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[1] The generation of plate tectonics from mantle convection requires shear localization in
order to yield narrow, weak plate boundaries separating broad strong plates. A plausible
shear-localizing mechanism involves damage (e.g., distributed microcracking), one
theoretical model of which involves two-phase mechanics. Two-phase damage theory
employs a nonequilibrium relation between interfacial surface energy, pressure, and
viscous deformation, thereby providing a description of void generation and
microcracking, and hence weakening, failure, and shear localization. Here we examine the
application of this theory to the problem of generating plate-like behavior from
convective-type divergent/convergent (poloidal) motion through a source-sink
formulation. We extend the previous damage theory to consider two possible damage
effects: (1) growth and nucleation of voids associated with dilation of the host matrix and
(2) increasing fineness (i.e., reducing coarseness) of the mixture by, for example, grain
size reduction. Void-generating damage is found to be poor at plate generation because of
the predominance of dilational motion that is adverse to the development of plate-like
flow. Fineness-generating damage is found to be very efficient at generating plate-like
behavior if we assume that the matrix viscosity is a simple function of grain/void size, as is
typical for diffusion creep. The implied grain size reduction mechanism is different from
that of dynamic recrystallization and appears to be more capable of generating the
requisite shear localization for forming tectonic plates from mantle flow.

Citation: Bercovici, D., and Y. Ricard (2005), Tectonic plate generation and two-phase damage: Void growth versus grain size

reduction, J. Geophys. Res., 110, B03401, doi:10.1029/2004JB003181.

1. Introduction

[2] Although the theory of plate tectonics is a well-
established unifying principle of geology, the investigation
of how the plates themselves arise from mantle convection
is still a relatively young field (see reviews by Bercovici et
al. [2000], Tackley [2000a, 2000c], and Bercovici [2003]).
There are many key issues in the problem of generating
plates, including the initiation of subduction [Mueller and
Phillips, 1991; Kemp and Stevenson, 1996; Schubert
and Zhang, 1997; Toth and Gurnis, 1998; King, 2001;
Regenauer-Lieb et al., 2001], formation of passive ridges
[Ricard and Froidevaux, 1986; Tackley, 2000b; Huismans
and Beaumont, 2003], and the very existence of strong
plates with weak, rapidly deforming boundaries [Weinstein
and Olson, 1992; Moresi and Solomatov, 1998]. One of the
most fundamental plate generation problems is the cause for
strike-slip boundaries and the enigmatic ‘‘toroidal’’ motion
which is not directly driven by buoyancy and does not
transport heat but is still a significant component of the

Earth’s surface velocity field [Hager and O’Connell, 1978,
1979, 1981; Forte and Peltier, 1987; Ricard and Vigny,
1989; Gable et al., 1991; O’Connell et al., 1991; Olson and
Bercovici, 1991; Cadek and Ricard, 1992; Ribe, 1992;
Lithgow-Bertelloni et al., 1993; Bercovici, 1993; Bercovici
and Wessel, 1994; Bercovici, 1995b, 1995a, 1996, 1998;
Bercovici et al., 2000; Bercovici, 2003; Dumoulin et al.,
1998; Weinstein, 1998].
[3] The formation of strong plates and weak boundaries,

as well as the generation of toroidal motion, is known to
require an interaction between convective flow and strongly
nonlinear rheologies, in particular, ones that induce weak-
ening with increased deformation (see reviews by Tackley
[2000a], Bercovici et al. [2000], and Bercovici [2003]).
Standard steady state plastic or pseudoplastic (power law)
rheologies explicitly prescribe such weakening behavior,
but whether they are sufficient to the task of plate genera-
tion is questionable; while they might allow for softening of
the material (lowering of viscosity) with higher deforma-
tion, they do not allow for strength loss (lowering stress), in
which case, deformation does not localize sufficiently
[Bercovici, 1993]. These ‘‘plastic’’ rheologies, however,
can be augmented with the help of melting (as at mid-ocean
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ridges) and yield more plate-like structures [Tackley, 2000b].
Even so, the localized plate boundaries that are generated
with standard steady state rheologies exist only as long as
they are being deformed, which is unrealistic since bound-
aries persist as suture zones even when inactive [Gurnis et
al., 2000]. Simple self-weakening rheologies wherein
strength loss is permitted (e.g., pseudostick-slip or viscous
stick-slip behavior [Bercovici, 1993]) allow more profound
plate-like behavior and localization [Bercovici, 1993, 1995b,
1995a; Tackley, 1998]; these are based on self-weakening
feedback mechanisms, such as what arises from viscous
heating of material with thermoviscous behavior [Schubert
and Turcotte, 1972; Whitehead and Gans, 1974; Schubert
and Yuen, 1978; Fleitout and Froidevaux, 1980; Bercovici,
1996, 1998] or with simple damage whereby weakening
defects or voids are generated by deformation [Bercovici,
1998; Auth et al., 2003; Ogawa, 2003]. The simple damage
laws allow for more precipitous drops in viscosity than the
standard Arrhenius thermoviscous law and hence yield more
focused shear zones [Bercovici, 1998], although they can
also cause runaway damage whereby plates continue to
break down to ever smaller plates [Tackley, 2000b]. While
these simple damage treatments are easily implemented and
are reasonably successful at yielding plate-like flows, their
derivation and connection to the physics of void/microcrack
generation are ad hoc.
[4] The physics of void-generating damage has been

recently developed from first principles using two-phase
continuum mechanics [Bercovici et al., 2001a; Ricard et al.,
2001; Bercovici et al., 2001b; Bercovici and Ricard, 2003;
Ricard and Bercovici, 2003]. The theory is reasonably
distinct from other elastodynamics damage theories [Ashby
and Sammis, 1990; Hansen and Schreyer, 1992; Lemaitre,
1992; Krajcinovic, 1996; Lyakhovsky et al., 1997] as it
models the growth of voids through a two-phase approach
(i.e., using a fluid or void-filling phase and a host rock or
matrix phase) and treats void growth via storage of surface
energy on the interface between phases, which serves as a
proxy for the fracture surface [Griffith, 1921; Bercovici et
al., 2001a]. The two-phase damage theory has been fairly
successful at capturing various aspects of ductile cracking,
including localizing of simple shear, involving, in order of
increasing forcing, weak and strong localization, and then
distributed damage [Bercovici et al., 2001b; Bercovici and
Ricard, 2003]; and shear-enhanced compaction [Menéndez
et al., 1996; Wong et al., 1997; Zhu and Wong, 1997; Zhu et
al., 1997] under uniaxial compression of low-cohesion
failure envelopes [Ricard and Bercovici, 2003].
[5] In all the studies of two-phase damage so far, the

model systems were driven by an imposed shear stress, and
the damage-induced weakening would facilitate or enhance
the mode of deformation that is driven directly by the
imposed shear. For example, in simple shear cases, damage
and localization typically act to enhance the shear strain rate
that is parallel to the imposed shear stress [Bercovici et al.,
2001b; Bercovici and Ricard, 2003]. In the problem of
generating plates from mantle convection, the system is not
driven by a simple imposed shear stress as in simple shear
flow or uniaxial compression. Instead, it is driven by
convective buoyancy forces which force divergent and
convergent (poloidal) motion in the top, horizontally mov-
ing thermal boundary layer (i.e., the lithosphere). This

convective poloidal motion interacts with a nonlinear rheo-
logical mechanism to generate plate-like motion, especially
strike-slip toroidal motion. However, the toroidal flow
structures (e.g., strike-slip boundaries) are usually orthogo-
nal to and often separated from the poloidal structures
associated with convective forcing (convergent/divergent
boundaries such as subduction zones and ridges). Thus the
localized toroidal structures do not occur by merely enhanc-
ing deformation that is directly driven by the driving
stresses. That is, as opposed to cases involving localization
and enhancement of an imposed shear (for fault formation)
or extension (for necking), in the plate generation case a
unique toroidal flow field that is essentially orthogonal to the
driving convective poloidal field must be generated. In short,
it is not a matter of enhancing the imposed poloidal motion
but of generating a new toroidal flow field.
[6] Therefore, in this paper, we examine the extent to

