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Computing Pressure Fields Over Laboratory Water Waves Using

Particle Image Velocimetry Data

Christoph Sven Funke

Abstract

For over a century, scientists have been studying how wind drives water

waves. While multiple wave-growth theories exist, these theories are hard to

verify empirically. This is because empirical pressure fields over water are

difficult to measure directly. In this paper, I use laboratory particle image

velocimetry data to compute the first ever empirically derived pressure fields

over water waves. I compute phase average pressure fields for wind-driven

waves under four different wind speeds (U10 = 0.86 m s−1, 2.19 m s−1, 5.00 m s−1

and 9.41 m s−1). The pressure fields close the momentum budget to within

10% of total stress. At low wind speeds (U10 = 2.19 m s−1), the phase aver-

age pressure field is roughly 90◦ out of phase with the water surface. This

is optimal for doing work on the water. Wave growth at this wind speed is

driven primarily by a high pressure region on the windward side of the wave

that is caused by high linear strain and shear strain in the air flow. For the

two highest wind speed cases (U10 = 5.00 m s−1 and 9.41 m s−1) , the phase

average pressure field is out of phase with the wave. High pressure is found

in the wave trough and low is found on the wave crest. The low pressure

region on the wave crest is driven by high vorticity in the flow. It is skewed

slightly toward the leeward side of the wave, allowing work to be done on the

water wave.
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1 Introduction

The exact mechanism by which water waves grow remains poorly understood

and has been subject to research for over 100 years. While several theories

of wave growth exist, these theories are hard to verify due to difficulties

measuring full spatially-resolved pressure fields over water waves. In this

paper, I demonstrate that laboratory particle-image velocimetry data can be

used to compute empirical pressure fields over water waves. In the future,

such data can be used to verify wave growth theories and investigate in detail

atmosphere ocean interactions.

1.1 Theories of Wave Growth

Helmholtz (1868) and Thompson (1871) develop the most basic theory of

wave formation by their work on the Kelvin-Helmholtz instability. When

two fluids with different densities flow past each other at different speeds,

an instability arises at the fluid interface that can lead to wave growth.

While setting good foundation for future wave growth theories, the Kevlin-

Helmholtz instability inaccurately describes wave growth. According to the

theory, a minimum windspeed of 6.6 m s−1 is necessary to overcome surface

tension and create ripples in a quiescent water surface (Thompson, 1871).

In reality however, ripples are observed in wind speeds as low as 1.1 m s−1

(Jeffreys, 1925).

To address these shortcomings, Jeffreys (1925) develops a new hypothesis

of wave growth. First, Jeffreys shows that any accurate wave growth theory

must treat the airflow as rotational and thus take into account turbulence.

Next, Jeffreys proposes the sheltering hypothesis of wave growth. According

to this theory, airflow separates from the water surface near the wave crest.

Impaction on the subsequent wave causes wind to push more strongly against

the windward side of the wave than the sheltered leeward side of the wave.

This creates a relatively high pressure region on the windward side of the
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wave that drives wave growth. While Jeffrey’s sheltering hypothesis can be

tuned to match observed properties of water waves, it relies heavily on a

numerical ”sheltering coefficient” which cannot be calculated (Miles, 1957).

Attempted measurements of the sheltering coefficient on solid wave models

suggest that sheltering is not strong enough to cause wave growth (Phillips,

1957).

Eckart (1953) and Phillips (1957) investigate how random fluctuations

in pressure caused by wind blowing over a quiescent surface can cause wave

growth. Phillips describes a type of resonance between the random pressure

fluctuations and water waves by which waves can grow very quickly. The

Phillips mechanism is currently still viewed as one of the leading theories on

initial wave growth from a quiescent surface.

Finally, Miles (1957) investigates a mechanism for wave generation by a

parallel shear flow U(y). Given a wave speed c, Miles concludes that the

rate of wave growth is proportional to the second derivative U ′′(y) at the

height where the wind speed equals c. Miles’ theory correctly predicts that

the onset of wave formation occurs at wind speeds of around 1 m s−1.

While there has been a lot of work done on developing theories of wave

growth, these theories are hard to verify. Several studies have attempted to

use direct numerical simulations (DNS) to investigate turbulent airflow over

water waves (Sullivan et al., 2018; Yang et al., 2018; Yang and Shen, 2010;

Sullivan et al., 2000). True verification of wave growth theories, however, re-

quires detailed measurments of velocity fields and pressure fields over ocean

waves. So far, no such measurements exist. Recently, however, Buckley and

Veron (2016) uses particle image velocimetrey (PIV) to obtain velocity fields

over laboratory water waves with a horizontal and vertical resolution of un-

der 200 µm. PIV is a technique in which tracer particles are injected into

an airflow, illuminated using lasers, and repeatedly photographed with high

resolution cameras (Buckley and Veron, 2016). The particles can then be

correlated between successive pictures to obtain estimates of airflow veloc-
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ity. These data provide the first insight into verifying existing wave growth

theories. To date, however, no empirically derived pressure fields over water

waves have ever been published.

1.2 Computing Pressure from PIV Data

Direct measurement of pressure in airflows is difficult. Traditionally, surface

pressure measurements require orifices connected to microphones or trans-

ducers (Van Oudheusden, 2013). More recently, pressure-sensitive paint has

been developed to assist pressure measurments along a surface (Klein et al.,

2005). Neither of these methods, however, can be applied to measure air

pressure over water waves since wave surfaces are irregular, moving bound-

aries. Recent research, predominantly in engineering fields, has investigated

ways in which pressure fields can be calculated from high resolution PIV

data. PIV has the unique capability of capturing velocity fields in unsteady

flows. Van Oudheusden (2013) presents a review paper on the topic. In this

section, I briefly summarize developments pertaining to using PIV data in

field experiments.

