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a b s t r a c t

Shear localization is an integral part of tectonics on Earth. We examine the role of two different forms of
microstructural weakening (voids and grain size reduction) in the formation of shear zones as a function
of depth. The evolution of grain size and voids employed in this study is determined within the frame-
work of two-phase damage theory. The shear zone model is characterized by two-dimensional simple
shear, which allows for lithostatic pressure to influence the evolution of void-generating damage. We
consider cases with pure void-generating damage, pure grain size reducing damage, and combined void-
generating and grain size reducing damage. The introduction of lithostatic pressure alters void evolution,

and specifically leads to a suppression of void-generation at depth. Grain size reducing damage produces
the most significant localization. Differences in the time scale and efficacy of the two different damage
mechanisms result from the mechanical constraints of viscous compaction and dilation imposed on void-
generating damage. Cases with combined void-generating and grain size reducing damage lead to a more
complicated interaction, with grain size reduction driving porosity to the flanks of the central shear zone.
This result is proposed to be relevant for interpreting the void and grain size microstructures observed

in faults on Earth.

. Introduction

Concentration of deformation or shear localization is a ubiq-
itous feature of tectonic processes on planets. The formation of
hear zones on Earth occurs on scales ranging from microns to kilo-
eters (Regenauer-Lieb and Yuen, 2003). Plate boundaries are an

xample of planetary scale shear localization, hence understand-
ng the development of shear localization is key to understanding
he generation of plate tectonics (Bercovici, 2003). This long stand-
ng problem in geophysics is made considerably more difficult by
he complicated interaction of tectonic forcing with poorly under-
tood (both experimentally and theoretically) microphysical and
heological mechanisms. While the mechanisms of localization in
he shallow, brittle portion of the lithosphere are reasonably well
nderstood (Paterson, 1978), the mechanisms leading to concen-
ration of deformation in the ductile regime remain enigmatic (e.g.,
oirier, 1980).

Proposed mechanisms leading to shear localization on Earth
nclude the coupling of viscous heating and temperature-

ependent viscosity (Yuen and Schubert, 1978; Balachandar et al.,
995; Bercovici, 1996; Thatcher and England, 1998), the reduction
f grain size under stress coupled with grain size sensitive vis-
osity (Kameyama et al., 1997; Jin et al., 1998; Braun et al., 1999;
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Montesi and Hirth, 2003; Landuyt et al., 2008). Brittle and com-
bined brittle–ductile deformation can also lead to the formation
of microcracks on which deformation focuses (Ashby and Sammis,
1990; Lyakhovsky et al., 1997; Regenauer-Lieb, 1998). Two-phase
damage theory attempts to capture the physics of void-generating
damage from multi-phase continuum mechanics to model ductile
cracking that may lead to concentration of deformation applicable
for lithospheric shear localization (Bercovici et al., 2001b; Bercovici
and Ricard, 2003). Two-phase damage theory has been extended
to also consider the contribution of grain size reducing damage to
the development of shear localization (Bercovici and Ricard, 2005;
Landuyt et al., 2008). The theory is fairly different from other elasto-
dynamic damage (Ashby and Sammis, 1990; Lyakhovsky et al., 1997)
and grain size reduction models (Kameyama et al., 1997; Montesi
and Hirth, 2003) in that the formation of void growth and grain size
reduction is tracked by considering the storage of surface energy
on the newly formed interface resulting from deformational work
input (Bercovici et al., 2001a; Bercovici and Ricard, 2003, 2005). The
assumption therefore is that some fraction of deformational work
is stored by the medium through the surface energy on the gener-
ated interface (either void-rock or grain–grain), and the creation of
both voids and grain size reduction results in weakening within the

rock.

In this paper, we extend the study of shear localization in Earth
by considering the incorporation of two-phase damage theory
(Bercovici et al., 2001b; Bercovici and Ricard, 2003, 2005; Landuyt
et al., 2008) into a two-dimensional simple shear model. The vari-
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1 rth an

a
i
w
d
a
m
t
s
p
p
t
e
t
I
g
t
t
r
t
p
w
m

2
f

p
q
B
a
a
p

2

w
I
m

2

0

w
i
t
t
t
i

�

w
c
(
l
a
L

˛

16 W. Landuyt, D. Bercovici / Physics of the Ea

tion of localization mechanisms across the lithosphere is evident
n experimentally inferred transitions in deformation mechanisms

ith depth (Kohlstedt et al., 1995). The work focuses on how the
ifferent modes of damage (i.e. void and grain size reducing dam-
ge) can lead to localization, and how these modes of localization
ay vary, interact or compete as a function of depth. In the con-

ext of two-phase damage rheology, the generation of voids will be
uppressed at depth due to the increase in overburden (lithostatic)
ressure at increasing depths. While the processes which lead to
late boundary formation should be suppressed in the mantle when
ransitioning from the lithosphere to asthenosphere, the two differ-
nt damage mechanisms may dominate at different depths leading
o variations in the concentration of deformation in the lithosphere.
n this study, we focus on the effect of overburden pressure on void-
enerating damage and the subsequent interaction between the
wo forms of damage. The increase of temperature with depth in
he lithosphere will tend to suppress localization due to grain size
eduction (due to increasing grain growth); however we will leave
his added effect for a subsequent study. By considering the inter-
lay of void- and fineness-generating damage in a simplified model
e are able to understand the physics of shear localization which
ay arise within the lithosphere.

