For Mean A, the result for 

each pathway was different in the historical period; this difference should not be present, since 

the historical forcing for each RCP is the same. This discrepancy was a result of each RCP 

corresponding to a different set of GCMs. After removing all GCMs from the set of models that 

did not have a simulation for each of the four RCPs, we calculated the multimodel mean 

again--Mean B--and the historical period discrepancy was removed. An additional discrepancy, 

however, was caused by the fact that not all of the simulations extended all the way to the year 

2300; many stopped after 2100.  

At first, for means A and B, we had calculated the multimodel mean using however many 

data points existed for each year for that particular RCP, and just used fewer data points after 

2100. This method produced discrepancies in the data around the year 2100 for RCPs 2.6 and 

6.0. Removing the GCMs that did not extend past 2100 from the multimodel mean--and thus 

calculating Mean C--eliminated the jump in temperature. Only a small group of GCMs, however, 

fit this criterion, and only one model, CCSM4, fit both that and the criterion of having 

simulations for each of the four RCPs. We also separated the GCMs by aerosol interactivity into 

two groups: either fully interactive with aerosols, or not/semi-interactive, as defined and 

determined by the IPCC (Stocker, 2013, p. 747). We calculated the multimodel mean, Mean D, 

of each pathway for both aerosol groups; similar to the case for Mean C, each group did not have 

enough models for the multimodel mean to be significant. As using only a few GCMs to 

calculate the multimodel mean renders it less likely to be significantly more accurate than any 

individual GCM, we ended up using Mean B to compare with the simple model output, while 

noting the cause of the discrepancies around the year 2100. The multimodel means (all shown in 
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Figure 6) were all adjusted by the same amount until they approximately matched the historical 

period observations.  

a)  

b)  
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c)  
 

d)     
Figure 6​: a) Mean A, as originally calculated for each with all of the GCMs available. b) Mean B: the multimodel 

mean calculated only using GCMs available for all RCPs. c) Mean C: the multimodel mean calculated using only 
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GCMs available for all RCPs that go through 2300. d) Mean D: the multimodel mean, split into two groups for each 

RCP - interactive with aerosols or not/semi interactive.  

 

d. Two-temperature Model 

In the final phase of this project, we replaced Equation 6 with a two-temperature model, in order 

to capture long-term GMST behavior and reconcile the simple model with the GCM multimodel 

mean. This new model consists of two equations, operating simultaneously:  

− og(CO /CO ) AOD T )/τdt
dT g = τ

T g + a * l 2 2ref + b * T NINO + c * S + d + ( deep − T g 1  

Equation 8a 

T )/τdt
dT d = ( g − T d 2  

Equation 8b 

Where describes a new parameter, the temperature of the deeper ocean (~700 m depth), and T d  

and​ represent new damping timescales. These equations capture heat exchange with thisτ 1 τ 2  

deeper ocean layer, and are similar to the ones used by Held et al. to isolate the fast and slow 

components of global warming (2009). In their research, Held et al identify two primary 

components of the “physical climate system’s response to changing radiative forcing”: a fast 

component, with an e-folding time scale of less than 5 years, and a slow, “recalcitrant” 

component, which is “difficult to remove from the system by manipulating radiative forcing.”  

Similar to previous coefficient adjustments, we adjusted the coefficients and the starting 

in order to reduce error as much as possible. This time, however, we first attempted to make T d  

the simple model GMST output as close as possible to the future multimodel mean predictions, 

and not the observations or any particular GCM. After tuning the two-temperature model to the 

multimodel mean and determining that it worked to bring the simple model output closer to the 

mean, we began to use it to reproduce individual GCM data. Similarly to the experiments with 

the original version of the model, for each GCM, we reproduced GMST output for the historical 

and full period, and then used the coefficients found from the historical period to make a 

prediction into the future. For each of those three experiments, the model was run once with 

atmospheric carbon dioxide, and once with equivalent. We initially tried to find the best results  
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Figure 7: ​Description of the two-temperature model, which takes into account heat exchange of the atmosphere with 

two layers of the ocean: the upper, mixed layer, with a depth of 100 m, and a deeper layer, until 700 m.  

 

for all coefficients including both the damping coefficients and a, b, c and d, but the results did 

not converge neatly, and it was very time-intensive to run comprehensive enough experiments to 

test all the values simultaneously. As a result, we then fixed tau, tau1 and tau2 at the values 

found to reduce error the most for the observations (similarly to how we fixed tau = 2 years for 

the GCM experiments with the original simple model).  