Schwabe (1935) pioneered the use of flow images to compute pressure.

He used cinematographic recordings of aqueous flow around a cylinder to

deduce the pressure field in the flow. Being in a time before digital image

processing or computers, Schwabe’s method relied on lengths of streaklines

of tracer particles to determine flow directions and speeds. He integrated

along streamlines using the Bernoulli equation to obtain the pressure distri-

bution within the fluid. While crude, Schwabe’s results were qualitatively

reasonable. They mark the beginning of pressure computation for empirical

velocity data.

Willert and Gharib (1991) digitalized PIV image processing, which led

to a massive expansion of PIV use. One of the first use of digital PIV to

compute pressure was by Jakobsen et al. (1997). They used PIV to compute

pressure and acceleration within water waves hitting a solid boundary. They

5



focus entirely on the water itself, however, and not on the air above the

water. Since then, many other papers use PIV to compute pressure fields

(Baur, 1999; Liu and Katz, 2006; Murai et al., 2007).

In order to calculate pressure fields from PIV data, several approaches

are possible. The most basic approach is to use the Bernoulli relationship,

as done by Schwabe (1935). Alternate approaches involve solving the pres-

sure Poisson equation (Fujisawa et al., 2005) or spatial integration of the

Navier Stokes equations (Baur, 1999; Liu and Katz, 2006). In a comparative

study of the three methods, Murai et al. (2007) find the Bernoulli approach

is inaccurate and does not give realistic pressure fields. This is because tur-

bulence within the flow violates the steady-state assumption of the Bernoulli

equation. The other two approaches give qualitatively similar results. The

pressure Poisson method was found to be most robust to noise in the data

but is sensitive to the choice of boundary conditions. On the other hand, the

spatial integration method is more sensitive to noise in the data but does not

require exact boundary conditions. In order to use the spatial integration ap-

proach, however, the material derivative Dv/Dt must be known in the flow.

Measuring the material requires a PIV setup that takes enough back-to-back

photographs to estimate not only the velocity field, but also how it changes

in time (∂v/∂t). While possible, this is technologically more difficult. In this

paper, I thus use the pressure Poisson method for determining pressure.

1.3 Overview

I begin this paper by summarizing the PIV data I use to compute the pres-

sure fields over water waves. Then, I outline the pressure Poisson approach

of computing pressure and describe the numerical methods I use to solve the

pressure Poisson equation. I verify my method by running the Poisson solver

on large eddy simulation (LES) output data and comparing my computed

pressure fields with those from the LES simulation. Next, I investigate the

phase average pressure field over wind-driven water waves for three differ-

6



Figure 1: Schematic diagram of the experimental setup. Image modified

from Buckley and Veron (2016)

ent wind speeds: U10 = 0.86 m s−1, 2.19 m s−1, 5.00 m s−1, and 9.41 m s−1.

Here, U10 refers to the mean horizontal wind speed at an altitude of 10 m

above the water surface. I further verify these pressure fields by computing

the average form drag over water waves and comparing it with the form drag

predicted by law of the wall theory. Finally, in the last section, I describe

how interaction between strain and vorticity in different regions of the flow

lead to each the observed pressure fields.

2 Data

The data used in this experiment consist of PIV measurements collected

by Buckley and Veron (2016) in a large wind-wave current tank at the Air

Sea Interaction Laboratory of the University of Delaware. Fig. 1 shows a

schematic diagram of the experimental setup. Buckley and Veron (2016) use

a combination of PIV and Laser Induced Floresence techniques to measure

air particle motions within, on average, 100 µm of the water surface. The

final data consist of two-dimensional velocity fields of the airflow over wind-

driven water waves. Measured are instantaneous snapshots of horizontal

velocity u and vertical velocity w, from which I can compute gradients ∂u/∂x,

∂u/∂z, ∂w/∂z, and ∂w/∂x. The final, processed data are on a square grid
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with grid spacing 186 µm. The total length of the grid is 18 cm by 8 cm,

corresponding to 981 grid points in the horizontal direction and roughly 350

grid points in vertical direction. The PIV cameras operated at 14.4 frames

per second, thus yielding 7.2 velocity estimates per second. The frequency

of these velocity estimates is not enough to accurately compute the material

acceleration (Dv/Dt). Figure 2 shows a sample image of the data.

Figure 2: Instantaneous horizontal velocity for the U10 = 9.41 m s−1 wind

speed case. Shown is u/U10. Velocity measurments are on a grid with grid

spacing of 186 m. Image modified from Buckley and Veron (2016)

The data are categorized by U10 equivalent wind speed. For all data

sets used in this paper, waves were entirely driven by the overlying wind.

U10 wind speeds are computed by extrapolating the logarithmic part of the

velocity profile. For this analysis, I use data from five different wind speeds:

U10 = 0.86 m s−1, U10 = 2.19 m s−1, U10 = 5.00 m s−1, U10 = 9.41 m s−1.

While PIV data were collected for higher wind speed cases, I focus on small

wind speeds because (1) they are most interesting for wave growth and (2)

they better fit assumptions I make on boundary conditions (see Section 3.4

for details). Table 1 gives a a summary of wave characteristics for each of the

four wind speed cases. Values were taken from (Buckley and Veron, 2016).
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Table 1: Summary of wave characteristic for each of the wave types studies.

U10 is the extrapolated U10 equivalent wind speed; N is the number of PIV

samples; fp is the peak wave frequency; λp is the the wavelength as computed

from applying linear wave theory to fp; and a =
√

2 arms, where arms is the

root mean square wave amplitude. Values taken from (Buckley and Veron,

2016)

U10 ( m s−1) N a (cm) λp (m) fp(Hz)

0.86 1524 − − −
2.19 1989 0.15 0.14 3.3

5.00 617 0.50 0.25 2.5

9.41 997 1.20 0.39 2.0

3 Methodology

I use the pressure Poisson equation in order to compute pressure fields from

the PIV data. As mentioned above, the data collected by Buckley and Veron

(2016) do not have sufficient time resolution to compute the material deriva-

tive required for the spatial integration approach. In this subsequent section,

I outline the derivation of the pressure Poisson equation and the numeri-

cal method I use to solve the Poisson equation. Then, I review the phase-

averaging process I use to average the pressure fields. Finally, I describe two

different sets of boundary conditions I use to compute the pressure fields.