which our two-phase damage mechanism permits generation
of plate-like toroidal flow from an imposed convective-type
poloidal flow. We employ a very simple system of source-
sink driven flow, which is purely poloidal [Bercovici, 1993].
The damage ‘‘rheology’’ interacts with this poloidal driving
flow to generate toroidal motion; we therefore search for
conditions under which plate-like toroidal motion and
strength distribution arise spontaneously.
[7] We also extend the two-phase damage theory to con-

sider two fundamental forms of damage: damage associated
with matrix dilation and void growth and nondilational
damage associated with interface area growth without void
generation, as, for example, in grain size reduction. Dilational
void-generating damage is well known for microcracking
brittle and brittle-ductile behavior in low-pressure, low-
cohesion, and/or granular materials [Scott, 1996; Menéndez
et al., 1996; Wong et al., 1997; Zhu and Wong, 1997; Zhu et
al., 1997; Géminard et al., 1999]. Grain size reduction is an
important aspect of lithospheric rheology since diffusion
creep is fairly strongly grain size-dependent, and continuous
shear localization is well associated with mylonitic (grain
size-reduced) zones [White et al., 1980; Karato, 1983; Jin et
al., 1998;Furusho and Kanagawa, 1999]. The cause for such
grain size-reducing shear localization is usually attributed to
the process of dynamic recrystallization [Karato et al., 1980;
Urai et al., 1986;Derby and Ashby, 1987] whereby grains are
reduced through the propagation of dislocations while the
medium undergoes nonlinear dislocation creep, but the
localization of shear occurs only when the medium drops to
the lower-stress and grain size-controlled diffusion creep.
The physics of this mechanism is, however, still not fully
developed [Bercovici and Karato, 2003] and has had so far
limited success in recovering observed levels of shear local-
ization [Kameyama et al., 1997;Braun et al., 1999;Bresser et
al., 1998, 2001; Montési and Zuber, 2002; Montési and
Hirth, 2003]. In this study, we will examine the extent to
which grain size reduction driven by direct damage (i.e., in
essence pulverizing the matrix) allows for sufficient shear
localization and plate generation.

2. Two-Phase Damage Theory:
Review and Extensions

[8] The original two-phase damage equations have been
developed over a series of papers [Bercovici et al., 2001a,

B03401 BERCOVICI AND RICARD: TWO-PHASE DAMAGE AND PLATE GENERATION

2 of 18

B03401



2001b; Ricard et al., 2001; Bercovici and Ricard, 2003;
Ricard and Bercovici, 2003], and thus we only briefly
present the governing equations. We note in advance that
in the following equations, subscripts f and m refer to fluid
(i.e., void-filling material) and matrix (e.g., host rock)
phases, respectively. Moreover, the volume average and
phasic difference of any quantity Q are defined as

�Q ¼ fQf þ 1� fð ÞQm; DQ ¼ Qm � Qf ; ð1Þ

respectively. All dependent variables are not, in fact, true
microscopic quantities but are averaged over the fluid or
matrix space within small but not necessarily infinitesimal
control volumes. Moreover, all equations are invariant to a
permutation of subscripts f and m and, implicitly, a switch of
f and 1 � f, where f is fluid volume fraction, or porosity;
this symmetry property is called ‘‘material invariance’’ (see
Bercovici et al. [2001a] for further discussion).

2.1. Mass Conservation

[9] The conservation of mass equations are standard in
two-phase theories [McKenzie, 1984] and remain un-
changed here. There are two equations involving transport
of the fluid and matrix phases:

@f
@t

þ #� fvf
� �

¼ 0 ð2Þ

@ 1� fð Þ
@t

þ #� 1� fð Þvm½ � ¼ 0; ð3Þ

where vf and vm are the fluid and matrix velocities.

2.2. Momentum Conservation:
Interfacial Surface Tension

[10] The general momentum equations for each phase are

0 ¼ �f

#

Pf þ rf gẑ
h i

þ #� fTf

h i
þ cDv

þ w DP

#

fþ #

sað Þ½ � ð4Þ

0 ¼� 1� fð Þ #

Pm þ rmgẑ½ � þ #� 1� fð ÞTm½ �
� cDvþ 1� wð Þ DP #

fþ #

sað Þ½ �; ð5Þ

where g is gravity and c is the coefficient for viscous drag
between phases (also referred to as the Darcy drag
coefficient, and as such can be related to permeability for
small porosity [see Bercovici et al. [2001a]); Pj and rj are
the pressure and density, respectively, in phase j (where j = f
or m), and the density of each phase is assumed constant;
the deviatoric stress tensor for phase j is given by

Tj ¼ mj

#

vj þ

#

vj
� �t� 2

3

#� vj
� �

I

� �
; ð6Þ

where mj is viscosity. Surface tension is denoted by s, and w
is a coefficient for how surface tension partitions between
phases, that is, to what extent it is more embedded in
one phase than the other [Bercovici and Ricard, 2003]; in the
case of mf 	 mm, which is most geologically relevant, w	 1

[see Bercovici and Ricard, 2003]. Last, a is the interfacial
area per unit volume, which is discussed in detail in
section 2.4.

2.3. Energy Conservation

[11] Following the development of Bercovici et al.
[2001a] and Bercovici and Ricard [2003], the energy
equation is separated into two coupled equations represent-
ing (1) the evolution of thermal (entropy-related) energy and
(2) the rate of work done on the interface by pressure,
surface tension, and viscous deformational work. The inter-
facial surface energy and the work done by surface tension
on the mixture are assumed to be partitioned between
phases by the same fraction w as the surface tension force
in section 2.2. With these assumptions we arrive at (see
Bercovici et al. [2001a] for a detailed derivation with the
case of w = f, and Bercovici and Ricard [2003] for
equations with a general w)

rc
DT

Dt
� T

eD
Dt

a
ds
dT


 �
� Ta

ds
dT

#� ev
¼ Q� #� qþ B

eDf
Dt

 !2

þ 1� fð Þ� ð7Þ

s
eDa
Dt

¼ �DP
eDf
Dt

� B
eDf
Dt

 !2

þf�; ð8Þ

where T is the temperature (assumed the same in both
phases), �ds/dT is the interfacial entropy per unit area
[Desjonquères and Spanjaard, 1993; Bailyn, 1994; Bercovici
et al., 2001a],

ev ¼ wvf þ 1� wð Þvm ð9Þ

is the effective velocity of the interface, Q is an intrinsic heat
source, q is an energy flux vector (accounting for heat
diffusion and possibly energy dispersion [see Bercovici et al.,
2001a]), and