 

3. RESULTS 

 

a. Reproducing Observations  

In the first stage of the project, testing values of tau yielded two minima of error for the 

1950-2015 time period. Decreasing the ranges of values tested and the intervals between those 

values eventually indicated minima at 1.70 and 3.65 years. For all of these tests, the values for c 

and d were fixed at those originally found. The coefficients a and b varied with intervals of 1.  
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a)  

b)  c)  
Figure 8:​ a) RMSE plotted against tau for the 1950-2015 time period; a and b varied, and c and d were fixed. Two 

minima were observed for tau. b) After testing smaller intervals of values in the 1.6-1.8 range, a minimum was 

observed at 1.7. c) After testing smaller intervals of values in the 3.4-3.8 range, a minimum was observed at 3.65.  

 

Performing a similar operation for the 1880-2015 time period yielded comparable results. Two 

minima were observed for tau; further testing constrained the minima to 1.80 and 3.60 years.  

a)  
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b) c)  
Figure 9​: a) RMSE plotted against tau for the 1880-2015 time period; a and b varied, and c and d were fixed. Two 

minima were observed for tau. b) After testing smaller intervals of values in the 1.6-1.9 range, a minimum was 

observed at 1.80. c) After testing smaller intervals of values in the 3.4-3.8 range, a minimum was observed at 3.60.  

 

Plotting errors resulting from varying the coefficient a yielded similar results for the 1880-2015 

time period. Initially, when a large range was tested, two minima were observed; these minima 

were constrained to 1.75 and 3.5 C/year following further testing with more accurate intervals. 

For these tests, tau and b were varied with intervals of 1. The coefficients c and d were fixed.  

 

 

a)  

 

26 



b) c)  
Figure 10​: a) RMSE plotted against a for the 1880-2015 time period; tau and b varied, and c and d were fixed. Two 

minima were observed for a. b) After testing smaller intervals of values in the 1.7-1.9 range, a minimum was 

observed at 1.75. c) After testing smaller intervals of values in the 3.4-3.65 range, a minimum was observed at 3.50.  

 

Testing smaller intervals, and using contour plots to display the results of testing two 

coefficients simultaneously, clarified that the values of the other coefficients affect the results for 

constraining a and tau. When tau and a were tested with all other coefficients equal to zero, the 

results formed a hyperbolic line, depicting a range of values for which error was lowest. When 

the values for b were not zero, however, a and tau were constrained. (These results are shown in 

Figure 11). Adding in non-zero c further constrained the values. The resulting range for which 

the error was lowest centered on approximately tau = 2.05 years and a = 1.75 C/year -- 

confirming the values initially found by Hu and Fedorov (2017). This experiment demonstrated 

that including carbon dioxide forcing can constrain tau*a; other forcings, however, must be 

included to further constrain tau and a. We also showed that there are not actually multiple 

values for tau that would significantly reduce error.  

Contour plots of the other combinations of coefficients largely showed the expected 

values for minimizing error. The lowest error for b was found at approximately 0.1 1/year, and 

for a at approximately 1.7 C/year. (These results are shown in Figure 12.) 
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a)  

b)  

Figure 11​: a) Contour plot showing the RMSE (vertical axis) resulting from a range of values tested for a and tau, 

with c, b and d = 0. A range of optimal values are shown. b) Plot resulting from a range of values tested for a and 

tau when b is varied, and c is fixed at -1.5 C/year. As a result, the optimal tau and a are constrained.  
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a)  

b)  
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c)  

 

Figure 12:​ Examples of contour plots for other combinations of coefficients. a) Contour plot showing the RMSE 

(vertical axis) resulting from a range of values tested for b and tau. Here, a varies, and c = 0. b) Plot resulting from 

testing a and b, with c fixed at -1.5 C/year. c) Plot demonstrating error resulting from different values for a and b, 

with c = 0. Tau varies.  

 

Incorporating a term representing the AMO index reduced error slightly. Using the 

unsmoothed AMO dataset reduced RMSE by 0.006 C, with e = 0.14 1/year; using the smoothed 

dataset reduced RMSE by 0.008, with e = 0.076 1/year (see Equation 7). While this was a slight 

improvement in the simple model’s accuracy, the difference was very small, especially compared 

to the effect the other three factors have on the error. (Removing ENSO from the equation, for 

example, increases error by 0.029 C.) As a result, we decided not to include AMO in future 

experiments.  