3.1 Poisson Approach

For incompressible flows (∇ · v = 0), pressure is related to gradients in

velocity according to

−∇2p = f, (1)
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where

f = ρ∇ · (v · ∇v). (2)

Eq. 1 can be derived by taking the divergence of the Navier-Stokes Equa-

tions. For a full derivation, see Appendix A. In this paper, I subsequently

refer to the function f as the forcing function to the system. This name is

suitable since Eq. 1 is analogous to the forced, steady state heat equation.

In this context, points with positive f are heat sources whereas points with

negative f are heat sinks. In the pressure Poisson problem, this means that

regions with f > 0 tend to have maxima in pressure whereas regions with

f < 0 tend to have minima in pressure.

For my analysis, I further simplify the system by assuming that the flow

is planar (v = 0). This is necessary because the PIV only gives velocity

measurements on a plane. The assumption is nontrivial since the flow is

turbulent. I show in section 4, however, that on average the deviations

from planarity cancel out allowing me to nonetheless obtain realistic average

pressure fields. Assuming the flow is planar, the forcing function simplifies

to

f = −2ρ

(
∂u

∂x

∂w

∂z
− ∂u

∂z

∂w

∂x

)
. (3)

Alternate formulations of f are possible due to the planar continuity

relationship ∂u/∂x = −∂w/∂z. I chose the formulation given by Eq. 3

because it gives an unbiased estimate of f , even when there is noise in the

data. For a derivation and explanation of these findings, see Appendix D.

3.2 Numerical Procedure

In order to solve Eq. 1, I use a finite differences scheme on a grid coinciding

with the data measurements. Let hx be the grid spacing in the x-direction

and hz be the grid spacing in the z-direction. Furthermore, let Pi,k be the

pressure at the ith grid point in the x-direction and the kth grid point in the
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z-direction. I then compute the forcing function f at each grid point from

the data using Eq. 3. Over the interior of the domain, each grid point is

then related to its neighbors by

Pi+1, k + Pi−1, k − 2Pi, k
h2x

+
Pi, k+1 + Pi, k−1 − 2Pi, k

h2z
= −fi,k. (4)

In order to accomodate for the wavy bottom boundary of the computa-

tional domain, I discretize the water surface at the bottom of the domain to

make it coincide with the grid points. To specify Neumann boundary con-

ditions, I then use appropriate second-order-accurate approximations along

the boundary. For Dirichlet boundary conditions, I set the pressure at the

nearest boundary point equal to the appropriate value.

3.3 Phase Average

I am are interested determining the pressure that, on average, acts on each

part of the wave. This involves, for example, averaging pressure over the wave

crest or wave trough at different heights above the water surface. Throughout

the rest of the paper, I refer to such an average the phase average. In this

section, I describe the method I use to phase average data. The water waves

in the data are multichromatic and display large variability within wind

speeds. First and foremost, phase averaging therefore requires a method of

reliably determining wave phase along each part of the water surface.

Figure 3 shows a typical wave profile in a PIV image. I begin the phase

averaging process by defining a new coordinate system (ξ, ζ) in the region

above the wave. In this coordinate system, the ξ-coordinate is identical to

the x-coordinate. The new vertical ordinate ζ, however, measures distance

above the water surface (η). Thusξ(x, z) = x

ζ(x, z) = z − η(x).
(5)
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Figure 3: Plot of Coordinate system used during for the analysis. The light

gray lines indicate lines of constant ξ and ζ. The thick black line indicates

the water surface. Values on the abscissa are wave phases (φ), as detected

using a Hilbert transform.

I detect wave phases for every ξ-coordinate using a Hilbert transform of

the water surface profile. This is identical to the phase detection in Buckley

and Veron (2016). A wave phase (φ) of 0 denotes the wave crest and a wave

phase of ±π denotes the wave trough (see abscissa in Fig. 3). To obtain a

phase-average field, I then group the ξ-coordinates into n = 144 uniformly

sized phase bins covering the interval −π < φ < π. I average data from all

PIV snapshots that are within the same phase bin and at the same height ζ

above the water surface. The resultant phase average has the same vertical

resolution as the original data but only 144 grid points in the horizontal

direction (one per phase bin). The horizontal axis is converted from phase

back into distance using the wavelength λp given in Table 1.
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3.4 Boundary Conditions

As stated by Murai et al. (2007), the Poisson approach is highly sensitive

to boundary conditions. The ideal boundary conditions for the flow can be

derived by taking the dot product of the Navier-Stokes equations with a

normal vector (n) to the boundary. This yields the Neumann-type boundary

condition

dp

dn
= n ·

(
− ρDu

Dt
+ µ∇2v

)
. (6)

The problem with this boundary condition is that the data do not have

adequate temporal resolution to compute the material derivative Du/Dt.

Furthermore, in order for the Poisson problem to be well posed, I need a

Dirichlet boundary condition on at least one point along the boundary. The

region of the boundary with a Dirichlet boundary condition must be carefully

chosen so as not to skew the final pressure solution.

Given these challenges, I devise two separate methods of computing phase

average pressure from the PIV data. In both methods, I make assumptions

that make the Poisson problem solvable. While each method has weaknesses,

they yield qualitatively similar results suggesting the final solution is valid.