. Two-phase damage theory: review and current
ormulation

The two-phase damage equations originate from a series of
apers (Bercovici et al., 2001a,b; Ricard et al., 2001), with subse-
uent papers refining various aspects of the theory (Ricard and
ercovici, 2003; Bercovici and Ricard, 2003, 2005). The equations
re in the geologically applicable “void limit” as discussed in (Ricard
nd Bercovici, 2003), whereby the void phase has zero density,
ressure and viscosity.

.1. Mass

The equation for mass conservation is

D�

Dt
= ∂�

∂t
+ v · ∇� = (1 − �)∇ · v (1)

here v is the matrix (or rock phase) velocity and � is the porosity.
n the void limit the velocity of the void phase is the same as the

atrix velocity.

.2. Momentum

The momentum equations are

= ∇[−(1 − �)P + �˛] + ∇ · [(1 − �)�] − (1 − �)�gẑ (2)

here P is the matrix pressure, � is the surface tension, ˛ is the
nterfacial area density, � is the deviatoric matrix stress, and � is
he density of the matrix phase. A novel component of this work is
he effect of overburden pressure on void-generating damage, and
his effect arises from the inclusion of the term proportional to �g
n (2). The deviatoric stress is given by

= �
[
∇v + [∇v]t − 2

3
(∇ · v)I

]
(3)

here � is the viscosity, and I is the identity matrix. The interfa-
ial area density is a function of porosity (�) and inverse grain size
A), and its functional form reflects assumptions about the under-

ying two-phase microstructure. In previous studies (Bercovici et
l., 2001b; Bercovici and Ricard, 2003; Ricard and Bercovici, 2003;
anduyt et al., 2008) the functional form of ˛ employed was

(�, A) = A�a(1 − �)b, (4)
d Planetary Interiors 175 (2009) 115–126

where at the end member values of porosity (� = 0, 1) ˛ goes
to zero. The microstructural model described by Eq. (4) therefore
states that there cannot be interfacial area within a single phase
(e.g. grain boundaries). Here, we consider microstructural models
that allow for grain–grain interfaces to contribute to the interfacial
area density. We therefore employ the functional form

˛(�, A) = A�(�) = A(�o + �)a(1 − �)b, (5)

where �o is a constant, a and b are between 0 and 1, and ˛ goes
to zero at � = 1 and remains non-zero at � = 0, thereby allow-
ing for grain–grain boundaries to contribute to the interfacial area
density. This formulation for the variations in interfacial area den-
sity as a function of porosity is similar to previous considerations
with matrix and melt distributions (Hier-Majumder et al., 2006).
We will choose �o = 0.25 and a = b = 0.5 for all simulations in this
study. Following the previous formulations of the matrix rheology
we assume the lithospheric viscosity is given by

� = �o

(
Ao

A

)m

(6)

where Ao is a reference value for fineness and �o is a reference vis-
cosity characteristic of the zeroth order behavior of the lithosphere.
The viscosity exponent m is a dimensionless positive constant;
assuming operation of a grain size sensitive deformation mech-
anism (e.g. diffusion creep) suggests that m = 2 − 3. While the
lithosphere is generally believed to obey dislocation creep (and
hence a grain size insensitive rheology), we assume the medium
has a grain size sensitive viscosity, which can be accomplished by
having a statistical average of creep mechanisms over grain size
distribution (e.g. large grains undergo dislocation creep and small
grains undergo diffusion creep) (Ricard and Bercovici, 2009). Field
and experimental work have also shown that lithospheric rocks
with a given grain size distribution can partially deform by disloca-
tion creep but have the rheology controlled by the weaker diffusion
creep (and hence grain size sensitive) portion (Jin et al., 1998). Given
the momentum Eq. (2) we find that the effective matrix viscosity is
given by

�eff = (1 − �)� = �o(1 − �)
(

Ao

A

)m

(7)

where the (1 − �) factor in the viscosity arises from the deviatoric
stress term in (2).

2.3. Energy

The energy equation is separated into two coupled equations
which govern the evolution of thermal energy and the rate of work
done on the interface by pressure, surface tension and deforma-
tional work (Bercovici and Ricard, 2005). The evolution of thermal
energy is (with our assumptions above)

(1 − �)�c
DT

Dt
− T

D

Dt

(
˛

d�

dT

)
− T˛

d�

dT
∇ · v

= Q − ∇ · q + B
(

D�

Dt

)2

+ ��kAAp + (1 − f )	 (8)

where T is the temperature, c is the matrix heat capacity, (−d�/dT)
is the interfacial entropy per unit area, q is an energy flux vector (e.g.
heat diffusion), and Q is an intrinsic heat source. The quantity B is
positive, has units of viscosity, and is related to the bulk viscosity
term in the two-phase theory of McKenzie (1984); the term pro-
portional to B represents irreversible work done during isotropic

compression or dilation. Following previous formulations for B in
the evacuated void limit we arrive at

B = K�o

�(1 − �)
(9)
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here K is a dimensionless factor accounting for pore or grain
eometry and is typicallyO(1) (Bercovici et al., 2001a; Bercovici and
icard, 2005). The quantity kA represents the rate of grain growth
Karato, 1989); the term proportional to kA represents the contri-
ution of irreversible loss of interfacial area (via grain growth) to
he evolution of thermal energy. The viscous deformational work is
iven by