 

b. Reproducing and Predicting GCM Data with the One-temperature Model  

For the next stage of the project--reproducing GCM output--my first results involved using 

different types of ENSO data in the simple model. For a group of seven GCMs, comparing Nino 

3 and combined Nino 3, 4 data indicated that the latter yields lower error for the simple model. 
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Here, we did not detrend the ENSO data in any way, and used atmospheric carbon dioxide 

concentrations; the simple model was used to reproduce historical period data. For all but one 

GCM, Nino 3, 4 combined yielded lower error. The average RMSE for Nino 3 was 0.089; the 

average for Nino 3, 4 was 0.081. The difference between the errors in each case also varied 

considerably among individual models. Because of these results, for later stages of the project, 

we chose to use combined Nino 3, 4 data only. (These results are shown in Figure 13.) 

Results on detrending ENSO data were less definitive. For a group of six GCMs, 

comparing different ways of detrending the data--no detrending, detrending using the Matlab 

function, and detrending by removing the signal of log(​CO​2​)--indicated that no single method 

was best in all or almost all cases. (In this group, we also reproduced historical period data. 

Figure 14 depicts the results.) We did observe, however, that removing the signal of carbon 

dioxide was especially helpful in reproducing full period data. This makes sense, given that the 

warming signal due to carbon dioxide in the ENSO data would have a larger effect beyond the 

historical period. As the larger goal of this project is to use the simple model predictively, we 

decided to remove the log(​CO​2​) signal from the ENSO data going forward. 

 
Figure 13:​ Experiments in reproducing historical period GMST data for a group of General Circulation Models. 

For each GCM, one experiment was performed using Nino 3, and one using Nino 3, 4, which yielded the lowest 

RMSE.  
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Figure 14​: As in Figure 12, but for each GCM, one experiment was performed using original ENSO data, one using 

the Matlab detrend function, and one using log(​CO​2​).  

 

Trying out different types of carbon dioxide data initially did not yield clear results. For a 

group of seven GCMs, we reproduced historical period data with both atmospheric and 

equivalent carbon dioxide concentrations. For four GCMs, equivalent carbon dioxide reduced 

error more; for three GCMs, atmospheric carbon dioxide concentrations reduced error more, or 

did not change the results. When we performed this experiment for the same group of GCMs 

with the full period GMST data, the results were similar; equivalent carbon dioxide reduced error 

for the same four out of seven GCMs. Using the simple model predictively yielded slightly better 

results for equivalent carbon dioxide--five out of seven models had improved results, as opposed 

to two for which atmospheric concentrations reduced error the most. (For these and all 

experiments going forward, we used Nino 3, 4 combined data and detrended the data using the 

log(​CO​2​) signal.)  
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Figure 15​: Experiments in reproducing historical period GMST data for a group of General Circulation Models. 

For each GCM, one experiment was performed using atmospheric carbon dioxide data, and one using equivalent 

carbon dioxide data. RCP 4.5 data was used.  

 
Figure 16:​ As in Figure 14, but for full period GMST data.  
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Figure 17​: As in Figure 14, but for predictive GCM experiments: the model is tuned using historical period GMST, 

and then used to predict future period data.  

 

Noting the aerosol interactivity of each GCM explained why some models improved 

when equivalent carbon dioxide was used, and some did not. For those fully interactive with 

aerosols, as indicated in “Physical Science Basis 2013,” atmospheric concentrations led to higher 

errors. For those that were either not interactive or semi interactive, atmospheric concentrations 

used in the simple model yielded lower errors. This was true in almost all cases for both 

historical period and full period runs, as well as when the model was used predictively. The only 

exception was CNRM CM5, which is not interactive with aerosols, when the simple model was 

used predictively; in this case, equivalent carbon dioxide reduced error the most. These results 

are summarized in Table 1.  
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GCM Aerosol interactivity 

RMSE (equivalent) - RMSE (atmospheric) 

Historical period Full Period Predictive 

ACCESS 1.0 Full -0.0014 -0.0007 -0.0766 

Can ESM2 Full -0.0095 -0.0143 -0.133 

CCSM4 Semi 0.0004 0.0126 0.1138 

CNRM CM5 No 0.0002 0.0027 -0.0609 

GISS E2 H Semi 0.0086 0.0101 0.0741 

MIROC 5 Full -0.0048 -0.0078 -0.0661 

NORESM1 M Full -0.0063 -0.0044 -0.0783 

 

Table 1:​ Comparing errors for equivalent vs. atmospheric carbon dioxide in historical period, full period and 

predictive runs of the simple model. Negative results in the error column indicate that for that GCM, equivalent 

carbon dioxide yielded better results for the simple model; this correlates to full aerosol interactivity in almost all 

cases.  
 