3.4.1 Method 1

In Method 1, I first compute an instantaneous pressure field for each PIV

velocity field. I then compute the phase average pressure field by phase

averaging all of the instantaneous pressure fields.

Along the top boundary, I use the Dirichlet boundary condition p =

0. By using this boundary condition, I assume that wave-induced pressure

perturbations have fully decayed by the top boundary. This assumption is

a good one for the lower wind speed cases where wave amplitude is much

smaller than the height of the computational domain.
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On the side boundaries, I use the Neumann condition dP/dn = 0. This

boundary condition is commonly used in the pressure Poisson problem when

exact boundary conditions are not known (Murai et al., 2007). It can be jus-

tified by Taylor’s frozen turbulence hypothesis and by the fact that pressure

fields are known to be smooth.

Finally, along the bottom boundary I use the Neumann condition

dp

dn
= n ·

(
− ρair

Dv

Dt

∣∣∣∣
surface

)
. (7)

This equation can be derived from Eq. 6 by neglecting the viscous compo-

nent. I compute the material derivative Dv/Dt using a no-slip assumption

with the water surface. The acceleration of the water surface is computed

using linear wave theory.

Weaknesses of this method are primarily in the top and side boundary

conditions. When wave amplitudes are large, the top boundary condition

is inaccurate and leads to large errors in the pressure solution. This is the

primary reason why I cannot extend my analysis to waves at wind speeds

higher than U10 = 9.41 m s−1. The side boundary condition is problematic

when the computational domain has a fin-like region on the sides. In this

case, inaccuracies in the side boundary condition strongly skew the pressure

solution.

3.4.2 Method 2

In Method 2, I assume that all waves for a given wind speed are identical.

Since the Poisson equation is linear, it then follows that I obtain the same

phase average pressure field regardless of whether I (1) solve for instanta-

neous pressure fields first and then phase average or (2) phase average f first

and then solve for the pressure field. For a derivation of these results, see

Appendix C. While Method 1 takes the former approach, Method 2 takes

the latter approach.
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In Method 2, I begin by phase-averaging f and then runing the Poissson

solver on the result. I now use periodic boundary conditions on the side

boundary. This is a natural choice of boundary conditions since phase aver-

ages themselves are periodic. For the top boundary, I again use the boundary

condition P = 0. I observe, however, that phase average f decays rapidly

away from the water surface (see section 55.3). This allows me to extend the

computational domain upward to a height of 30 cm, setting f = 0 in the new

regions. By moving the top boundary farther from the water surface, I make

the top boundary condition more realistic. Finally, for the bottom bound-

ary (given by the phase-average water surface), I use the same boundary

condition as in Method 1 (see Eq. 7).

Method 2 is more robust in terms of the boundary conditions used than

Method 1. The computational domain has a larger vertical extent, making

the top boundary condition a better approximation. Furthermore the peri-

odic boundary condition on the side is highly appropriate for phase averages

and eliminates the problem of fin regions. The primary weakness of this

method is that the waves I am dealing with are not identical, as assumed.

I nonetheless believe this method yields a close approximation to the phase

average.

4 Program Validation: Comparison LES Re-

sults

To validate my two methods, I run my Poisson solver on output data from a

Large Eddy Simulation (LES) and compare the resulting pressure field with

the LES derived pressure field. I assume the LES field is the proper pressure

field since it is (1) consistent with the full Navier-Stokes equations and (2)

derived at every time step from a 3D consideration of the flow. The latter

is important because it allows me to estimate how large of an error results
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Figure 4: Comparison between (a) the phase averaged pressure field obtained

using Method 2 and (b) the average LES pressure field. To ease comparison,

both pressure fields are normalized to have mean zero. As can be seen, there

is close qualitative agreement between the two pressure fields.

from my assumption that the flow is planar (see Section 3.2).

To reasonably mimic experimental conditions, the LES simulation de-

scribes air flowing over a sine-wave mountain. The simulation is run on a

square 10 m×5 m×10 m (x×y×z) grid with grid spacing 0.02 m in all direc-

tions. The simulation uses periodic boundary conditions on the side bound-

aries and Neumann boundary conditions (d/dz = 0) on the top boundary.

The mountain is in the shape of a sign wave with amplitude 3.7 m. Unlike

a real water wave, the boundary used in the LES simulation does not move

with time. To accommodate for this, I replace the bottom boundary con-

dition in my Poisson solver (originally Eq. 7) with the Neumann condition

dP/dn = 0. The initial free stream horizontal wind speed used in the model

is 2.20 m s−1.

Figure 4(a) shows the resulting phase average pressure field calculated
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using Method 2 of the Poisson solver.1 Figure 4(b) shows the corresponding

average pressure field as from the LES simulation. As can be seen in the

two panels, there is good agreement between the pressure fields calculated

from my Poisson solver and the LES simulation. The average deviation

|PLES − PM2| relative to total variation (max{PLES} −min{PLES}) is 5%.

The small average deviation between the two pressure fields suggests that

my treatment of the flow as planar (see Section 3.2) is unproblematic. Even

if the assumption that the flow is planar is not fully satisfied, variations in v

cancel out on average allowing me to still get good results for phase average

pressure. These findings do not necessarily hold for instantaneous pressure

fields. Hence, in this paper, I only present phase-average pressure fields.

5 Results and Discussion

5.1 Phase Average Pressure Fields

Figures 5 and 6 show plots of phase average pressure for each wind speed

obtained by methods 1 and 2, respectively. As seen, both methods yield qual-

itatively similar pressure fields. The pressure fields obtained using Method

1 decay rapidly near the top of the domain. This is due to the effects of the

p = 0 boundary condition along the top boundary used during this method.

For all four wind speeds, the pressure fields are fairly smooth. This is in

agreement with my understanding that pressure, even in turbulent flows, is

a smooth function (Davidson, 2015). Between each successive wind speed,

the pressure perturbations in the airflow increase by a factor of roughly 10.