� ¼ cDv2 þ f

#

vf : Tf þ 1� fð Þ #

vm : Tm ð10Þ

(where Dv2 = Dv � Dv) is the viscous deformational work, a
fraction f of which is partitioned into stored work (in this
model stored as interface surface energy) while the
remaining part goes toward dissipative heating [Taylor
and Quinney, 1934; Chrysochoos and Martin, 1989]; see
Bercovici et al. [2001a] for further discussion of the
partitioning fraction f. The quantity B must be positive,
and it has units of viscosity; the term associated with it
represents irreversible viscous work done on pores and
grains by the pressure difference DP during isotropic
compaction or dilation [Bercovici et al., 2001a; Ricard et
al., 2001]. B can be associated with a matrix bulk viscosity
[McKenzie, 1984; Ricard et al., 2001] but in our theory is
associated with the phase viscosities themselves; see section
2.8 for further discussion.
[12] The average heat capacity per volume of the mixture

is rc = frf cf + (1 � f)rmcm (where cf and cm are the heat
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capacities of the fluid and matrix), and the material deriv-
atives in (7) and (8) are defined as

eD
Dt

¼ @

@t
þ ev � #¼ w

Df

Dt
þ 1� wð ÞDm

Dt
ð11Þ

D

Dt
¼ 1

rc
frf cf

Df

Dt
þ 1� fð Þrmcm

Dm

Dt


 �
ð12Þ

in which

Df

Dt
¼ @

@t
þ vf �

#

;
Dm

Dt
¼ @

@t
þ vm � #

: ð13Þ

2.4. Interfacial Area Density

[13] The interfacial area per unit volume of mixture a is
generally a function of porosity f (since it necessarily
vanishes in the limits of f = 0 and 1) and inversely
proportional to an average grain and/or pore (or void) size
which is denoted by A�1 (where A has units of m�1; in
keeping with our previous studies [Bercovici et al., 2001a,
2001b; Ricard et al., 2001; Bercovici and Ricard, 2003;
Ricard and Bercovici, 2003], we write

a ¼ Ah fð Þ; ð14Þ

where

h fð Þ ¼ fa 1� fð Þb ð15Þ

and a and b are constants �1. As discussed by Bercovici et
al. [2001a], @a/@f is analogous to the average interface
curvature. Whether A represents void or grain size depends
on the sign of the average interface curvature; if @a/@f > 0,
then curvature is positive, implying that the interface is
concave to the void-filling fluid phase (e.g., voids are like
bubbles encased in matrix); and if @a/@f < 0, then
curvature is negative and the interface is convex to the
fluid (the matrix is composed of grains bathed in fluid). The
change in sign of curvature from positive to negative with
increasing f occurs at f = a/(a + b), and thus, for f < a/(a +
b) we can assume that the interface mostly encloses pores
and A represents inverse void size, while for f > a/(a + b)
the interface encloses matrix grains, in which case, A
represents inverse grain size. For slurries and granular-type
media, a/(a + b) 	 1, while for foams, a/(a + b) � 1. It
should be noted that in this theory, grain size is defined as
the typical length scale of an element of matrix material
predominantly bounded by voids or pores (i.e., by the
interface between phases); it is thus not precisely the same
as the petrological definition of grain size which pertains to
matrix elements bounded by grain-grain boundaries.
Instead, this theory’s description of grain size is closer to
what would be expected in granular material.

2.5. Damage Equation: Void Versus
Fineness Generation

[14] Equation (8) governs the rate that deviatoric stresses
and the interphasic pressure difference do work on the
interface, effectively storing surface energy on the interface.

As this models the growth of microcracks and defects
by growth of interfacial area, it is termed the damage
equation.
[15] In previous papers we considered the inverse grain/

void size A to be constant and that all damage occurred
through void growth and porosity change. However, it is
clearly possible to incur damage without void growth but
instead by increasing the number of voids or grains without
changing porosity, hence reducing the void/grain size and
thus increasing the interfacial area density. We refer to this
effect as increasing the fineness of the mixture; that is, the
smaller the grain/void size, the finer (or less coarse) the
texture of the two-phase medium. Therefore, here we allow
for the possibility that A is variable and that an increase in
A increases the fineness of the medium. In this case, (8)
becomes

sA dh
df

eDf
Dt

þ sh
eDA
Dt

¼ �DP
eDf
Dt

� B
eDf
Dt

 !2

þ f�: ð16Þ

We assume that the terms proportional to DP and B are
directly related to dilation and void generation since they
are clearly associated with mechanical work to change
porosity f. However, in general, the term f� is itself
partitioned between growth of voids and enhancement of
fineness, which each contribute to interface generation; we
assume that a fraction ff contributes to void generation,
while a fraction fA contributes to fineness generation, and
that f = ff + fA. Thus (16) is itself divided into

sA dh
df

eDf
Dt

¼ �DP
eDf
Dt

� B
eDf
Dt

 !2

þ ff� ð17Þ

sh
eDA
Dt

¼ fA�: ð18Þ

Although both void- and fineness-generating damage can
occur simultaneously, we will here consider the limiting
cases where only one or the other occurs; that is, when ff 6¼
0, fA = 0, and vice versa.
2.5.1. Partitioning Fractions
[16] As discussed in our previous papers [Bercovici et al.,

2001b; Bercovici and Ricard, 2003], when void-generating
damage occurs (ff 6¼ 0), singular solutions of (17) in regions
of zero void growth (i.e., eDf/Dt = 0) are precluded by
requiring that the partitioning fraction ff be dilation rate-
dependent, e.g.,

ff ¼ f *

eDf=Dt� �2
gþ eDf=Dt� �2 ; ð19Þ

where f * is the maximum permissible ff, g controls the
variability of ff, and ff is assumed to depend on an even
power of eDf/Dt since it must be positive definite (and, for
simplicity, we assume the lowest-order such power).
[17] However, in the case where damage generates greater

fineness (reduces grain/void size) such that fA 6¼ 0, there are
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no explicit singularities in (18). Hence there is no need to
ascribe any mitigating behavior to fA, and thus, for sim-
plicity, we generally assume that fA is constant.

2.6. Evacuated Void Limit

[18] We next adopt the geologically applicable ‘‘void
limit’’ proposed by Ricard and Bercovici [2003] whereby
pores have zero density, pressure, and viscosity (rf = Pf =
mf = 0 and thus w = 0 and eD/Dt = Dm/Dt). At the interface,
there is no interaction force between phases (cDv = 0), and
the interface itself is assumed to move with the matrix. In
this limit the governing equations of mass and momentum
(i.e., (3) and (5)) are

Dmf
Dt

¼ 1� fð Þ #� vm ð20Þ

0 ¼ #

sa� 1� fð ÞPm½ � þ #� 1� fð ÞTm½ � � 1� fð Þrmgẑ;
ð21Þ

respectively. The general damage equation (following
section 2.5) becomes

sA dh
df

¼ �Pm � B
Dmf
Dt

þ f *Dmf=Dt

gþ Dmf=Dtð Þ2
1� fð Þ #

vm : Tm

ð22Þ

sh
DmA
Dt

¼ fA 1� fð Þ #

vm : Tm: ð23Þ

2.7. Some Comments on ‘‘Healing’’

[19] In the case with fineness-generating damage the
evolution equation for A does not appear to have an explicit
healing term; that is, the right side of (23) is necessarily
positive definite and thus only allows for an increase in
fineness A. A healing term would be manifested as a
negative quantity on the right side of (23) and would
involve reduction in interfacial surface area as the system
tends toward a minimum surface energy configuration. In
rocks such healing tends to occur through coarsening or
grain growth wherein large grains grow at the expense of
smaller ones [Hillert, 1965; Atkinson, 1988; Karato, 1989;
Evans et al., 2001].
[20] In simple treatments of grain growth, healing is

typically represented as a decay term that goes as inverse
of average grain size to some power [see Karato, 1996;
Bercovici and Karato, 2003], which accounts for grain
growth being faster the smaller the grain size. However,
grain growth requires some heterogeneity in grain sizes (i.e.,
a grain size distribution of finite variance) to proceed;
otherwise, all grains would be of the same size and none
could grow at the expense of another [Hillert, 1965;
Atkinson, 1988]. If grain size is parameterized in a mixture
scheme by a quantity such as A�1, then this actually
represents average grain size in a control volume and thus
all information about microscale heterogeneity is lost (i.e.,
A�1 is only the mean of the distribution and has no
information about the variance of the distribution). Thus
the heterogeneity required to initiate grain growth must be

treated by determining the grain size distribution, e.g., by
solving for grain size variance. Simple grain growth or
coarsening theories do show self-similar grain size distri-
butions in which the variance depends simply on mean
grain size [Hillert, 1965; Atkinson, 1988]; however, these
are asymptotic solutions that are built on simple single-grain
growth laws. The rigorous incorporation of grain growth
and coarsening into our theory requires significant new
complexity dealing with grain size distributions and requir-
ing grain growth laws (which employ chemical potential
differences and the Gibbs-Thompson effect to drive mass
transfer) that should self-consistently arise from our two-
phase energy and thermodynamics equations. These
endeavors are beyond the scope of this paper, and thus we
leave explicit healing via grain growth and coarsening out
of the theory for now. It can be shown, however, that
gradients in fineness