Overall, the simple model reproduced GCM historical period GMST well. For many 

GCMs, the model’s GMST output is nearly indistinguishable from the simple model output, 

especially for the full period and historical period runs. ​These findings present one of the 

central results of this project.​ Table 2 summarizes these results for each model. Figure 18 

depicts the visual results for two GCMs.  

Calculating a*tau*log(2) for each experiment did not provide results that pointed 

definitively to the value being equal to either equilibrium or transient climate sensitivity. For 

historical period runs, a*tau*log(2) was closer to transient sensitivity in 8/14 cases; for the full 

period runs, the value was closer to transient sensitivity in 4/14 cases. The average difference 

between a*tau*log(2) and transient sensitivity for the historical period was 0.77 C; for 

equilibrium sensitivity it was 0.88 C. For full period runs, the average difference between 

a*tau*log(2) and transient sensitivity was 0.84 C; for equilibrium sensitivity it was 0.54 C. For 

certain experiments, the difference was zero; for others, it was as high as 2.09. In general, that 

the longer time period would provide more accurate results for equilibrium sensitivity makes 

sense. The lack of definitive results for a*tau*log(2), however, is puzzling. For the historical 

period, analyzing the difference between atmospheric and equivalent carbon dioxide experiments 
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did not provide clear results, either. The type of carbon dioxide that provided the lowest model 

error for reproducing GCM data did not necessarily provide the closest match of a*tau*log(2) to 

either transient or equilibrium sensitivity; the same goes for the full period experiments. For the 

longer period, however, there was an interesting pattern: using atmospheric carbon dioxide 

yielded lower error for the equilibrium sensitivity for all GCMs but one, and using equivalent 

carbon dioxide yielded lower error for the transient sensitivity in all cases. We were not sure 

what might explain this, and noted that because the other climate sensitivity results were not 

clear, this result may also be somewhat random. 

 

GCM CO​2​ used 

RMSE of best experiment 

Historical 
period Full Period 

ACCESS 1.0 Equivalent 0.0827 0.108 

Can ESM2 Equivalent 0.0912 0.0879 

CCSM4 Atmospheric 0.0559 0.0772 

CNRM CM5 Atmospheric 0.1048 0.1244 

GISS E2 H Atmospheric 0.0578 0.0554 

MIROC 5 Equivalent 0.0802 0.0865 

NORESM1 M Equivalent 0.0597 0.0699 
 

Table 2:​ Summary of results for reproducing both historical and full period GMST data. For each GCM, the best 

result found is shown, and the ​CO​2​ data used in that run is indicated. For all experiments in this table, combined 

Nino 3, 4 data was used, and ENSO was detrended by removing the signal of log (​CO​2​).  

 

While tuning the model using the full period yielded good results, the error for using the 

model predictively (using coefficients from the historical period) was considerably higher; in 

most cases, the simple model and the GCM data diverge in the second half of the 21st century. 

More specifically, as time goes on, GCM temperature rises at a rate that the simple model does 

not reproduce. (GISS E2 H was a notable exception.) Table 3 describes the results for these 

predictive experiments. Figure 18 provides a visual example of the historical period, full period 

and predictive results for two GCMs, Nor ESM1 M and CNRM CM5.  
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GCM CO​2​ used RMSE 

ACCESS 1.0 Equivalent 0.2459 

Can ESM2 Equivalent 0.1486 

CCSM4 Atmospheric 0.2503 

CNRM CM5 Equivalent 0.205 

GISS E2 H Atmospheric 0.0914 

MIROC 5 Equivalent  0.1734 

NORESM1 M Equivalent 0.0943 
 

Table 3:​ As in Table 2, but for predictive experiments: the simple model was tuned using historical period GCM 

data, and the resulting coefficients were used to predict data for the future period. 

 

a)  
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b)   

 

c)  
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d)  

e)  
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f)  

Figure 18​: GCM data and simple model for six experiments based on the NorESM1 M GCM and CNRM CM5 

models. For all three NORESM1 M experiments, equivalent carbon dioxide is used, which provided the best results. 