= (1 − �)∇v : �, (10)

fraction 1 − f of which is partitioned into dissipative heating. The
volution of energy associated with the interface is

D˛

Dt
= −P

D�

Dt
− B

(
D�

Dt

)2

− ��kAAp + f	. (11)

ince changes in ˛ can be manifested as either changes in porosity
r changes in inverse grain/void size we can decompose (11) into
ne damage evolution equation for porosity and one for grain size
Bercovici and Ricard, 2005). Employing the model for interfacial
rea density in (5) we associate derivatives of � with the terms
ssociated with volume change and derivatives of A with the terms
ssociated with grain size change. The damage equation for porosity
s

A
d�

d�

(
D�

Dt

)
= −P

(
D�

Dt

)
− B

(
D�

Dt

)2

+ f�	, (12)

nd the evolution equation for fineness is

DA

Dt
= fA

��
	 − kAAp, (13)

here f = f� + fA must be less than or equal to one. We assume
hat the term proportional to kA is directly related to changes in A
i.e. grain/void size) and not the void volume fraction, hence the
ealing term is only in (13). We will consider cases where each
amage mechanism operates by itself as well as in tandem with
he other damage mechanism. The partitioning fraction of damage
n the void-generating case is given by

� = f ∗ (D�/Dt)2


 + (D�/Dt)2
(14)

here f ∗ is the maximum permissible f� , 
 controls the variability
f f� , and f� is assumed to depend on an even power of D�/Dt since
t must be positive definite. As previously discussed in Bercovici
t al. (2001b) and Bercovici and Ricard (2003), the above equation
or f� precludes singular solutions of the porosity damage equation
12) in areas of zero void growth (i.e. D�/Dt = 0).

. Shear zone model

.1. Formulation

We examine two-dimensional simple shear calculations to
nderstand the formation and evolution of depth-dependent struc-
ure in a shear zone (see Fig. 1). The domain is infinitely long in
he x-direction, 2L wide in the y-direction (−L < y < +L), and a
eight of D in the vertical direction (−D < z < 0). All of the bound-
ries are impermeable (vy = 0 at y = ±L and vz = 0 at z = −D, 0).
he boundaries at z = −D, 0 are free-slip (i.e. ∂vx/∂z = ∂vy/∂z = 0).
he boundaries at y = ±L are free-slip for vertical motion (i.e.
vz/∂y = 0) but driven by no-slip, constant velocity conditions in
he horizontal direction (vx(y = ±L) = ±Umax); the combination of

oundary conditions on the side walls (y = ±L) allows vertical dis-
lacement/deformation on the horizontally moving boundary. All
f the dependent variables depend only on y, z and t. To non-
imensionalize the above equations we choose a time scale given
y 4�o/3�Ao (where Ao is the inverse length scale for inverse grain
Fig. 1. The shear zone model employed in this study.

size), spatial length scale D, and pressure by �Ao. We define (u, v, w)
= (4�o/3�AoD)(vx, vy, vz) and �e = �eff/�o. The non-dimensional
continuity Eq. (1) becomes

∂�

∂t
= ∂

∂y
((1 − �)v) + ∂

∂z
((1 − �)w) . (15)

The non-dimensional forms of the x-, y-, and z-components of
momentum with (12) substituted into the pressure term become

0 = ∂

∂y

(
�e

∂u

∂y

)
+ ∂

∂z

(
�e

∂u

∂z

)
, (16)

−
(

∂

∂y
(A�) + ∂F	′

∂y

)

=
[

∂

∂y

(
�(�, A)

∂v
∂y

)
+ ∂

∂z

(
3�e

4
∂v
∂z

)]
+ ∂
(�, A)

∂y

∂w

∂z

+ 3
4

∂�e

∂z

∂w

∂y
+

(
3�e

4
+ 
(�, A)

)
∂2w

∂y∂z
, (17)

B(1 − �) −
(

∂

∂z
(A�) + ∂F	′

∂z

)

=
[

∂

∂z

(
�(�, A)

∂w

∂z

)
+ ∂

∂y

(
3�e

4
∂w

∂y

)]
+ ∂
(�, A)

∂z

∂v
∂y

+ 3
4

∂�e

∂y

∂v
∂z

+
(

3�e

4
+ 
(�, A)

)
∂2v

∂y∂z
, (18)

where

� = �(�) + (1 − �)
d�

d�
, (19)

�(�, A) = (1 − �)
(

3K

4�
+ 1

Am

)
,


(�, A) = (1 − �)
(

3K

4�
− 1

2Am

)
,

F = 3
4

f ∗ (1 − �)2(∇ · v)


 + (1 − �)2(∇ · v)2
,

	′ = (1 − �)
(

∇v : (∇v + [∇v]t − 2
(∇ · v)I)

)
.

3

The non-dimensional parameter

B = �gD

�Ao
(20)
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s the Bond number and represents the hydrostatic pressure varia-
ions relative to interfacial surface tension forces. In the context of
ur shear zone model the Bond number dictates the depth to which
oids (or mode-I cracks) will exist. The non-dimensional equation
or porosity is identical to (15), and the non-dimensional fineness
volution equation is

DA

Dt
= fA

�(�)
�e	′ − k̂AAp, (21)

here k̂A = 4�oAokA/(3�).