#A and associated surface tension
gradients can drive bulk flow of matrix from regions of low
A to ones with high A (since surface tension of finer
material pulls harder than does that of coarser material),
which therefore advects regions of low A into those with
high A. This effect creates an apparent healing relation
which, all other forces being zero, would appear as @A/@t �
�j #Aj2; however, this merely reduces A at given points in
space, while the material elements themselves are not
healing/coarsening at all but are only being swept aside
and replaced by coarser material. Nevertheless, forces and
flow associated with gradients in A are so weak (given that
surface tension itself is a relatively weak driving force) that
this apparent healing effect is negligible.

2.8. Matrix Rheology

[21] As discussed by Ricard et al. [2001], porosity can
influence the effective strength of the medium; for example,
in shear flow the effective viscosity is

meff ¼ mm 1� fð Þ; ð24Þ

which essentially arises from the factor of 1 � f in the term
involving Tm in (5). Similarly, since we are here considering
variation in grain/void size, we consider ways in which A
affects rheology, in particular, of the matrix which
represents the host rock. Although reductions in bubble or
grain size in emulsions and suspensions are known to
increase viscosity [Batchelor, 1967; Larson, 1999], the
breakup of the matrix material into grains in the mixture is
likely to facilitate its deformation because of grain sliding,
increased number of available granular slip planes, and
enhanced diffusion creep. We thus assume that the matrix
viscosity depends on A similarly to how viscosity depends
on grain size in diffusion creep, i.e.,

mm ¼ m0 A0=Að Þm; ð25Þ

where m0 and A0 are constant reference values for viscosity
and fineness, respectively, and m is a dimensionless positive
constant.
[22] However, the fineness dependence of viscosity only

really affects the system when growth in A is forced by
damage, i.e., when fA > 0. Without damage, healing is
assumed to drive A toward a homogeneous value; indeed,
for cases in which fA = 0 we assume a simple initial
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condition of A = A0, which leads to a viscosity that,
because A does not change, remains constant (at mm = m0).
[23] The rheological parameter, or effective bulk viscos-

ity, B can be related through micromechanical models to
matrix viscosity mm and porosity f in the limit mf 	 mm [see
Bercovici et al., 2001a]. Given the evacuated void limit
assumption and in considering the possible role of grain
size, we adopt the general relation

B ¼ Km0 A0=Að Þn

f 1� fð Þ ; ð26Þ

where n is not necessarily equal to m, and K is a
dimensionless factor accounting for pore or grain geometry
and is typically O(1) [Bercovici et al., 2001a; see also
Sumita et al., 1996]. Unfortunately, the dependence of B on
grain size is unclear from laboratory data since uniaxial
compression experiments [e.g., Renner et al., 2003]
necessarily measure both shear viscosity and effective bulk
viscosity; indeed, compaction rates are likely even
dominated by shear viscosity [see Ricard et al., 2001]. In
fact, it is only possible to directly isolate B from mm under
purely isotropic or spherical compaction in the absence of
gravity [McKenzie, 1984; Ricard et al., 2001]. While it is
reasonable that shear viscosity is grain size-dependent, it is
not at all evident that an effective bulk viscosity would be
grain size-dependent, or at least in the same sense as mm.
For example, a decrease in grain size likely yields
competing effects in that it possibly inhibits compaction
because of closer grain packing and smaller pore size
(micromechanical models [Bercovici et al., 2001a] imply
that the effective bulk viscosity increases with decreasing
pore size since it becomes more difficult to evacuate fluid
from pores and/or force matrix material into the pore
space) but possibly also facilitates deformation via
diffusion creep. For the sake of simplicity, we simply leave
B as independent of A, i.e., n = 0 (although in section 5
we briefly discuss results of calculations allowing B(A)
with n = m).

3. Source-Sink Formulation

[24] The primary goal of this paper is to study the classic
plate-mantle coupling problem of how well a convective
poloidal flow field can generate toroidal flow through
nonlinear rheological mechanisms (see reviews by Bercovici
et al. [2000] and Bercovici [2003]). In this analysis we
prescribe a poloidal flow by imposing a source-sink field
in a shallow layer of fluid (nominally the lithosphere). In
effect, the source-sink field represents vertical motion of
underlying fluid being injected into or ejected from the
horizontal shallow layer.
[25] The thin layer in which we are modeling flow is

assumed to be bounded above and below by inviscid half-
spaces (i.e., the ocean and atmosphere above, the low-
viscosity asthenosphere below) and thus has free-slip
boundaries. The velocity of material (i.e., matrix material)
in the layer is vm = umx̂ + vmŷ + wmẑ. However, within the
layer we assume that vertical flow wm is negligible, and thus
the free-slip boundaries leads to the condition that @um/@z =
@vm/@z = 0. We further assume that the layer is so thin that
this condition exists across the entire width of the layer. A

velocity field that satisfies these conditions can be expressed
with the Helmholtz representation

vm ¼ #

qþ #� yẑð Þ þ #� #� zxẑð Þ; ð27Þ

where q, y, and x are functions of x, y, and time t only. The
velocity potential q represents ‘‘compressible’’ flow asso-
ciated with dilation or compaction due to void generation or
collapse. The last two terms on the right side of (27)
represent the incompressible solenoidal flow of the matrix
which is not associated with dilation or compaction [see
Spiegelman, 1993]; the solenoidal potential y is the toroidal
stream function, and x is the poloidal potential. The velocity
given by (27) can be rewritten as

um ¼ @ qþ xð Þ
@x

þ @y
@y

;

vm ¼ @ qþ xð Þ
@y

� @y
@x

;

wm ¼ �zr2
hx;

ð28Þ

where rh
2 = @2/@x2 + @2/@y2, and we define the entire thin

layer to exist near z = 0 such that wm is negligibly small. We
also note that since dilational velocity is assumed
independent of z, porosity f is also independent of z (i.e.,
there is no vertical variability in how voids dilate or
compact, and thus void density is assumed not to vary
vertically).

3.1. Source-Sink, Vorticity, and Dilation Rate Fields

[26] As stated above, here we are only concerned with
lateral flow in a thin horizontal fluid layer that is driven by
an imposed source-sink field, or injection and ejection of
material from below. Within the thin layer we assume that
vertical matrix velocity wm is zero but that @wm/@z is
nonzero; indeed, the negative of the latter quantity repre-
sents the net vertical volume flux per unit volume (or at a
point) of material being injected into the thin layer (i.e., if
the layer has thickness h, then the net vertical volume flux
over an infinitesimal area is [wm(z = 0) � wm(z = h)]dxdy �
�(@wm/@z)hdxdy). We therefore prescribe the source-sink
field (due to vertical injection/ejection) as S = �@wm/@z,
which, using (28), can be restated in terms of the poloidal
field as

r2x ¼ S: ð29Þ

[27] Although the desired goal in studies like these is
plate-like toroidal motion, the best measure of such motion
is concentrated bands of vertical vorticity that, if they were
to represent a true discontinuous strike-slip fault, would
be line singularities. Vertical vorticity is defined as W =
ẑ � #� vm and is in effect a measure of the angular
velocity of a point spinning about a vertical axis and thus
represents rate of strike-slip shear. In terms of toroidal flow
it is given by

r2
hy ¼ �W: ð30Þ
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[28] Void-generating damage is associated with dilation
and compaction represented by q; the dilation rate is G =#� vm, which with (27) yields

r2
hq ¼ G ð31Þ

and with (20) also leads to

Dmf
Dt

¼ 1� fð ÞG: ð32Þ

[29] Therefore we find in the end that our three velocity
potentials x, y, and q are related to the imposed source-sink
field S, the vertical vorticity (or strike-slip shear rate) W, and
the dilation rate G, respectively, through three simple two-
dimensional (2-D) Poisson’s equations (29), (10), and (31).
Although these three relations provide equations for x, y,
and q, we will need equations for W and G since S is already
given. For these we will use our momentum and damage
equations.
[30] The momentum equation (21) is rewritten as