For the historical and full period CNRM CM5 experiments shown, atmospheric carbon dioxide was used. For the 

predictive CNRM CM5 experiment, equivalent carbon dioxide was used. a) The simple model tuned using the 

historical period for NORESM1 M. b) The simple model tuned using the entire period, 1890-2099, for NORESM1 

M. b) The simple model tuned using the historical period, and then used to predict temperature anomalies through 

2099 for NORESM1 M. The simple model and the GCM data diverge during the later part of the 21st century. d) 

The simple model tuned using the historical period for CNRM CM5. e) The simple model tuned using the entire 

period, 1890-2099, for CNRM CM5. f) The simple model tuned using the historical period, and then used to predict 

temperature anomalies through 2099 for CNRM CM5. As for NORESM1 M and most other GCMs used, the simple 

model and the GCM data diverge during the later part of the 21st century.  

 

c. Comparing with the Multimodel Mean 

The predictive results detailed previously motivated us to compare the simple model with the 

multimodel mean. This comparison yielded similar results to the predictive experiments. Using 

the coefficients found to best reproduce the observations in simple model (without ENSO or 

volcanic eruptions) showed that the multimodel mean’s temperatures rose above the simple 

model, especially after 2100.  

40 



 
Figure 19​: Multimodel means of GCMs for each Representative Concentration Pathway plotted against 

temperatures produced by the original version of the simple model. Here, Mean B is used (dash-dot lines; see 

Methods section). For the simple model (dashed lines), the ENSO and volcanic terms are ignored, and equivalent 

carbon dioxide concentrations are used. The coefficients found best to best reproduce the historical period 

observations are applied here: tau = 2 years, a = 1.76 C/year, b = 0.122 1/year, c = -1.47 C/year, d = 0.0134 

C/year. Here, the multimodel means show higher temperatures than the simple model, starting in the later part of 

the 21st century. 

 

These results indicated that the simple model was not capturing something critical to 

long-term GMST patterns. We hypothesized that we needed to add something to the model so 

that it could take into account the climate system’s inertia and, more specifically, the heat 

absorbed and released by the deeper ocean. This led us to Equations 8a and 8b. Using this new 

version of the simple model with the coefficients tau = 4 years, tau1 = 4 years, tau2 = 56 years, a 

= 1.21 C/year and d = 0.03 C/year, the simple model with equivalent carbon dioxide closely 

resembled the multimodel mean. This is shown in Figure 20. (The ENSO and SAOD terms were 

not used.) Adjusting a to 1.36 C/year made the simple model with atmospheric carbon dioxide 

more closely resemble the multimodel mean. In both cases, the simple model least resembled the 

multimodel mean for RCP 2.6; the difference may be exacerbated by the jump observed at the 
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year 2100, due to the fact that not all models extend past that year. The jump is eliminated in 

Mean C, which was unfortunately less useful for comparison, for reasons outlined in the 

Methods section. ​Figure 20 represents another one of the central findings of this study.  

 
Figure 20:​ As in Figure 18, but with the two-temperature version of the simple model. The following coefficients 

were used: tau = 4 years, tau1 = 4 years, tau2 = 56 years, a = 1.21 C/year, d = 0.03 C/year. This figure represents 

one of the central findings of this study: that the two-box model, taking into account the basic physics of global 

warming, can closely reproduce GMST projections as represented by the GCM multimodel mean.  

 

For the original version of the simple model, a particular GCM’s aerosol interactivity 

correlated to the type of carbon dioxide data that minimized model error. As a result, we 

hypothesized that comparing the results of this new version of the simple model to Multimodel 

Mean D, for which the GCMs were separated by aerosol interactivity, might be useful. The 

results, however (shown in Figure 21) were inconclusive. When the coefficients that worked to 

match Mean B were used in the simple model, the mean for the GCMs interactive with aerosols 

did not neatly match the simple model with equivalent carbon dioxide. This might be due to the 

nature of Mean D; as outlined in the Methods section, there were not enough GCMs in each 

group to generate a meaningful multimodel mean.  
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Figure 21​: As in Figure 20, but with Multimodel Mean D instead of Mean B.  

 

d. Reproducing and Predicting GCM Data with the Two-temperature Model 

Applying the new version of the simple model to individual GCMs yielded mixed results. For the 

historical period experiments, using the two-temperature model increased model error in 9/14 

cases. This was expected, as the model was already functioning well without taking into account 

deep ocean temperatures, and deep ocean temperatures should have a small effect during this 

period. This matches the presumption of Held et al. that for early enough times, only the fast 

component of global warming is critical (2009). In addition, the differences between the error for 

the one- and two-temperature models were very small; the average magnitude of the difference 

in RMSE was 0.005. For the experiments in reproducing full period data, the new version of the 

simple model increased model error in 6/14 cases. While deep ocean temperatures should affect 

warming more in the full period, we only made predictions through 2099. As Figures 18 and 19 

show, the warming that the two-temperature model helps to replicate is most important in the 

years that follow. Due to this, and the fact that in many cases the one-temperature model was 
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already working well, the results from the two-temperature model made sense. Tables 4 and 5 

show the best results for these experiments for each GCM.  