.2. Linear stability analysis

The linear stability analysis for the one-dimensional simple
hear void-generating damage problem has been done in Bercovici
t al. (2001b) and Bercovici and Ricard (2003). We examine the initi-
tion of fineness controlled shear localization from an infinitesimal
erturbation. We will neglect the depth dependence of the sys-
em equations and focus on simple 1D equations to simplify the
inear stability analysis, therefore the vertical velocity w and all
erivatives with respect to z are zero. We will also neglect void-
enerating damage for the sake of convenience. We assume the
edium to have a basic state (u0, A0, and �0), and we write the

ariables as u = u0 + �u1, v = �v1, A = A0 + �A1, and � = �0 + ��1.
here are two equations of zeroth order in � (x̂ momentum equation
nd fineness evolution),

= ∂

∂y

(
1 − �0

Am
0

∂u0

∂y

)
⇒ 1 − �0

Am
0

∂u0

∂y
= � = const (22)

p−m
0 = 3

4
fA�2

k̂A�(�0)

1
1 − �0

. (23)

he zeroth order fineness equation (23) suggests that the magni-
ude of fineness reached in simple shear is a function of the ratio of
amage (fA) to healing (k̂A) as previously mentioned by Landuyt et
l. (2008). We could alternatively write the dependence of fineness
n strain-rate (uo/ı, where ı is the shear zone width) instead of
tress (�) and arrive at Ap+m

o ∼ fA(uo/ı)2/k̂A. To first order in � the
ystem of equations become,

∂�1

∂t
= (1 − �0)

∂v1

∂y
(24)

= 1 − �0

Am
0

∂2u1

∂y2
− m

�

A0

∂A1

∂y
− �

1 − �0

∂�1

∂y
(25)

= �(�0)
∂A1

∂y
+

(
A0

d�(�0)
d�0

)
∂�1

∂y
+ (1 − �0)

[
3K

4�0
+ A−m

0

]
∂2v1

∂y2

(26)
∂A1

∂t
= fA

�(�0)

[
3
2

�
∂u1

∂y
− 3m�2

4

(
Am

0
1 − �0

)
A1

A0

− 3�2

4

(
Am

0
1 − �0

)
�1

1 − �0

]
− k̂ApAp−1

0 A1, (27)

here we have used (22) to simplify the equations. Assuming that
1, v1, �1, and A1 go as eiky+st , we arrive at the following equation
or the growth rate (s)
d Planetary Interiors 175 (2009) 115–126

s = −1
2

(
(p − m)k̂AAp−1

o + Ao
d�(�o)

d�o

1
((3K/4�o) + A−m

o )

)

± 1
2

(
(p − m)2k̂2

AA2(p−1)
o + A2

o

(
d�(�o)

d�o

)2 1

((3K/4�o) + A−m
o )2

− 2
k̂AAp

o

1 − �o

1
((3K/4�o) + A−m

o )
{(p − m)(1−�o)

d�(�o)
d�o

+2�(�o)}
) 1

2

.

(28)

The growth rate has two roots, and for the negative square root the
growth rate is always less than zero. For the positive square root,
the sign of s is positive and its magnitude grows with increasing fA
(damage) and � (stress). Linear stability analysis therefore predicts
that fineness-generating damage will allow for some solutions to
grow unstably (and potentially lead to shear localization), and the
growth rate of this perturbation increases with increasing damage.
The entire growth rate is real; this is noteworthy because if it were
complex it would indicate that perturbations in the field variables
(A, �) are out of phase. We see later in the finite amplitude case
(Section 4.3) that these variables are significantly out of phase.

3.3. Amplitude analysis

We now examine an approximate solution for the growth of a
fineness anomaly when we consider the 1D version of our sim-
ple shear model discussed in the linear stability analysis. We will
not repeat the analysis for the growth of a porosity anomaly since
this was already done in Bercovici et al. (2001b), and as is shown
in the numerical results of this study the fully non-linear analysis
yields void and fineness fields that have complicated spatial inter-
actions which suggest an amplitude analysis is of little utility. We
further assume that porosity is constant and focus on the compe-
tition between damage input and healing for fineness (neglecting
advection of fineness). The fineness evolution equation becomes

dA

dt
= DAm − k̂AAp, (29)

where D = cfA�2, c is a constant of order one, and �2 goes as
(1/A2m)(Umax/l)2, where l is the length scale over which shear local-
ization occurs. Separating out the fineness and time dependence of
(29) and integrating we arrive at∫ A

Ai

dA′

A′m(D − k̂AA′p−m)
= t, (30)

where Ai is the initial value of fineness at t = 0. For the choices of p
and m we consider here (p = 3, m = 2) (30) results in the following
implicit solution,

k̂A

D log

(
A

(D/k̂A) − 1

(D/k̂A) − A

)
+ A − 1

A
= Dt, (31)

where we have assumed that Ai = 1 at t = 0. Solutions reach a

steady state value A = (D/k̂A)
1/(p−m)

, which is predicted by the lin-
ear stability analysis as well (see (23)). Since the damage constant
D multiplies time, the magnitude of damage will have a strong con-
trol on the temporal evolution of fineness. Inspection of (31) implies
that the magnitude of damage fraction controls the time scale for
shear zone formation (when grain size controls the rheology), and
the ratio of damage to healing will control the final degree or

amount of localization attained (see Fig. 2). This result makes phys-
ical sense since grain growth would likely be smaller than damage
input when deformation commences, since grain sizes are initially
large and uniform. When deformational work decreases grain size
substantially, grain growth then becomes comparable to damage
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Fig. 2. Results from the amplitude analysis for the evolution of fineness. (a) The
evolution of fineness over time with constant ratio of damage (D) to healing (k̂A),
but with different magnitudes ofD and k̂A (D = 103 and k̂A = 101 (solid), andD = 104
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nd k̂A = 102 (dash)). (b) The evolution of fineness over time with constant healing
k̂A = 50) but increasing values of damage (D = 103 (solid) and D = 104 (dash)). (c)
he evolution of fineness over time with constant damage (D = 103) but increasing
alues of healing (k̂A = 101 (dash) and k̂A = 102 (solid)).

nput and the balance between the two leads to a stabilization of
neness and hence localization ceases.