0 ¼ � #

�þ #� 1� fð ÞTm½ � � 1� fð Þrmgẑ; ð33Þ

where � = (1 � f)Pm � sa. We can write a general
expression for� that takes into account both void-generating
and fineness-generating damage; that is, using (22) and (23)
along with (25) and the source-sink formulation, we obtain

� ¼� sA hþ 1� fð Þ dh
df


 �
� B 1� fð Þ2G

þ f *
1� fð Þ3G

gþ 1� fð Þ2G2
m0

A0

A


 �m

F ð34Þ

DmA
Dt

¼ fA
1� f
sh

m0
A0

A


 �m

F; ð35Þ

where

F ¼ #

vm :

#

vm þ #

vm½ �t� 2

3

#� vmI

 �

¼ D*yð Þ2þ4
@2y
@x@y


 �2

þ ##

qþ xð Þ : ##

qþ xð Þ

þ 2S2 � 2

3
G2 þ 4

@2y
@x@y

D* qþ xð Þ � D*y
@2 qþ xð Þ
@x@y


 �
; ð36Þ

and we define the differential operator

D* ¼ @2

@x2
� @2

@y2
: ð37Þ

In the case of void generation, fA = 0, and thus A remains
constant atA =A0, leading to mm = m0. In the case of fineness
generation, f * = 0 and A is variable and time-dependent,
although since the forcing of growth inA is independent of z,
we assume that A is z-independent as well.
[31] We can extract equations for W and G by combining

(34) with (33) and manipulating the result. However, it is
useful to first nondimensionalize the governing equations.

3.2. Dimensionless Governing Equations

[32] We use the maximum of the source-sink field Smax

for a rate scale (inverse of time), the characteristic separa-

tion of the source and sink L as our macroscopic length
scale, and the reference viscosity m0 to help define a stress
scale m0Smax; we also define A0 as our fineness scale (thus
we keep our macroscopic length scale L distinct from the
microscopic one A�1

0 ). We thus nondimensionalize accord-
ing to (x, y, z) = L(x0, y0, z0),

#

= L�1 #0, A ¼ A0A0, and

S;G;W;
ffiffiffiffi
F

p
; vm; x; q;y;�

� �
¼ Smax S0;G0;W0;

ffiffiffiffiffi
F0

p
;Lv0m;L

2x0; L2q0;L2y0; m0�
0

� �
; ð38Þ

where primed quantities are dimensionless.
[33] Substituting these into our governing equations, but

subsequently dropping the primes, we first arrive at our
three Poisson’s equations (which remain unchanged but are
repeated here for the sake of completeness)

r2x ¼ S; r2y ¼ �W; r2q ¼ G: ð39Þ

[34] Combining (33) and (34), substituting our nondi-
mensionalization, and taking ẑ � #� of the resulting
equation, eventually leads to a nonlinear Poisson’s equation
for W:

�mr2W ¼� 2

#

�m � #

W� ẑ � #

�m� #

S þ 2Gð Þ

� D*�m 2
@2 qþ xð Þ
@x@y

� D*y

 �

þ 2
@2�m
@x@y

D* qþ xð Þ þ 2
@2y
@x@y


 �
: ð40Þ

Likewise, taking

#� of the combination of (33) and (34)
with nondimensional variables leads to a nonlinear
Poisson’s equation for G:

4

3
�mþ 1� f

f


 �
r2G ¼ �ŝr2 lAð Þ þ f *r2 1� fð Þ2G

ĝþ 1� fð Þ2G2
�mF

 !

þ 2ẑ � #

�m� #

W� 2

#

�m � #

S þ 2

#

f
f2

� 4

3

#

�m

 �

� #

G

� 2

#

f � #

f
f3

�r2f
f2

� 2

3
r2�m


 �
G

� 2 D*�m
@2y
@x@y

� @2�m
@x@y

D*yþ ##

�m :

##

qþ xð Þ

 �

: ð41Þ

In (40) and (41) we have defined

�m ¼ 1� f
Am ð42Þ

as the effective dimensionless viscosity and

l ¼ hþ 1� fð Þ dh
df

; ð43Þ

ŝ ¼ sA0

m0Smax

; ð44Þ

ĝ ¼ g

S2max

: ð45Þ
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We have also used (26) to eliminate B, and we note that the
form of F does not change from that given in (36).
[35] Finally, the dimensionless evolution equations for f

and A follow from (20) and (23), yielding

@f
@t

þ vm � #

f ¼ 1� fð ÞG ð46Þ

@A
@t

þ vm � #A ¼ fA
ŝh fð Þ �mF; ð47Þ

where, again, for void-generating damage fA = 0 and A = 1
and thus �m = 1 � f; for fineness-generating damage, f * = 0
and A is variable.
[36] Overall, our final governing equations are (39),

(40), (41), (46), and (47), all driven by an imposed
source-sink field S, whose structure is specified in section
3.4. The velocity vector appears explicitly only in (46)
and (47) is given by (27) (which remains unchanged by
nondimensionalization).

3.3. Simple Analysis of Source-Sink Equations

[37] Fully plate-like behavior involves strongly nonlinear
solutions to our governing equations and thus numerical
analysis. However, one can gain insight into the dominant
driving terms for initiating plate-like (or nonplate-like)
flows with a simple perturbation analysis. We consider a
uniform and static background state (constant f and A)
driven by a zeroth-order source-sink field S; the resulting
flow fields related to dilation and vorticity, G and W,
respectively, are first-order perturbations, as are fluctuations
in f, A, and thus �m as well. With the further simplification
that �m is slowly varying (such that its second-order deriv-
atives are much smaller than its first-order derivatives) and
that f 	 1, we arrive at the first-order equations

�mr2W � �ẑ � #

�m� #

S½ � ð48Þ

r2G � �2f

#

�m � #

S: ð49Þ

Equation (48) immediately implies the excitation of plate-
like vorticity requires gradients in viscosity to be sig-
nificantly out of phase with (i.e., orthogonal to) gradients in
the source-sink field. However, gradients in �m that are in
phase with gradients in S can drive dilation which affects �m
(through changes in porosity f), which potentially increases
the magnitude of

#

�m, leading to more dilation, and thus a
potential positive feedback even in the absence of damage.
However, the feedback will only tend to generate porosity
and weak zones over the source and sink but not along
bands connecting the ends of the source and sink (which are
needed to make a contiguous weak plate boundary).
Excitation of vorticity does not have a similar direct
feedback through the first-order effects in (48) because a#

�m that is out of phase with

#

S can generate vorticity but
the vorticity has no way in turn of affecting �m and

#

�m
through first-order effects; the vorticity can only influence �m
through second-order damage terms (i.e., deformational
work F) which drive changes in f and/or A. Therefore,
while dilation is enhanced readily even without damage,

vorticity and toroidal motion can only grow through a
positive feedback if the appropriate damage mechanisms are
present. Moreover, as is shown in section 4.1, the excitation
of dilation is intrinsically adverse to generation of plate-like
toroidal motion. Therefore, not only must one must attain
conditions for exciting toroidal motion, but ideally, these
same conditions simultaneously suppress dilational flow.