The U10 = 0.86 m s−1 is the control case since at this wind speed no

surface water waves are detectable. Since no waves were detectable, phases

1Results shown in Fig. 4 are averages in the y-direction rather than over time. I had

trouble downloading enough data (due to the large size of the LES outputs) in order to

do time averages. I will repeat the caparison with time average as soon as I find a way to

download the data.
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Figure 5: Plot of phase average pressure, as calculated by Method 1, for

(a) U10 = 0.86m s−1, (b) U10 = 2.19m s−1, (c) U10 = 5.00m s−1, (d) U10 =

9.41m s−1. Shown on the abscissa is wave phase. All pressure fields are in

Pascals. Wave as shown are propagating the the right.18



Figure 6: Plot of phase average pressure, as calculated using Method 2 for

(a) U10 = 0.86m s−1, (b) U10 = 2.19m s−1, (c) U10 = 5.00m s−1, (d) U10 =

9.41m s−1. Shown on the abscissa is wave phase. All pressure fields are in

Pascals. Wave as shown are propagating the the right.19



were randomly assigned. The pressure field for this case agrees with that of

air flowing over a flat horizontal surface. The pressure field is uniform with

phase and exists a small negative vertical pressure gradient. The pressure

field shown in Fig. 6 is more smooth than the one in 5 since it is the direct

output of the Poisson solver rather than an average of instantaneous profiles.

In the U10 = 2.19 m s−1 case, the pressure field is roughly 90◦ out of phase

with the wave. High pressure is found primarily on the windward, upward

sloping part of the wave whereas low pressure is found on the leeward, down-

ward sloping part of the wave. Such pressure field is optimal for performing

work on water and thus efficient at causing wave growth.

For the two highest wind speed cases the pressure field is out of phase

with the water surface. Low pressure regions are located near the wave crests

and high pressure regions are located in the wave troughs. I would a similar

pressure field over a water-wave oscillating with in an environment no mean

mean airflow (U = 0). This suggests that part of the pressure field in these

larger wave cases is wave-driven rather than wind-driven. Nonetheless, there

still seems to be a slight out-of-phase component to these pressure fields. The

maximum low pressure is just barely on the leeward of the wave crest while

the maximum high pressure is a tiny bit on the windward side of the wave

trough. This ensures that the air is still doing work on the water waves.

5.2 Form Drag and Viscous Stress Profiles

Having computed the phase average pressure fields, I verify them by demon-

strating that they close the momentum budget for all four wave speeds.

According to the law of the wall theory, stress near the water surface is com-

posed entirely of viscous stress and form drag (Kundu and Cohen, 2002). I

can thus estimate form drag in two independent ways. First, form drag can

be computed by subtracting viscous stress from total stress. Second, form

drag can be calculated directly from the phase average pressure fields. In

this section, I compute average viscous stress, total stress, and form drag for
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each wave and show that they are in agreement with my expectations. In

order to do this, I assuming total stress (τ0) is constant in the entire column.

To calculate total stress, I use

τ0 = ρu2∗. (8)

Here u∗ is the friction velocity and ρ is air density. According to law of the

wall theory, the friction velocity can be estimated from the slope dU/d log(z)

in the logarithmic layer of the flow profile. Buckley and Veron (2016) compute

friction velocity for each each wind speed by fitting a line of best fit to the

logarithmic part of the velocity profile. In this analysis, I use the friction

velocities calculated by Buckley and Veron (2016) to calculate total stress.

Table 2 shows the friction velocity and total stress for each wind speed.

Table 2: Table of total stress, viscous stress, and form drag for each of the

four wind speeds. Form drag was computed using each of the two methods

described above.

U10 (ms1) u∗ (cm s−1) τtot (Pa m−2) τvisc
τtot

1− τvisc
τtot

τform
τtot

Method 1 Method 2

0.86 2.6 0.0008281 1.33± 0.01 −0.33± 0.01 −0.0008± 0.0007 0.00027

2.19 7.3 0.006528 0.932± 0.004 0.068± 0.004 0.275± 0.008 0.166

5.00 16.7 0.03416 0.590± 0.005 0.41± 0.005 0.59± 0.05 0.367

9.41 31.4 0.1207 0.366± 0.003 0.634± 0.003 0.77± 0.08 0.715

To calculate viscous stress (τv), I use the equation for Newtonian fluids

that

τv = µ

(
∂u

∂x
+
∂w

∂z

)
. (9)

I compute average values of τv within the first 500 µm of the water using PIV

data. Figure 7 shows how viscous stress varies along the wave profile for each

wind speed. In the control case (U10 = 0.86 m s−1), there are no detectable
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Figure 7: Phase average viscous stress as fraction of total stress versus wave

phase for (a) U10 = 0.86 m s−1, (b) U10 = 2.19 m s−1, (c) U10 = 5.00 m s−1,

and (d) U10 = 9.41 m s−1.

waves and hence viscous stress is nearly constant with phase. In the other

wind speeds, viscous stress peaks slightly windward of the wave crest. This

is consistent with the finding of (Buckley, 2015) that the boundary layer

is thinnest near the wave crest. A thin boundary layer means that velocity

shear is large since u approaches its free stream veloicty rapidly with altitude.

The point of maximum viscous stress moves closer to the wave crest as wind

speed increases. The minimum viscous stress, on the other hand, occurs on

the leeward side of the wave near wave phase π/2. Minimum viscous stress

likely occurs in this region since it is the region that is most sheltered by the

wave. Table 2 shows the overall average viscous stress for each wave type.

Uncertainties in average viscous stresses are calculated using a bootstrap

algorithm.