. Numerical results

The equations for u, v, and w are numerically solved via a
nite volume, multigrid method. Given the fineness and porosity
eld, the horizontal velocity u is readily calculated. Since v and
are coupled, their solutions are obtained by iterating on (17)
nd (18) until convergence (defined to be when the L∞ norm of
uccessive iterations for v and w reaches 10−3 or less). For sim-
lations with non-zero f� , we treat the term proportional to F	′

n (17) and (18) as a forcing function to a Poisson’s equation with
d Planetary Interiors 175 (2009) 115–126 119

non-constant coefficients. Initially simulations required on aver-
age approximately 10–20 iterations for convergence (though this
value increases (decreases) with increasing (decreasing) fA and f ∗),
though as they approached steady state one to two iterations was
sufficient for convergence. We benchmark the code by comparing
numerical solutions to analytical solutions obtained when both A
and � are constant throughout the domain. Given the solutions for
v and w, A and � are then updated using (21) and (15), respectively.
Numerical simulations are run with a resolution of either 129 or
257 points in the horizontal direction and 65 or 129 points in the
vertical direction to ensure sufficient resolution of shear localizing
features.

4.1. Fineness-generating damage

We now explore the full non-linear solutions with fineness-
generating damage by itself before we attempt to understand
how the two damage mechanisms interact and lead to localiza-
tion simultaneously. The simulations were initiated with a fineness
anomaly given by

A(t = 0) = Ai + Ap exp(−y2/ıA), (32)

where Ai = 1.0, Ap = 0.25, ıA = 1, and the porosity field is a constant
value of 0.05 throughout. For the sake of clarity we do not explore
all of parameter space and focus on how shear zone evolution is
controlled by a few parameters; specifically we vary the shearing
rate (Umax) and the values of damage (fA) and healing rate (k̂A). We
will assume that the exponent p in (13) associated with surface ten-
sion driven grain growth is three, and the exponent characterizing
the sensitivity of viscosity to grain size (m) is three as well. While
we assumed that m = 2 in the amplitude analysis, we have run full
numerical simulations with both m = 2 and 3 and there is no sig-
nificant difference between the two cases (though m = 3 does lead
to more localization of shear). Since we are neglecting the effect
of variations in temperature with depth in this study, the fineness
field is only weakly dependent on depth through porosity.

The amplitude analysis for fineness-generating damage suggests
that the time scale for shear zone formation will be a function of
damage fraction (fA), and both the amplitude analysis and linear sta-
bility analysis suggest the amount of grain size reduction and hence
localization will be a function of the relative amounts of damage to
healing. While maintaining a constant ratio of fA/k̂A but increasing
the absolute magnitudes of fA and k̂A, the time for shear zone for-
mation decreases (see Fig. 3a). While the absolute magnitude of fA
and k̂A affect the time evolution, the concentration of deformation
(Fig. 3b) and fineness field (Fig. 3c) remain unchanged. The result
that shear localization does not change while the damage to healing
ratio is held constant is consistent with the amplitude analysis and
the linear stability analysis since the zeroth order term for fineness
goes as the ratio of fA to k̂A (see (27)).

The effect of increasing the shearing rate (Umax) results in a
decrease in shear zone formation time (see Fig. 4a). Similar to the
previous result of increasing fA and k̂A in step, increasing Umax by an
order of magnitude causes the timescale for shear zone evolution to
decrease by approximately an order of magnitude. Changing Umax

causes a change in the strain-rate, and hence influences the fine-
ness since A ∼ U2/(p+m)

max (see Section 3.2), which produces a similar
result as increasing the damage fraction fA. This increase in dam-
age input results in a greater concentration of deformation (Fig. 4b)
and significantly more grain size reduction (Fig. 4c). Conversely, by

increasing the healing rate, shear localization is mitigated (Fig. 5b)
and grain size variations become less pronounced (Fig. 5c). The time
for shear zone formation is essentially insensitive to changes in
healing rate, in accord with the amplitude analysis. These results
reaffirm the previous suggestion that damage input controls the
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.2. Void-generating damage

A novel component of this study is the consideration of depth-
ependent processes on shear zone formation with a two-phase
amage rheology, hence we now consider the evolution of porosity
io, but with different values of damage and healing. The value of fA/k̂A is 10−3 with
10−5 (solid). (b) The velocity into the shear zone, u, as a function of the differing

at a depth of z = −0.5.