3.4. Numerical Method

[38] The governing equations constitute a set of two-
dimensional nonlinear partial differential equations, and
they are solved numerically using a basic spectral trans-
form method employing fast Fourier transforms, as de-
scribed by Bercovici [1993]. For nonlinear equations,
such as (40) and (41), one writes the equations so that
all nonlinear terms constitute a forcing function in an
apparently linear Poisson’s equation. Thus, for example,
one would replace the left side of (40) with �mmaxr2W
(where �mmax = max(�m)) and add the complementary nonlin-
ear term �mmax � �mð Þr2W to the right side; this leads to a
linear Laplacian operation on the left, driven by a forcing
function on the right that is composed of nonlinear terms.
This forcing function is easily evaluated on a physical grid
and Fourier transformed to spectral or wave number space,
although care must be taken to de-alias the nonlinear
forcing function after it is transformed [see Canuto et al.,
1988]. The Fourier transform of the Laplacian operator on
the left side becomes an algebraic expression in spectral
space (in terms of wave numbers squared), and thus the
spectral (transformed) version of W is easily solved.
[39] Numerical solutions of the governing equations are

accomplished iteratively. For a given A and/or f (depend-
ing on whether we are solving for void-generating or
fineness-generating damage), the solutions for y, q, W,
and G are found by iterating through (39), (40), and (41)
until convergence (the mean square misfit between succes-
sive iterations for solutions for W and G, normalized by the
L2 norm of W and G, respectively, reaches 10�6 or less).
Obviously, x needs to be solved only once since S is given.
Provided these solutions, A and/or f are then updated by
one time step using (46) and (47), and the next cycle begins
again. The time step is tightly constrained by the Courant-
Friedrichs-Lewy (CFL) condition (usually to 1% of the CFL
advective time step).
[40] The driving source-sink field S is prescribed as it is

by Bercovici [1993, 1998]. In essence, it is taken from the
horizontal divergence of an arbitrary plate-like velocity field
defined by the translational motion of a square plate that is
2L on its side; that is,

�v ¼ V x̂0F x0ð ÞF y0ð Þ; ð50Þ

where

F xð Þ ¼ 1

2
tanh

xþ L

d


 �
� tanh

x� L

d


 �� �
; ð51Þ

d is the width of the plate margin; x0 and y0 are coordinates in
a frame of reference with unit vectors parallel x̂0ð Þ or
perpendicular ŷ0ð Þ to plate motion; if plate motion is at an
angle J from the x axis, then obviously x0 = xcosJ + ysinJ
and y0 = �xsinJ + ycosJ. The source-sink field is defined as
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S =

#� �v, and since this a scalar invariant, it simply
becomes S = V(dF(x0)/dx0)F(y0), where

dF xð Þ
dx

¼ 1

2d
sech2

xþ L

d


 �
� sech2

x� L

d


 �� �
: ð52Þ

In dimensionless form, �1 � S � 1, and thus the constant V
is determined so that max(S) = 1.
[41] Last, we can use (50) to measure the extent to which

a plate-like vorticity field is generated. Ideally, our nonlin-
ear solutions will at least reproduce the vorticity intrinsic to
the given plate flow prescribed by (50); this vorticity is
simply

�W ¼ ẑ � #� �v ¼ �VF x0ð Þ dF y0ð Þ
dy0

; ð53Þ

which is identical to S but rotated clockwise 90�. Whether
the generated vorticity field W reproduces (or is even more
plate-like than), �W can be measured by the correlation
function

CW ¼
P

k Wk
�Wk
*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k Wkj j2
� � P

k
�Wk

�� ��2� �r ; ð54Þ

where Wk and �Wk are the 2-D Fourier transforms of W and
�W, respectively. This function is, in fact, written to only
measure the correlation in spatial structure between W and �W
and removes amplitude effects.

4. Numerical Source-Sink Flow Results

[42] We examine several numerical solutions to our
system of equations. We will not do a complete exploration
of parameter space, since a handful of solutions will suffice
to illustrate the most important results. We note that with
our choice of scaling, the dimensionless surface tension
parameter ŝ is, in fact, negligible, which is to be expected
given that s � 1 J m�2, A0 � 106 m�1 (given by inverse
grain size), Smax � 1 � 10�14 s�1 (using a slow plate
velocity and a 100-km-thick plate boundary), and m �
1025 Pa s is a typical lithospheric viscosity [Beaumont,
1976; Watts et al., 1982].

4.1. Void-Generating Damage

[43] All numerical solutions are started with the same
weak random initial conditions depicted in Figure 1a. (In
fact, Figure 1a shows a solution after one small time step,
which is why there is some signature of S in the structure of
W and G.) Since the initial W and G are very small the
velocity field is essentially dipolar as it is dominated by the
source-sink field S. Causing the dipolar velocity field to

assume a more solid body translational velocity field is one
of the primary goals of this study.
[44] Given a small value of ŝ and finite partitioning of

deformational work toward void creation (f * > 0, fA = 0),
we find that the most important controlling free parameter
is that which controls partitioning variability, ĝ (see
equations (19) and (45)). For large ĝ, i.e., O(1) or larger,
the full energy partitioning is difficult to obtain (i.e., ff
cannot readily reach the maximum value f *). The system
undergoes very little damage or evolution other than
advection of porosity by the dipolar velocity field; both
the dilation and vorticity fields G and W remain weak, and
the low to moderate (albeit weakly oscillating) vorticity
correlation CW indicates poor plate-like vorticity (Figure 2).
Overall, the source-sink field S continues to dominate the
velocity field, leaving it dipolar, even after significant time
integration (Figure 1b).
[45] For ĝ 	 1, the full energy partitioning toward

damage is allowed, and the system evolves rapidly (see
Figures 1 and 2). However, most of the damage and
associated dilation concentrates on the driving source-sink
field. The effect of this dilation on the velocity field is to
reinforce the source flow and to diminish the sink flow.
(Note that mass conservation is not violated; that is, no
mass-flux is added to or subtracted from the source-sink
field since the dilational flow is driven by expansion of
voids which have no mass.) This causes the horizontal
velocity field to assume an almost monopolar flow. Mono-
polar flow is highly adverse to the generation of toroidal
motion because of its high degree of axisymmetry; that is,
an axisymmetric flow v(r)r̂, where r is cylindrical radius
from a vertical axis, has zero vertical vorticity ẑ � #�
(v(r)r̂). This is well demonstrated both by the low amplitude
of the vorticity field W relative to dilation G and by the very
poor vorticity correlation CW (Figure 2). In all cases
involving void generation, dilational flow is generated by
the damage mechanism but does not reinforce vertical
vorticity, and thus the toroidal motion always remains
relatively small (Figure 2).

4.2. Fineness-Generating Damage

[46] We next consider cases in which all deformational
work goes to fineness-generating interface growth, i.e., ff =
0 and fA > 0. In these cases, the most significant controlling
parameters appear to be both the viscosity exponent m from
(25) and the ratio fA/ŝ from (47). Since ŝ is assumed small
(and terms proportional to it negligible in the momentum
equation), we can assume fA/ŝ > 1 and even �1 even
though fA � 1. We therefore explore the effect of varying
fA/ŝ over several orders of magnitude.
[47] In the previous cases of void-generating damage,

deformational work directly fed dilational flow but not
toroidal motion; thus the dilation rate would tend to be
dominant while toroidal motion would only be excited

Figure 1. Source-sink field S, dilation rate G, porosity f, vertical vorticity W, and horizontal matrix velocity vh = umx̂ +
vmŷ for the void-generating damage case (ff > 0, fA = 0). (a) The initial condition (t � 0). Lower panels show later times
(dimensionless time indicated in the velocity frame) for cases with (b) relatively large ĝ = 1 (see (19) and (45)) and
(c) relatively small ĝ = 10�2. Porosity is initiated with a random perturbation of amplitude 0.001 on top of a constant
background of 0.05. Other parameters are a = b = 0.5, f * = 0.5, and ŝ � 0. Minimum and maximum values of each scalar
field and the maximum velocity vector length are indicated.