Finally, I calculate form drag (τf ) directly from the pressure field using
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Figure 8: Phase average form drag as fraction of total stress versus wave

phase for (a) U10 = 0.86 m s−1, (b) U10 = 2.19 m s−1, (c) U10 = 5.00 m s−1,

and (d) U10 = 9.41 m s−1. Orange lines show the form drag computed by

Method 1 (running the solver on instantenous PIV fields) and blue lines show

the form drag computed for Method 2 (running the solver on phase average

f).

the pressure slope correlation (Grare et al., 2013):

τf =

〈
ps

dη

dx

〉
. (10)

Here, η is the height of the water surface, ps is surface pressure, and < · >
denotes an average over all phases. Figure 8 shows how pressure slope corre-

lation varies with phase for each wave type. As can be seen, pressure slope

correlation increases relative to total stress with increasing wind speed. For

the control case with no detectable wave (U10 = 0.86 m s−1), the pressure-

slope correlation fluctuates around zero with no consistent structure. This

agrees with my understanding that turbulent surface pressure variations are

random for flow over a flat surface. For the U10 = 2.19 m s−1 wind speed case,

the pressure slope correlation has a global maximum on the windward side of
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the wave. This suggests wave growth is driven primarily by the high pressure

region on the windward, upward sloping part of the wave. Finally, for the two

highest wind speed cases (U10 = 5.00 m s−1 and U10 = 9.41m s−1), the pres-

sure slope correlation has a global maximum on the leeward side of the wave.

Wave growth for these waves is thus primarily driven by the low pressure

region in the wake of the wave crest. This is consistent with the existence

of airflow separation for flow over large waves (Buckley, 2015). Nonetheless,

pressure slope correlation still has a local maximum on the windward side of

the wave, suggesting that this region still contributes to wave growth.

As shown in Table 2, the form drag (τf/τ0) calculated using Method

2 agrees to within about 10% of that expected from (τ0 − τv)/τ0 for the

three larger wind speeds. This further validates that the pressure fields I

computed are reasonable. For the smallest wind speed (U10 = 0.86 m s−1),

the disagreement is 33%. This, however, is because τv > τ0. My computed

form drag is nearly zero, which makes sense for a flat water surface.

Method 1 consistently overestimates form drag, suggesting that Method

2 is the better approach. This may be explained by the fact that Method 1 is

more is heavily affected by fin-like regions on the side the computational do-

main. By fin-like regions, I mean regions where the boundary forms an acute

angle. In such regions, errors in boundary conditions often cause extreme

values in pressure, which may explain why form drag estimates are too high.

Further experimentation is necessary, however, to confirm these findings.

5.3 Analysis of Phase Average f

In this section, I proceed to investigate which features of the airflow lead to

the described high and low pressure regions. In order to do this, I investigate

phase average f for each wave profile. As mentioned in section 33.1, the forc-

ing function in the pressure Poisson problem is analogous to the distribution

of heat sources and sinks in the steady-state heat equation. Regions where

f is positive produce pressure maxima whereas regions where f is negative
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Figure 9: Plot of phase average f for (a) U10 = 0.86 m s−1, (b) U10 =

2.19 m s−1, (c) U10 = 5.00 m s−1, (d) U10 = 9.41 m s−1. Shown on the

abscissa is wave phase. Units of f are Pa m−2 in all plots.
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produce pressure minima.

Figure 9 shows a plot of phase average f for each wind speed. For the

control wind speed case (U10 = 0.86 m s−1), the plot of phase average f looks

random. This agrees with my expectation that for this wind speed variations

in pressure are entirely due to turbulence. Next, for the U10 = 2.19 m s−1

case, f > 0 on the windward side of the wave and f < 0 on the leeward

side. Interestingly, the regions with largest f are a tiny bit above the water

surface rather than directly at the water surface. This agrees with the wave

growth theory by Miles (1957), which states that momentum transfer into

the water is controlled by the velocity profile at the height where u equals

the wave speed c. Finally, for the two largest wind speeds, phase average

f has no consistent structure except (1) small patches of f > 0 directly on

the water surface of the windward side of the wave and (2) a region where

f < 0 directly leeward of the wave crest. The similarity in phase average f

between the two largest wind speeds suggests that similar mechanisms are

driving wave growth in each case.

To further investigate the origin of the observed pressure fields, I break

down f into various distinct, identifiable components. The forcing function

can rewritten as (Davidson, 2015):

f = −2ρ

(
∂u

∂x

∂w

∂z
− ∂u

∂z

∂w

∂x

)
= 2ρ

[(
∂u

∂x︸︷︷︸
linear
strain

)2

+

(
1

2

[
∂u

∂z
+
∂w

∂x

]
︸ ︷︷ ︸

shear
strain

)2

−
(

ω

2︸︷︷︸
vorticity

)2]
. (11)

In the above formulation, the first term depends only on the linear strain

rate. This term thus relates to stretching of fluid elements along their direc-

tion of motion. It is always positive, suggesting that such stretching induces

pressure maxima. The second term in Eq. 11 depends only on the shear

strain rate. Shear strain describes the rate at which two initially perpen-
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dicular line segments are rotated toward each other in the flow (Kundu and

Cohen, 2002). Again, the second term is always positive indicating that

shear strain leads to maxima in pressure. Finally, the third term depends

only on vorticity, ω = ∂w/∂x − ∂u/∂z. Vorticity is related to circulation

in the flow via Stokes theorem (see Kundu and Cohen (2002)) and is thus

related to rotational motion in the fluid. The third term is always negative

and is the only negative component in f . Hence, all minima in pressure are

caused by vorticity within the fluid. Eq. 11 can thus be interpreted as a

trade off between strain (high pressure inducing) and vorticity (low pressure

inducing).