under the influence of both gravity and void-generating damage.
Numerical simulations are run with a resolution of either 129 or
257 points in the horizontal direction and 65 or 129 points in the
vertical direction. The simulations were initiated with a porosity

anomaly given by

�(t = 0) = �i + �p exp

(
−y2

ıp

)
, (33)
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Fig. 4. (a)The maximum and minimum values of fineness versus time for constant
damage to healing ratio, but with different values of shearing rate (Umax). The value
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Fig. 5. (a)The maximum and minimum values of fineness versus time at constant
damage fraction and shearing rate, but with different values of healing rate (k̂A). The
value of fA = 10−1 and Umax = 5 × 104, and the three different values of k̂A are 100

1 2 3
f fA/k̂A is 10−2 with fA = 10−1 and k̂A = 101, and the three different values of Umax

re 5 × 102 (dash-dot), 5 × 103, (dash), and 5 × 104 (solid). (b) The velocity into the
hear zone, u, as a function of the horizontal coordinate y at a depth of z = −0.5. (c)
he fineness across the shear zone at a depth of z = −0.5.

here �i = 0.05, �p = 0.01, ıp = 1, and the fineness field is a con-
tant value of 1.0 throughout. We will later adjust �i, �p, and ıp

hen we consider combined void- and fineness-generating dam-
ge.

Since overburden pressure will act to close voids at depth, local-
zation due to void-generating damage should be suppressed at
epth. As shown in Ricard et al. (2001), Bercovici et al. (2001b) and
ercovici and Ricard (2003), there is phase separation even without
hear and/or damage. In the absence of both gravity and damage the
orosity profiles of self-separation (i.e. no damage) reproduce the
mooth, well-rounded porosity profiles (Fig. 6(a1)) seen in previous
ne-dimensional studies (Bercovici and Ricard, 2003). The effect of
amage (f ∗ /= 0) in the absence of gravity reproduces both the weak
nd strong localization (Fig. 6(b1) is an example of strong poros-
ty localization) regimes of one-dimensional studies (Bercovici and
icard, 2003).

The presence of gravity, the strength of which is determined
y the Bond number, breaks up the vertical symmetry of poros-
ty evolution. Without damage, the evolution of porosity involves
competition between surface tension and gravitational forces.
ith increasing Bond number the porosity field begins to spread

ut along the top surface of the domain due to overburden pres-
ure, though surface tension allows for the maintenance of porosity
tructure at depth (see Fig. 6(a2)–(a4)). Eventually at large enough
(solid), 10 (short dash), 10 (short dash-dot), and 10 (long dash). (b) The velocity
into the shear zone, u, as a function of the horizontal coordinate y, normalized by
Umax at a depth of z = −0.5. (c) The fineness across the shear zone at a depth of
z = −0.5.

Bond numbers (B ∼ 1) the porosity field separates totally from the
matrix and the system becomes segregated. The addition of dam-
age leads to a sharpening of the porosity profiles, though when
the Bond number approaches one the effect of damage is less
significant than the effect of gravity and the gross structure and
location of porosity remain similar to cases without damage (Fig. 6).
At small values of the Bond number, the porosity undergoes a
more significant sharpening, while voids are suppressed at depth
(Fig. 6(b2)). Cases with damage also evolve faster than cases with-
out (Fig. 6(c1)–(c4)) even in the presence on non-zero B. The effect
of gravity on void-generating damage therefore is to allow for sim-
ilar types of localizing behavior as previously identified (Bercovici
et al., 2001b; Bercovici and Ricard, 2003) at shallow depths and
suppression of voids at depth. Though when the strength of over-
burden pressure is increased (by increasing B), gravity dominates
over damage and leaves no remnant signal of localization from
void-generating damage.
4.3. Void- and fineness-generating damage

We now examine the numerical results regarding how voids and
fineness interact to allow for localization to vary as a function of
both mechanism and depth.
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Fig. 6. The evolution of porosity with varying Bond number (B) and damage. The Bond number is constant for each column. (a1)–(a4) display the effect of gravity (through
increasing B) in the absence of damage on the evolution of porosity. (b1)–(b4) display the effect of gravity and damage (f ∗ = 0.5, 
 = 104, Umax = 500) on the evolution of
porosity. (c1)–(c4) The time evolution of the maximum value of � with varying B and damage (f ∗ = 0 (dashed) and f ∗ = 0.5 (solid)).

Fig. 7. The results at two different times for a case with both void- and fineness-generating damage. The relevant parameters for this run are f� = 0.5, fA = 10−5, k̂A = 10−3, B =
10−2. The initial conditions are �o = 0.05, �p = 0.1, and ıp = 0.5 for porosity, and Ao = 1.0, Ap = 0.25, and ıA = 1.0 for fineness.
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.3.1. Time scale
Inspection of the results from pure void- and fineness-

enerating damage shows that the time evolution of the porosity
nd fineness fields can develop over vastly different scales (see
igs. 3 and 6). By choosing the void and fineness damage frac-
ion to be of the same order (fA = f� ≈ .1), the fineness field will
volve in time approximately four orders of magnitude faster. This
uggests that the fineness field is far more efficient in generating
amage and weakness than the porosity field. The reason for this
emporal discrepancy is that the fineness field is not subject to the
ame mechanical constraints as the porosity field. The opening of
oids via damage requires moving viscous matrix material, and this

rocess must work against compaction and lithostatic pressure as
ell as obey mass conservation. On the contrary, the fineness field
oes not involve any volume expansion of the rock, hence it is far
ore efficient at converting deformational work into damage. In

he following numerical simulations we choose the fineness and

ig. 8. A comparison of the evolution and behavior of fineness (red curves), void (green
he same initial conditions. (a) the time evolution of the maximum and minimum values
t three different times for cases with fineness-generating damage (left column), void-ge
middle column). The relevant parameters for this run are f ∗ = 0.5, 
 = 106, fA = 10−6, k̂A

he reader is referred to the web version of the article.)
d Planetary Interiors 175 (2009) 115–126 123

void damage fraction to allow for the two fields to evolve on similar
time scales.