 

GCM CO​2​ Used RMSE 

RMSE (One 
temperature model) - 
RMSE (Two 
temperature model) 

GISS E2 H Atmospheric 0.0494 0.0084 

GISS E2 H Equivalent 0.0525 0.0139 

MIROC 5 Atmospheric 0.0885 -0.0035 

MIROC 5 Equivalent 0.0834 -0.0032 

Can ESM2 Atmospheric 0.1089 -0.0082 

Can ESM2 Equivalent 0.1 -0.0088 

ACCESS 1.0 Atmospheric 0.0869 -0.0028 

ACCESS 1.0 Equivalent 0.0837 -0.001 

CNRM CM5 Atmospheric 0.1006 0.0042 

CNRM CM5 Equivalent 0.1001 0.0049 

CCSM4 Atmospheric 0.0599 -0.004 

CCSM4 Equivalent 0.0554 0.0009 

NORESM1 M Atmospheric 0.0694 -0.0034 

NORESM1 M Equivalent 0.0633 -0.0036 

 

Table 4:​ The results from reproducing historical period data with the two-temperature model. The type of carbon 

dioxide data used in each experiment is indicated. For all experiments in this table, combined Nino 3, 4 data was 

used, and ENSO was detrended by removing the signal of log (​CO​2 ​). The fourth column indicates the difference 

between the RMSE resulting from the one- and two-temperature models. 
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GCM CO​2​ Used RMSE 

RMSE (One 
temperature model) - 
RMSE (Two 
temperature model) 

GISS E2 H Atmospheric 0.0785 -0.0231 

GISS E2 H Equivalent 0.0811 -0.0156 

MIROC 5 Atmospheric 0.0819 0.0124 

MIROC 5 Equivalent 0.0744 0.0121 

Can ESM2 Atmospheric 0.1129 -0.0107 

Can ESM2 Equivalent 0.1044 -0.0165 

ACCESS 1.0 Atmospheric 0.0825 0.0262 

ACCESS 1.0 Equivalent 0.0785 0.0295 

CNRM CM5 Atmospheric 0.088 0.0364 

CNRM CM5 Equivalent 0.086 0.0411 

CCSM4 Atmospheric 0.1163 -0.0391 

CCSM4 Equivalent 0.1201 -0.0303 

NORESM1 M Atmospheric 0.069 0.0053 

NORESM1 M Equivalent 0.0641 0.0058 
 

Table 5:​ As in Table 4, but for full period GCM data.  

 

As expected, the predictive experiments improved the most when deep ocean 

temperatures were incorporated into the model: RMSE increased for only 5/14 experiments. ​The 

predictive improvements of the two-temperature model represents a central finding of this 

study. ​The differences in error were more significant for the predictive runs than the full period 

or historical period experiments. In cases where the two-temperature model decreased error, the 

average difference was 0.1 C. For GISS E2 H, the original model had already succeeded in 

predicting future period temperatures with a low error, and the two-temperature model did not 

improve predictions. While NORESM1 M had one bad result from the two-temperature model, 

the difference from the one-temperature model was very small. All other models improved from 

the two-temperature model with the exception of CCSM4. Table 6 summarizes these results, and 

Figure 22 visually shows the model comparison for two GCMs.  
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GCM CO​2​ Used RMSE 

RMSE (One 
temperature model) - 
RMSE (Two 
temperature model) 

GISS E2 H Atmospheric 0.1647 -0.0733 

GISS E2 H Equivalent 0.2817 -0.1162 

MIROC 5 Atmospheric 0.1353 0.1042 

MIROC 5 Equivalent 0.0753 0.0981 

Can ESM2 Atmospheric 0.151 0.1306 

Can ESM2 Equivalent 0.122 0.0266 

ACCESS 1.0 Atmospheric 0.2325 0.09 

ACCESS 1.0 Equivalent 0.143 0.1029 

CNRM CM5 Atmospheric 0.0988 0.1671 

CNRM CM5 Equivalent 0.1109 0.0941 

CCSM4 Atmospheric 0.4225 -0.1722 

CCSM4 Equivalent 0.5275 -0.1634 

NORESM1 M Atmospheric 0.0714 0.1012 

NORESM1 M Equivalent 0.102 -0.0077 

 

Table 6:​ As in Table 4, but for predictive GCM experiments.  