B03401 BERCOVICI AND RICARD: TWO-PHASE DAMAGE AND PLATE GENERATION

9 of 18

B03401



Figure 1

B03401 BERCOVICI AND RICARD: TWO-PHASE DAMAGE AND PLATE GENERATION

10 of 18

B03401



secondarily. However, in the fineness-generating cases,
damage does not directly force either dilation or vorticity
and instead only influences them through the viscosity field
(i.e., via the A dependence of viscosity) and, in particular,
by the coupling of the driving poloidal flow with viscosity
gradients. Thus vorticity W is allowed to develop on more or
less equal footing with the dilation rate.
4.2.1. Influence of the Fineness
Dependence of Viscosity
[48] We first consider varying m, the A dependence

viscosity exponent, while keeping fA/ŝ = 1, which is a
very conservative value chosen to emphasize the influence
of m (i.e., as shown in section 4.2.2, solutions become plate-
like for nearly any value of m when fA/ŝ becomes large).
For m = 1, plate-like motion is significantly improved over
the void-generating cases (Figure 3) but is not very well
developed. The fineness variable A grows several-fold with
time (Figure 4), but because of the weak viscosity depen-
dence on A, it does not register a large effect on the
vorticity and dilation rate. Indeed, while both the vorticity
and dilation rate increase in magnitude with time, they
remain small relative to the source-sink (poloidal) flow
during the duration of the calculation.

[49] Form considerably greater than unity the fluid motion
becomes increasingly plate-like. We depict two other cases
showing the effect of increasing m, i.e., for m = 7 and m = 21
(Figures 3 and 4). For sufficiently large m the vorticity field
grows in magnitude and becomes increasingly organized
into strike-slip-type margins bounding a plate; this effect is
apparent both qualitatively (Figures 3b and 3c) and quanti-
tatively in terms of the correlation function CW (Figure 4).
Moreover, the dilation rate actually decreases with time for
some period (Figure 4); the extent and duration to which the
dilation rate is suppressed are clearly dependent on the size
of m (see section 4.2.3). For the case of m = 21 the plate-like
velocity and vorticity fields along with suppression of
dilation are highly pronounced.
4.2.2. Influence of Partitioning fAAAAAA
[50] If our viscosity law for mm is characteristic of

diffusion creep, then m should be between 2 and 3, while
values of 7 or 21 would be unrealistic. It is plausible that
dependence on A would be more severe than stipulated in
diffusion creep if the deformation mechanism involved
granular-type deformation as well. However, solutions for
values of m = 2–3 do not differ significantly from the
weakly or even nonplate-like solutions of m = 1 as long as

Figure 2. Maximum absolute values of porosity f, vorticity W (solid lines, middle), and vorticity
correlation function CW (dashed lines, middle), and maximum absolute dilation rate G versus time for the
case shown in Figures 1b and 1c.

Figure 3. Source-sink field S, dilation rate G, porosity f, vertical vorticity W, horizontal matrix velocity vh, and inverse
grain/void size A for the fineness-generating damage case (ff = 0, fA > 0) with (a) m = 1, (b) 7, and (c) 21 (see (25)). The
dimensionless time is indicated in the velocity frame. Porosity f is initiated with a random perturbation of amplitude 0.001
on top of a constant background of 0.05. Dimensionless inverse grain/void size A is initiated with a random perturbation of
amplitude 0.01 on top of a constant background of 1. Other parameters are a = b = 0.5, and while ŝ = �0 in the momentum
equations, we prescribe fA/ŝ = 1 in (4).
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the ratio fA/ŝ is small or moderate. Nevertheless, as stated
above, the value of fA/ŝ = 1 is very conservative since ŝ is
considered extremely small. With more plausible values of
fA/ŝ increased to 10 or 100 we obtain a very profound effect,
even for small m, that is perhaps even more promising in
terms of plate generation than imposing high values of m.
Figure 5 depicts cases withm = 3 and fA/ŝ = 1,10, and 100; it
is quite clear that as the ratio fA/ŝ increases, the vorticity
field focuses into very plate-like strike-slip pseudofaults, the
velocity field is very nearly solid body translation, and the
viscosity field, which will essentially be the reverse image of
the A field, has contiguous weak zones around the plate
margins.
[51] The temporal evolution of the solutions with different

fA/ŝ (Figure 6) shows that the magnitude of A increases
more rapidly with larger fA/ŝ, as expected by (47); indeed, a
simple scaling shows that for fixed strain rates the magnitude
of A goes as fAt=ŝð Þ1= mþ1ð Þ

. Vorticity likewise reaches large
magnitudes, potentially larger than both the magnitudes of S
as well as G (i.e., for the fA/ŝ = 10 and 100 cases). The
vorticity correlation function CW also reaches respectably
high values near unity, although it peaks at these values and
then slowly decreases with time. Finally, the time span over
which dilation G is suppressed increases dramatically with
larger fA/ŝ.
4.2.3. Suppression of Dilation
[52] As demonstrated in section 4.1 and previously in

section 4.2, suppression of dilation in the poloidal-toroidal
coupling problem with two-phase damage is crucial, since
otherwise dilation merely augments the poloidal field at the
expense of the toroidal one. However, since dilation G is
directly forced by the coupling of viscosity gradients with
gradients in the driving source-sink field S, see (41) or (49)
in section 3.3, it will eventually grow; thus its suppression is
only temporary. However, the time period of such suppres-
sion is variable and depends significantly on both m and
fA/ŝ such that the higher the value of either, the longer the
suppression period. We can measure the dilation suppres-

sion time tsupp by defining it as the period of time that
@Gmax/@t < 0, i.e.,

tsupp ¼
Z tmax

0

1

2
1� sign

@Gmax

@t


 �� �
dt; ð55Þ

which can be numerically integrated for any of our
solutions. Figure 7 shows tsupp versus m for fA/ŝ = 1 and
versus fA/ŝ for m = 3. The suppression of dilation is
particularly profound and long-lasting as fA/ŝ increases to
large values, even for moderate values of m. Of course, as m
also increases, the suppression is more significant; however,
it appears that the effect of using large enough fA/ŝ is
sufficient to suppress dilation almost entirely or at least for
long periods of time.
4.2.4. Some Reflections on Interface Curvature
[53] As discussed in section 2.2, the association of A with

void size or grain size depends on the interface curvature
@a/@f; if the curvature is greater than zero, A represents
void size, while if the curvature less than zero, A is grain
size. In the calculations of sections 4.1 and 4.2 we consid-
ered relatively simple cases in which a = b = 1/2 (see (14))
for both void- and fineness-generating damage. However,
with these values of a and b, the curvature changes sign at
relatively high porosity (i.e., at f = a/(a + b) = 1/2), even
though our porosity field never approaches such values;
thus, in these cases, A really represents void size. It is
important therefore to consider cases in which curvature
switches sign at low porosity, as would be expected for
silicates and granular media. We therefore examined cases
for which a = 0.05 and b = 1 � a, in which case curvature
changes sign at f = 0.05, which is also equivalent to our
initial background porosity field. The effect of this change
in a and b is, however, not extremely significant. In essence,
it simply changes the value of h in (47). For a = b = 1/2, the
value of h at the background porosity value of f = 0.05 is
relatively small (h(0.05) � 0.2), thus leading to a larger

Figure 4. Maximum absolute values of porosity f, fineness (or inverse grain/void size) A, vorticity W
(solid lines), vorticity correlation function CW (dashed lines), and maximum dilation rate G versus time
for the case shown in Figure 3.
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Figure 5. Same as Figure 3 but with m = 3 and values of fA/ŝ of (a) 1, (b) 10, and (c) 100.
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damage rate. For a = 0.05, b = 1 � a, the value of h at the
background porosity is considerably larger (approximately
0.8), thus reducing the damage rate. The extent of plate
generation is thus slightly weaker for the a = 0.05 cases,
although the solutions differ little from those shown already.
However, even this mitigating effect can be offset easily by
increasing fA/ŝ accordingly (i.e., our choices of fA/ŝ are
conservative, given that ŝ 	 1, and thus there is nothing
implausible about increasing this ratio by a factor of 4 or so).