4.3.2. Structure
Given the results of previous sections, one might expect that void

and fineness-generating damage would superpose to allow greater
localization at shallow depths, while deeper depths will give way to
solely grain size inducing localization due to gravitational collapse
of voids. However, in fact, the interaction of grain size reducing
and void- generating damage results in the two modes of damage
developing an anti-correlated structure (see � and A in Fig. 7b).
While the fineness field evolves in essentially the same manner

as when f� = 0, the porosity field evolves substantially differently
than when fA = 0. The end result is that grain size reduction leads
to localized deformation and shear zone formation, while porosity
is simultaneously forced out of the shear zone core and into the
surrounding flanks (see Fig. 7).

curves), and combined void- and fineness-generating damage (black curves) with
of fineness and porosity. The results for v (b), A (c), and � (d) at a depth of z = −0.5
nerating damage (right column), and both void- and fineness-generating damage
= 10−2, B = 10−2. (For interpretation of the references to color in this figure legend,
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ig. 9. A comparison of how varying the Bond number affects the porosity field with
eld and (b) the fineness field at t = 2.3 for the same set of initial conditions discuss
arameters for this run are f� = 0.5, 
 = 106, fA = 10−6, k̂A = 10−2, and Umax = 5 × 1

The anti-correlated structure of the fineness and porosity fields
an be understood by inspection of the forcing term on the left hand
ide of (17), −∂(A�)/∂y, which is the driving force associated with
urface tension. Evaluating the derivative with respect to y yields

∂(A�)
∂y

= −�
∂A

∂y
− A(1 − �)

d2�

d�2

∂�

∂y
, (34)

here surface tension driven flow is associated with gradients in
neness (first term) and porosity (second term). The term d2�/d�2

s always less than zero (Ricard et al., 2001) while the other terms
re greater than zero, hence the driving force arising from fineness
radients is opposite in sign to the force associated with porosity
radients. The physical process driving flow associated with poros-
ty gradients can be understood as follows: The surface tension force
associated with porosity variation) is smaller in regions of higher
orosity relative to lower porosity since this high porosity region
as a smaller interfacial curvature. This surface tension difference
auses a pressure gradient between regions of high and low porosity
nd is what drives the process of self-separation, thus subsequently
riving the matrix away from regions of high porosity to areas of low
orosity. The functional form for � assumed in this study guarantees
hat d2�/d�2 < 0, and is likely appropriate for the large dihedral
ngle voids assumed to constitute the secondary phase in this study.
or low dihedral angle fluids, the functional form for � will likely
iffer and lead to a change in sign and hence a change in temporal
volution not predicted by this study (Hier-Majumder et al., 2006).
his difference may be important for studying the evolution of shear
ones with a fluid or melt secondary phase. Gradients in surface ten-
ion associated with gradients in fineness drive flow of the matrix
rom regions of low fineness to ones with high fineness since sur-
ace tension of reduced grain size material pulls harder than does
hat of coarser material (Bercovici and Ricard, 2005). Since the lin-
ar stability analysis predicts that the growth rate for both � and A
s in phase, the results from our numerical simulations imply that
he anti-correlated nature of � and A results from a finite amplitude
ffect. The non-linear surface tension term �A in (17) is linearized in
he linear stability analysis, and therefore will not be able to predict

his finite amplitude behavior. For many parameters explored in this
tudy we find that the surface tension driving force associated with
rain size variations overwhelms the effect due to porosity varia-
ions, therefore the resulting structure consists of a reduced grain
ize fault core surrounded by regions of higher porosity.
void- and fineness-generating damage in effect. This figure displays the (a) porosity
Fig. 8. The left column is for B = 0.01 and the right column is for B = 1. The relevant

We examine the competition between gradients in fineness
and porosity driven flow in greater detail at a small value of
B (= 10−2) (see Fig. 8). We start with an initial condition of
�i = 0.05, �p = 0.1, and ıp = 0.25 in (33) for porosity, and Ai =
1.0, Ap = 0.01, and ıA = 1.0 in (32) for fineness. Gradients in poros-
ity initially are greater in magnitude than gradients in fineness
and drive matrix flow (v) away from y = 0 for void-generating
damage, fineness-generating damage, and combined void- and
fineness-generating damage (t = 0 in Fig. 8b). As gradients in fine-
ness increase for fineness-generating and combined void- and
fineness-generating damage (t > 0, Fig. 8c), the horizontal veloc-
ity v eventually becomes small for all y (see Fig. 8b at t = 0.28).
If the fineness field does not vary from the initial conditions (due
to fA = k̂A = 0), then the horizontal velocity v and � will evolve to
form cusps and localization indicative of void-generating damage
(t = 0.28 in Fig. 8b for void). Eventually the gradients in fineness
become large enough to reverse matrix flow (t = 2.5 in Fig. 8b),
and porosity is driven away from the center of the shear zone
(t = 2.5 in Fig. 8d). The evolution of porosity with combined void-
and fineness-generating damage therefore mirrors the evolution
when there is only fineness-generating damage as the gradients
in fineness grow. Unless variations in grain size are suppressed,
the predictions from two-phase damage theory suggest that void-
generation will predominantly form on the flanks of the shear zone
due to grain size reduction in the central shear zone. By increas-
ing the Bond number, the evolution of porosity deviates from the
previous discussion. While porosity is still forced away from the
center of the shear zone, increasing B results in lobes of poros-
ity that decay with depth developing on the flanks of the shear
zone (Fig. 9a). Therefore increasing B does not significantly alter the
horizontal structure of porosity with combined void- and fineness-
generating damage, and continues to suppress void-generation at
depth.