 

The aerosol interactivity matched the type of carbon dioxide data that provided the best 

result in all but four cases for 42 experiments. The exceptions were: CNRM CM5 full and 

historical period experiments; CCSM4 historical period experiments; and NORESM1 M 

predictive experiments. In all other cases, equivalent carbon dioxide data reduced error the most 

for fully interactive GCMs, and atmospheric carbon dioxide data reduced error the most for 

semi-interactive or not interactive GCMs. While this was not as consistent as the 

one-temperature model experiments, for which there was a match in all but one case, it is still a 

strong correlation. In addition, for all but the last case, the difference in RMSE between the 

atmospheric and equivalent carbon dioxide results was under 0.01, indicating that those 

differences were not very significant.  
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a) b)  

c) d)  

Figure 22​: Predictive experiments with both the one-temperature and two-temperature versions of the simple model 

for two GCMs . The experiment shown for each is the one with the type of carbon dioxide data that yielded the 

lowest error. a) GISS E2 H predictive experiment with the one-temperature model and atmospheric carbon dioxide. 

b) GISS E2 H predictive experiment with the two-temperature model and atmospheric carbon dioxide. c) MIROC 5 

predictive experiment with the one-temperature model and equivalent carbon dioxide. d) MIROC 5 predictive 

experiment with the two-temperature model and equivalent carbon dioxide.  

 

DISCUSSION  

 

Overall, the simple model reproduces historical and full period data remarkably well for both the 

observations and the GCMs. While error varied among GCMs, in most cases, the simple model 

captures the most important features of GMST. This demonstrates the core finding of this 

project: while GCMs are much more complex, they follow the same basic physics of global 

warming as the simple model. While errors for using the simple model predictively were higher, 
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incorporating deep ocean temperatures helped to capture warming inertia and reproduce the 

warming that continues after emissions flatten.  

Using combined Nino 3, 4 data instead of Nino 3 lowered the simple model RMSE. This 

result was expected, as Nino 3, 4 characterizes a larger area of the Pacific and helps to fully 

capture El Nino oscillations. Detrending the ENSO data by removing the warming signal from 

carbon dioxide also helped to calibrate the simple model and reduce RMSE by isolating the 

signals of El Nino and warming from greenhouse gases. The assumption that using only 

atmospheric carbon dioxide concentrations, as the forcing from other greenhouse gases and 

aerosols would cancel each other out, did prove true, as the simple model with atmospheric 

concentrations reproduced GMST well in most cases. For the GCMs that are fully interactive 

with aerosols, however, the simple model was also improved by using equivalent carbon dioxide 

concentrations in a majority of experiments. This makes sense, as the forcing from aerosols 

would be stronger in those cases, and capturing that using equivalent concentrations would make 

the simple model more accurate. Including AMO in the model did not significantly improve 

accuracy; this underlines that GMST trends are largely dependent on the most basic physics of 

global warming, and that while forcings other than the original three included factors are 

important, they are not critical to modeling GMST behavior.  

Comparing the simple model results to the multimodel mean was useful, but had 

limitations. While the multimodel mean is somewhat successful in eliminating the biases of 

individual GCMs and thus useful for comparison the simple model, a limited amount of GCM 

data was available for all four Representative Concentration Pathways. The differences between 

the multimodel means calculated in the Methods section demonstrates the extent to which the 

multimodel mean we used for comparison is not definitive. Despite its limitations, using the 

mean for comparison to the simple model made the case for using the two-temperature equation 

in order to capture the slow component of global warming. This method helped the simple model 

output correlate closely to the multimodel mean, and also ended up reducing predictive errors 

significantly for many GCMs. The predictive success of the two-temperature model, and its 

ability to closely replicate the GCM multimodel mean, represent some of the most important 

findings of this paper.  
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Fixing the damping coefficients at the values that best helped the two-temperature model 

to reproduce the multimodel mean was successful in most cases for reproducing individual GCM 

data. For the historical and full period experiments, the two-temperature model did not greatly 

alter results, and in about half of cases made them slightly worse. This correlates with the 

assumption that the slow component of global warming captured by the addition of the deep 

ocean temperature term is not very important in the historical period, and is most important for 

predictions, and especially for the later part of the full period. For a majority of experiments, the 

simple model was able to successfully make predictions with either the one-temperature or, as in 

most cases, the two-temperature model. This result demonstrates that even GCM predictions boil 

down to the basic factors included in the simple model, and that when only GMST is required, it 

might be possible to make predictions without GCMs. Making predictions with the simple model 

past 2100 for GCMs for which GMST output is available through 2300 might help to further test 

the predictive power of the two-temperature model, as the warming captured by the inclusion of 

deep ocean temperatures is particularly important after 2100. The results of this project could 

also be used in the future to investigate what causes GCMs to exhibit different GMST trends. 