5. Discussion and Conclusion

[54] The overall goal of our two-phase damage studies is
to develop a first principles theory for shear localization as
it might be applied to mantle-lithosphere dynamics, in
particular to the generation of plate tectonics from mantle
convection. Our previous studies of two-phase damage
[Bercovici et al., 2001a, 2001b; Ricard et al., 2001;
Bercovici and Ricard, 2003; Ricard and Bercovici, 2003]
demonstrated a variety of important shear-localizing and
failure-like phenomena that involve damage through void
generation. However, these findings were most applicable
to situations where an imposed shear or other deformation
gets further enhanced by dilational damage. In the plate
generation case, whereby a toroidal flow field must be
generated from an essentially orthogonal convective poloidal
field, the presence of dilation associated with void generation
acts adversely to generating plate-like behavior. However,
allowing for damage to affect grain/void size by increasing
the overall fineness A not only leads to a very profound
organization of vorticity into plate-like motion, but it also
suppresses dilation and its adverse effects.
[55] There are, however, a few model simplifications and

assumptions that warrant further discussion, at least in terms
of the conclusions summarized above. First, it is of course
likely that the effective viscosity of a silicate-type mixture
or granular medium would be more sensitive to porosity
than the 1 � f dependence in (24) implies [e.g., Hirth and
Kohlstedt, 2003]. For example, the matrix of partial melts
will tend to disaggregate at low porosities, which will
involve a sharp drop in effective viscosity. In the case of

void-generating damage (ff > 0 and fA = 0), a very low
viscosity in damaged and weakened zones of moderate
porosity could conceivably suppress dilation by limiting (or
self-regulating) the amount of deformational work going
into void generation; meanwhile, the resulting large
viscosity variations and gradients resulting from precipitous
drops in viscosity over small changes in porosity might
enhance vorticity generation. These combined effects could
possibly then allow void-generating damage to better
generate plate-like motion. The effect of using a more
strongly porosity-dependent effective viscosity was tested
for the pure void-generating damage case (fA = 0) by
replacing the 1 � f dependence in (24) (or, to be more
precise, in the momentum equation terms involving Tm)
with a function of porosity that undergoes a sharp drop at an

Figure 6. Same as Figure 4 but for cases shown in Figure 5.

Figure 7. Time interval for suppression of dilation G, as
given by (55) (a) versus m for fA/ŝ = 1 and (b) versus fA/ŝ
for m = 3.
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arbitrary value of porosity f* over a step in porosity of
width df (using step-like functions such as erf or tanh). To
maximize the effect we are seeking (i.e., to obtain larger
viscosity contrast with which to enhance vorticity genera-
tion, while still allowing for low viscosity and self-
regulation of dilation), we chose the transitional porosity
f* to coincide with our chosen background porosity of f =
0.05. The results of these calculations (for various df) do
indeed show some suppression of dilation rate and
enhancement of vorticity. However, bands of strike-slip
shear still experience void-generating damage and thus
generate as much dilational motion as vorticity; the vorticity
therefore always remains considerably less than the dilation
rate, leading to a velocity field that is still dominantly
monopolar and thus highly unplate-like.
[56] Second, we assumed in section 2.8 that the effective

bulk viscosity B is, unlike shear viscosity, independent of
grain/void size A�1. For the sake of completeness, it is
therefore appropriate to consider the alternative case when B
depends on A in the same way as shear viscosity, i.e., B �
mm instead of B � m0; this adjustment to B was adopted for
the fineness-generating damage case (fA > 0) and explored
for a variety of parameters similar to those shown above.
The effect of allowing B to depend on A is that it lowers the
bulk viscosity as A grows; since B primarily acts to retard
dilational motion, the end result is that dilation is not as well
suppressed as when B is independent of A. The resulting
fluid motion is more plate-like than the void-generating
cases but significantly worse than cases with A-independent
B. This illustrates the importance of suppressing dilational
motion for generating plates.
[57] Finally, in assuming that all variables in the theory

are independent of depth z we have excluded the effect of
hydrostatic pressure in the matrix which would act as a
confining stress and thus help suppress void generation and
dilation. In particular, if f were a function of z, then the
equation for the dilation rate G, i.e., (41), would have
included a term proportional to rmg which allows for the
influence of overburden pressure on the dilation rate. As
confining pressure acts to suppress dilation, it would likely
facilitate plate-like solutions to the model, although this
effect requires testing in future studies.
[58] In this regard, although void-generating, dilational

damage is prevalent in low-pressure crustal rocks [e.g.,
Menéndez et al., 1996; Wong et al., 1997; Zhu and Wong,
1997; Zhu et al., 1997] it is probably much less significant at
high confining pressures of mid and lower lithospheric
depths (of order 100 km). Thus the failure of void-generating
damage to generate plates is in keeping with the notion that
void generation is probably not the dominant mechanism for
deep lithospheric deformation. Nonvoid and nondilational
damage, by, for example, grain size reduction is therefore an
attractive mechanism. However, grain size reduction through
dynamic recrystallization [Karato et al., 1980; Karato, 1989,
1996; Bercovici and Karato, 2003] necessarily resides on the
boundary between diffusion and dislocation creep, and the
theories that have been developed for it do not readily permit
the sort of shear localization observed in plate generation and
in mylonites [Bresser et al., 2001;Montési and Zuber, 2002;
Montési and Hirth, 2003], although the possibilities for this
mechanism have by no means been exhausted [see Bercovici
and Karato, 2003]. The grain size reduction mechanism

explored in this paper is perhaps more straightforward (it
basically involves pulverizing the matrix through deforma-
tional work), and our simple calculations demonstrate ex-
ceptional potential for plate generation. One expects that
dynamic recrystallization theory and fineness-generating
damage theory should be reconcilable at some level since
both involve breaking down grains. The damage approach at
least suggests some new considerations for dynamic recrys-
tallization models; in particular, grain size reduction in
damage is driven by energy transfer from deformational
work to surface energy and is a nonlinear function of stress
or strain rate, whereas in recrystallization theory it is kine-
matically prescribed by strain rate which is implicitly linear
and perhaps does not provide as strong a shear-localizing
feedback mechanism.
[59] In the fineness-generating damage theory, plate-like

behavior appears to improve as the dependence of viscosity
on A, parameterized by the power m, increases; for ex-
tremely small damage partition values fA (i.e., for fA/ŝ �
O(1), where we have assumed ŝ 	 1) one must approach
values of m that are beyond those that are realistic for
diffusion creep (for which typically m = 2–3). The higher
values of m can be interpreted to represent the effects of
introducing more granular matter-type deformation (e.g.,
weak frictional sliding) rather than diffusion creep. How-
ever, these are a qualitative arguments only and require
more rigorous exploration. Nevertheless, what is most
remarkable is that with an increase in fA by an order of
magnitude or more to more plausible values, even values of
m typical of diffusion creep (e.g., m = 3) not only yield
extremely plate-like behavior (in the velocity, vorticity, and
viscosity fields) but also extensive periods of dilation
suppression which are also necessary to sustain plate
generation. Indeed, in these model calculations the cases
with larger fA, even when m is relatively small, are the most
successful at plate generation.
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