5. Discussion and conclusion

We have explored the formation and structure of two-

dimensional shear zones deforming under the influence of a
rheology that is sensitive to both void-generation and grain size
reduction. The goal has been to understand how these two forms
of damage will facilitate localization at various depths in the litho-
sphere, and in this study we focus on how overburden pressure will
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ause a change in the manifestations of damage. The salient results
rom this study include:

1) Grain size reducing damage is efficacious at producing local-
ized structures, with the damage input (characterized by fA and
Umax) controlling the time scale for shear zone formation, and
the ratio of damage input to healing (k̂A) controlling the final
degree of localization attained.

2) For small values of Bond number B = �gD/(�A) (< .1), the
suppression of void-generating damage at depth occurs while
allowing for the localized behavior seen in 1D studies (Bercovici
et al., 2001b; Bercovici and Ricard, 2003) at shallower depths.
At larger values of B (> .1), the effect of gravity overwhelms
damage and localization by void-generation fails to develop.

3) Combined void- and fineness-generating damage leads to the
formation of anti-correlated porosity and fineness fields (see
Fig. 7b), with the shear zone center characterized by reduced
grain sizes and the flanks of the shear zone containing higher
porosity regions.

The applicability of void- and grain size reducing damage to
ithospheric dynamics and localization depends upon the reason-
bleness of the parameters specified (e.g. B, Umax, k̂A). We assume
hat the matrix is lithospheric silicate, therefore �o ≈ 1025 Pa s
Beaumont, 1976), � ≈ 3 × 103 kg m−3, and the depth of the shear
one, D, is approximately 50 km. The reference inverse grain size, Ao,
s between 103and 105 m−1. While the value for the surface tension
n silicates is commonly cited as 1 N m−1(Spry, 1983), the effec-
ive surface energy of fractures may be much higher, i.e., between
00 and 1000 N m−1(Atkinson, 1987; Atkinson and Meredith, 1987).
herefore the range of maximum Bond number, B, varies between
0 and 106given the full lithospheric depth estimate used (decreas-
ng the depth range obviously decreases the Bond number). This
uggests that gravity will tend to dominate over void-generating
amage in porosity evolution at mid- to deep lithospheric depths,
nd only at shallower depths (¡20 km) will void-generating damage
e important. The range of values for the healing rate in pure olivine
re on the order of 10−18to 10−21 m2 s−1(Karato, 1989), though the
ctual growth rate in a poly-mineralic assemblage will be smaller
Ohuchi and Nakamura, 2006). The non-dimensional healing rate,

ˆ
A, therefore is of the range 103–108, though it will likely be smaller
ue to the effect of secondary phases on grain growth mentioned
bove. Assuming tectonic velocities of 1–10 cm yr−1, we estimate
max between 102and 108, and fA is between zero and one. The
egree of localization goes approximately as fAU2

max/k̂A, and the
esults from our simulations show that fA = 10−1, Umax = 5 × 104

nd k̂A = 101 (implying fAU2
max/k̂A ∼ 105) produces significant local-

zation (Fig. 4). While the timescale given by 4�o/(3�Ao) implies
ithospheric processes would be of the order of 100 Myr to 10 Byr,
rain size reducing damage can allow a decrease in the localiza-
ion time scale by either increasing fA or Umax to facilitate shear
one formation in as little as 10 kyr. The parameter estimates for
he lithosphere therefore suggest that grain size reducing damage
an readily lead to significant shear localization on a relevant time
cale consistent with plate boundary formation by considering the
esults from our study.

A common observation in fault zones is the development of grain
ize reduction in the fault core with lower porosity and permeabil-
ty than is found in the surrounding protolith (Chester et al., 1993;
aine et al., 1996). The process of surface tension driven separation
f grain size reduction and porosity structures found in our two-

hase damage models may be applicable to understanding these
bservations from the brittle field. One may argue that the obser-
ations seen in fault zones reflect that smaller grains are able to
ore efficiently pack than the surrounding larger grain regions, but

n a solid packing model � does not depend on the grain size. The
d Planetary Interiors 175 (2009) 115–126 125

predictions from our model therefore provide an explanation for
the geological observations, and deserve further consideration in
future studies.

The results from this study are intriguing, but further additions
to our model need to be considered in future studies, the most
obvious one being the consideration for how the depth-dependent
variations in temperature will affect the formation of localization
in the lithosphere, especially through its effect on grain size evo-
lution. The extension of this study to two-dimensional domains is
an important step, but further work needs to also consider different
modes of deformation important in Earth (e.g. simple extension and
compression). Given the results of this study and future directions
discussed above, the application of void- and grain size reducing
damage to lithospheric dynamics suggests a better understanding
of how plate boundaries form and evolve is tractable.
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