In the airflows above water waves, shear strain and vorticity are highly

correlated. This is because ∂u/∂z >> ∂w/∂z. I thus consider terms two and

three in Eq. 11 together rather than separately. In the subsequent analysis,

I therefore decompose f into two terms:

χ1 = 2ρ

(
∂u

∂x

)2

(12)

χ2 = 2ρ

[(
1

2

[
∂u

∂z
+
∂w

∂x

])2

−
(
ω

2

)2
]

(13)

Term 1 (χ1) describes the effect of linear strain on pressure. Term 2 (χ2)

represents the trade-off between shear strain and vorticity on pressure. When

χ2 > 0, shear strain dominates over vorticity, wheras if χ2 < 0 then vorticity

dominates over shear strain.

Figure 10 shows how χ1 and χ2 vary along the wave profile. Values shown

are averages over the first 2 mm of the surface. For the U10 = 0.86 m s−1

wind speed case f fluctuates around zero near the water surface with no

consistent structure. Fluctuations in f are dominated by the χ2 term. This

suggests that fluctuations in pressure are controlled by shear strain and vor-

ticity within the fluid. Linear strain plays a negligable in determining pres-

sure. This agrees with my expectation since flow over the flat water surface

is unobstructed and only contains small turbulent eddies.
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Figure 10: Plot of χ1 (blue), χ2 (orange), and f (green) versus wave phase for

each of the wave cases. Panel (a) U10 = 0.86 m s−1, (b) U10 = 2.19 m s−1, (c)

U10 = 5.00 m s−1, (d) U10 = 9.41 m s−1. Units of χ1, χ2, and f are Pa m−2

in all plots. Values shown are averages within the first 2 mm of the water

surface.

For the U10 = 2.19 m s−1 wind speed case, the high pressure region on

the windward side of the wave is caused by (i) strong shear strain in the

wave trough (positive χ2) and (ii) positive linear strain near the wave crest

(positive χ1). The only region along the water surface where f < 0 is on the

leeward side of the wave, near the wave trough. Negative pressure in this

region is caused by high vorticity relative to shear strain (negative χ2).

For the two larger wind speeds cases (U10 = 5.00 m s−1 and U10 =

9.41 m s−1 ), I see very different dynamics. In the wave trough, high pres-
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sure is caused by strong shear strain. Moving up the wave on the windward

side, pressure continues to remain high due to increasing linear strain in the

airflow. Linear strain is maximum on the windward side of the wave near

the wave crest. This is compensated, however, by high vorticity near the

wave crest. The net effect is a low pressure region near the wave crest due to

vorticity dominating over linear strain. This extends down the leeward side

of the wave.

6 Conclusion

In this paper, I develop a methodology to compute phase-average pres-

sure fields over water waves from PIV data. I verify my methodology us-

ing LES simulation data and a bulk analysis of stresses. I find that at

U10 = 2.19 m s−1, the pressure field is roughly 90◦ out of phase with the

water surface. This is optimal for doing work on the water. At higher wind

speeds, the pressure field is out of phase with the water surface, with low

pressure regions on the wave crest and high pressure in the wave trough.

Nonetheless, there is a slight phase shift in the pressure field still allows work

to be done on the water.

Empirically derived pressure fields can help verify or reject existing wave

growth theories. With further analysis, I can use them to trace exactly which

turbulent structures within the airflow above waves lead to wave growth.

This will help increase not only understanding of wave growth, but also

understanding of atmosphere ocean interactions.

Further work needs to be done to extend this analysis to a larger array of

wave types. At present, I was only able to compute pressure fields for waves

with small amplitudes due to limitations in boundary conditions. Carefully

engineered PIV setups with better temporal resolution and covering a larger

domain will allow this analysis to be extended to a larger variety of wave

types. Similarly, PIV setups in the field may allow determination of pressure
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fields over real ocean waves rather than laboratory ones.
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Appendices

A Derivation of the Pressure Poisson Equa-

tion

Here, I will show the derivation of the pressure Poisson equation. I begin

with the Navier-Stokes equations:

∇p = ρ

(
− Dv

Dt
+ ν∇2v

)
(A1)

Taking the divergence of both sides, I get

∇2p = ∇ ·
[
ρ
(
− Dv

Dt
+ ν∇2v

)]
= ρ∇ ·

(
− Dv

Dt
+ ν∇2v

)
+∇ρ ·

(
− Dv

Dt
+ ν∇2v

)
= ρ
[
− ∂(∇ · v)

∂t
−∇ · (v · ∇v) + ν∇2(∇ · v)

]
+
∇ρ · ∇p

ρ

= −ρ∇ · (v · ∇v) +
∇ρ · ∇p

ρ
(A2)

The last step follows by assuming that the flow is incompressible (∇·v = 0).

I now further assume that∣∣∣∣∇ρ · ∇pρ

∣∣∣∣ << ∣∣ρ∇ · (v · ∇v)
∣∣ (A3)

which follows from the fact that ∇ρ/ρ is small for incompressible flows. Un-

der this additional assumption, Eq. A2 becomes:

−∇2p = ρ∇ · (v · ∇v) (A4)

Eq. A4 is the Poisson Equation used in this paper to solve for pressure.

Assuming the flow is planar (v = 0), Eq. A4 further simplifies to simplifies

to
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−∇2p = −2ρ

(
∂u

∂x

∂w

∂z
− ∂u

∂z

∂w

∂x

)
(A5)

B Proof That f is Unbiased

For computing pressure fields, it is important that the data give an accurate

estimate of the forcing function f . If the computed value of f is consistently

higher or lower than the true value, then the resultant pressure field will be

heavily skewed.

I show here that Eq. 3 is unbaised. Unbiased means that, given random

noise in the data, the expected value of the forcing function (Ef) equals

the true value of the forcing function (f̃). Assume that at each grid point,

any measured velocity gradient (M) equals the true gradient (M̃) plus some

random noise (δM) i.e.