The model also has implications for policy and education. The focus on only three 

factors--ENSO, carbon dioxide, and volcanic aerosols--and the simplicity of the output (only 

GMST) make it a useful tool for educating people about the most important forcings that affect 

our planet’s temperatures. To that end, we are developing a simple tool that will provide easy 

access to the model online. The tool consists of a screen that depicts the simple model output and 

observed GMST on the same graph. Users can adjust sliders to increase or decrease the strength 

of the three forcings, and see how turning them on and off changes GMST. We are planning to 

add a tutorial, background information, and a challenge for users: to adjust the forcings until they 

can determine what caused the “global warming hiatus” in the beginning of the 21st century. 

This last point is particularly important, as the hiatus was commonly cited as evidence that global 

warming is not real (Cohn, 2013). In adjusting the model’s forcings, users can see for themselves 

that the hiatus was just an aspect of normal variability, likely caused by ENSO. In a political 

climate in which climate denial is well funded and climate education--and science education in 
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general--is not, tools like this one, which requires no mathematical or scientific background, can 

prove helpful in educating the public.  

The simple model’s success can also have implications for climate policy. This might be 

especially true at the international level, where the success of efforts like the Paris Agreement is 

measured in degrees of warming. The Agreement requires that individual countries present 

Nationally Determined Contributions (NDCs), their plans for reducing emissions, with a global 

target of reducing warming to 1.5-2 degrees C above pre-industrial levels (UNFCCC - Nationally 

Determined Contributions). Current NDCs, however, are on track to result in 3.3 degrees of  

 
Figure 23: ​A screenshot of the educational tool that we are developing. The panel on the right displays the simple 

model in blue, and GMST observations in green. The panel on the left allows the user to adjust the strength of 

coefficients a (carbon dioxide forcing), b (ENSO), c (volcanic eruptions) and an additional switch that changes the 

carbon dioxide concentrations proportionally throughout the model. This is an early draft, and changes will be 

made in the future.  

 

warming above pre-industrial levels--and that’s only if the NDCs are actually achieved, which is 

not guaranteed (Climate Action Tracker). There is still opportunity for improvement, however: 

the Agreement requires that countries submit more ambitious NDCs over time (Rogelj et al.). 
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This past December, I was able to travel to the UN Climate Conference in Katowice, 

Poland, also known as COP24, where countries negotiated the rulebook for implementing the 

Paris Agreement. My experience there affirmed the importance of widely available information 

on climate modeling to the success of the Paris Agreement. At the conference, I observed how 

non-party stakeholders--these can include local governments, international organizations, 

non-profits, activists, academic institutions, businesses and others--are not only invited to COPs, 

but provided opportunities for input to negotiations (UNFCCC - Overview). The Paris 

Agreement is not legally binding, and in the vast majority of cases, governments will not act on 

their own. Pressure from these non-party stakeholders--both those participating in the 

negotiations and those organizing in their home countries--is critical in convincing their leaders 

and the international community to continuously improve their NDCs. In order to wield 

influence, it is often vital that these stakeholders can speak the language of climate science data 

used by member states and international organizations. Often, however, they do not have access 

to the same information and education used by national governments. And more specifically, 

knowing the effects that current NDCs will have on the planet, and why, can be helpful in 

pressing leaders to ratchet up ambition.  

The educational tool we are developing and the model itself, which can be run on any 

laptop, can help people understand the basics of what affects global temperatures, and, as a 

result, why ambitious NDCs are important. Adjusting GMST and observing the warming that has 

occurred since preindustrial times can help users comprehend how close we are to 1.5 and 2 

degrees of warming, and thus, why drastic climate action is necessary. The simple model also 

allows users to examine how much warming specific changes in greenhouse gas emissions 

would cause, which can help to analyze the NDCs of specific countries and the international 

community as a whole. Overall, the more ways there are to make climate science information 

accessible, the better, and we hope that the simple model outlined in this paper can help, even if 

in small ways.  
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