M = M̃ + δM . (B1)

Furthermore, that assume that noise has mean zero (EδM = 0) and that

noise in all gradients are independent of one another. Then

Ef = −2ρE
[
∂u

∂x

∂w

∂z
− ∂u

∂z

∂w

∂x

]
= −2ρE

[(
∂̃u

∂x
+ δ ∂u

∂x

)(
∂̃w

∂z
+ δ ∂w

∂z

)
−
(
∂̃u

∂z
+ δ ∂u

∂z

)(
∂̃w

∂x
+ δ ∂w

∂x

)]
(a)
= −2ρ

(
∂̃u

∂x

∂̃w

∂z
+
∂̃u

∂z

∂̃w

∂x

)
+ E

(
δ ∂u

∂x
δ ∂w

∂z
+ δ ∂w

∂z
δ ∂u

∂z

)
(b)
= f̃ +

(
Eδ ∂u

∂x
Eδ ∂w

∂z
+ Eδ ∂w

∂z
Eδ ∂u

∂z

)
= f̃ . (B2)

Here, step (a) follows by expanding all terms and using linearity of expection.

Step (b) follows using the fact that for independent random variables X and
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Y , E(XY ) = EXEY . Equation B2 implies that my estimate of f is unbiased.

For other expression of f are not unbiased. For example, Van Oudheusden

(2013) gives the equation of f as

f = ρ

[(
∂u

∂x

)2

− 2
∂u

∂z

∂w

∂x
+

(
∂w

∂z

)2]
. (B3)

According to the planar continuity relationship (∂u/∂x = −∂w/∂z), Equa-

tion B3 is equivalent to Eq. 3. Using an analysis similar to the one presented

above, however, I can show that Eq. B3 gives a positively biased estimate of

f . The magnitude of the positive bias depends on the variance of the noise

δ ∂u
∂x

and δ ∂w
∂z

. Figure B1 shows a histogram of f at all grid points for a single

PIV snapshot, as estimated using both methods. The positive skew in f

when estimated by Eq. B3 is clearly visible.

C Phase Average Pressure from Poisson Equa-

tion

Assume that all waves for a given wind speed are identical in shape. Under

this assumption, I show that phase average pressure can be computed by

running the Poisson Solver on phase average f .

Let Ω denote the region measured region in the flow. If all water waves

for a given wind speed have the same shape, then Ω is identical in shape

for all PIV velocity fields. Consider now solving a series of pressure Poisson

problems given by 
−∇2pi = fi, for x ∈ Ω

∂pi
∂n

= g(x) for x ∈ Γ1 ⊆ ∂Ω

pi = d(x) for x ∈ Γ2 ⊆ ∂Ω.

(C1)

Here , pi and fi are the pressure and forcing function corresponding to the ith

PIV velocity field; ∂Ω is the boundary of the domain Ω; Γ1 ⊆ ∂Ω is the set
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Figure B1: Histograms of f at every gridpoint for one PIV snapshot of the

U10 = 2.19 m s−1 wind speed. Shown in orange is f and calculated using Eq.

3. Shown in blue is f as calculated using B3.

of boundary points with Neumann boundary conditions and Γ2 ⊆ ∂Ω is the

set of boundary points with Dirichlet boundary conditions (Γ1 ∪ Γ2 = ∂Ω).

Consider now computing the average pressure p over all flow fields. I can

then show the phase average pressure satisfies all of the properties given in

Eq. C1 for instantaneous pressure fields. For x ∈ Ω

−∇2p = −∇2

(
1

N

∑
i

pi

)
=

1

N

∑
i

(−∇2pi) =
1

N

∑
i

fi = f. (C2)
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Furthermore, for x ∈ Γ1

∂p

∂n
=

∂

∂n

(
1

N

∑
i

pi

)
=

1

N

∑
i

(
∂pi
∂n

)
=

1

N

∑
i

g(x) = g(x). (C3)

Finally, for x ∈ Γ2

p =
1

N

∑
i

pi =
1

N

∑
i

d(x) = d(x). (C4)

Combining Eq. C2, C3 and C4, I have that p is the solution to the

problem 
−∇2p = f, for x ∈ Ω

∂p
∂n

= g(x) for x ∈ Γ1 ⊆ ∂Ω

p = d(x) for x ∈ Γ2 ⊆ ∂Ω.

(C5)

This problem is identical to the one used to compute instantaneous pres-

sure fields (Eq. C1), except that the instantaneous forcing function is now

replaced by the phase average forcing function f . It follows that I can obtain

the phase average pressure by running the Poisson solver on phase average f .

This forms the basis of my second method of computing the phase average

pressure.

D Instantaneous Pressure Fields

In the main thesis, I only present the phase average pressure fields for each

wind speed. In this section, I give an example instantaneous pressure fields.

The instantaneous pressure fields were computed using the boundary con-

ditions of Method 1 (see Section 3.4). They show a tremendous amount of

variation and do no necessarily correspond well with the phase average pres-

sure fields. Figures D1-D4 show example instantaneous pressure fields. All

pressure fields are normalized to have mean zero.
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Figure D1: Example instantaneous pressure field over a water wave for the

U10 = 0.86 m s−1 wind speed case. Air is flowing to the right. The wave is

also propagating to the right.

Figure D2: Example instantaneous pressure field over a water wave for the

U10 = 2.19 m s−1 wind speed case. Air is flowing to the right. The wave is

also propagating to the right.
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Figure D3: Example instantaneous pressure field over a water wave for the

U10 = 5.00 m s−1 wind speed case. Air is flowing to the right. The wave is

also propagating to the right.

Figure D4: Example instantaneous pressure field over a water wave for the

U10 = 9.41 m s−1 wind speed case. For this wind speed, the PIV imaging

area is not large enough to cover an entire wavelength of the wave. Air is

flowing to the right. The wave is also propagating to the right.
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