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Abstract. New equationgor the dynamicsof a two-phasemixture are derived
in a companionpaper[Bercovici et al., this issue(a)]. Theseequationsdo not
invoke a bulk viscosityasmostprevious papershave done,andusethe existence
of the pressurdifferencebetweenthe two phasesjncluding the possibility of
surfaceenepy at the interfacebetweenhe phases.in this paperwe shav how a
two-phasanixturereactdo simplestresdields. As abasicexample we discusgshe
deformationof a porousmaterialconfinedby animpermeablgacket andloaded
by a porouspistonandshawv thatthe fluid cannever be totally extractedfrom
the matrix. We demonstratehat an unconfinedporoussampleis strongerunder
sheardeformationthanundernormalstress.We considersphericallysymmetric
compactiorandshav thatsomeunphysicafesultsobtainedusinga constantnatrix

bulk viscosityarenaturallyavoidedin our approach.We discusshe problemof
compactionof a two-phasdiquid in the presencef surfacetension. In a one-
dimensionakimulationthe surfacetensiongenerateporosityinstabilitiesthattend
to localizethefluid into narraw sills anddikesthatcannotreachthe surface.

1. Introduction

The equationsof two-phaseviscousflow have beenini-
tially developedin the geophysicatommunityby McKenzie
[1984,1985,1987],RichterandMcKenzig[1984],andScott
and Stevenson[1984] (seealso Drew and Passman[1999]
for a review of the generaltheory of multicomponentflu-
ids). Sincethen,they have beenwidely used[e.g., Ribe
1985, 1987; Fowler, 1990a, 1990b; Turcotte and Phipps
Morgan, 1992; Spigelman 1993a,1993b,1993c; Sthmel-
ing, 2000]. We have proposeda differentsetof mechanical
equationdor two-phaseviscousflow in the companionpa-
per [Bercovici et al., this issue(a)] (hereinafter referredto
asBRS1). Our equationshave variousdifferenceswith pre-
viousapproacheghe mostsalientof which arethat (1) they
do notrequirethe existenceof a matrix bulk viscositywhen

INow at Departmenbf Geologyand GeophysicsYale University, New
Haven,Connecticut.

thetwo phasesreincompressible(2) they accountfor sur

faceenepy attheinterfacebetweerthe phasesand(3) they

assumehatthe two phasesetaintheir own pressurdields.

The massand momentumconsenation equationgoroposed
in BRSlare

9 v -lgvs =0,

5 1)
o(1—¢) _
ot +V. [(1 - ¢)vm] =0, (2)
—¢[V P +prgz] + V - [¢1]
+cAv + ¢[APV¢+ V(oa)] =0, 3)
_(1 - ¢) [VPm + ngi] +V- [(1 - ¢)Im]
AV +(1-§) [APVS+ V(oa) = 0.  (4)

whereAv = v, — vy andAP = P, — P;. Thefluid
andmatrix phasesreferredto by theindices f andm, have
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volumefractions¢ and1 — ¢, respectrely. Althoughthese
indiceswill correspondo the different phasesthe equa-
tions have beenwritten in a perfectly symmetricway and
areinvariantto a permutatiorof f andm and¢ and1 — ¢;

this symmetrypropertyis referredto as materialinvariance
(BRS1). The volume-areragedvelocitiesof eachphaseare
vy, andvy andtheir pressures’,, and Py (seeBRS1).

Alternatively, insteadof writing the equationsof mass
and momentumconseration of eachphase,we canwrite
mixture anddifferenceequations.Definingthe averageand
differenceof ary quantityg asg = ¢qy + (1 — ¢)g,, and
Aq = ¢m — gy, respectiely, one easily obtainsby linear
combinationof (1)-(4) anew setof equivalentequations:

V-v=0, (5)
D¢
=V [6(1 — ¢)Av], (6)
whereD /Dt is definedoy 8/t + v - V,
~VP+V -7 —pgz+ V(oca) =0, )
—¢(1—¢)[VAP + Apga]
+V-[¢(1-¢)AT] -7 -Vp—cAv=0. (8)

Theseequationsexpressthe total massconseration, the
porositytransport the total momentumequilibrium andthe
action-reactiomprinciple.

In (4), (7), and (8) the stresstensorfor the phasem is
definedby

m — Hm (va + [va]t - ;V : vml) , ()]

andasymmetricexpressiorholdsfor the f phasewith f re-

placingm. Theviscositiesu,,, andu; arethe constantvis-

cositiesof eachindividual phase BRS1have adwocatedthat

the mixture of two incompressibldluids cannotbe materi-
ally invariantand have a bulk viscosity; thushbulk viscosity
is not used,in contrastto the approachof previous papers
[McKenzie 1984;Spiggiman 1993a,1993b,1993c;Sctmel-
ing, 2000]whereanextraterm,(V - v,, I, is presenbn the

right side of (9) (seeAppendixA for a moredetailedcom-

parisonof our equationswith thoseof McKenzie[1984]).

Theinteractioncoeficientc canbechosenn suchaway
that it retainsthe symmetryof the momentumequations
while still leadingto theusualDarcy termwhenpy < pip,:

oo Pt d? (1 — ¢)? (10)

k(L = 9)¢? + pmk(4)(1 — ¢)?
(seeBRS1), wherethe permeabilityk(¢) is a function of
porosity¢. Usually, k(¢) is takento vary like kq¢™, where
n is ~2-3. The parameterk, hasthe dimensionsof area
andis physically relatedto the cross-sectionaareaof the
pores(kg ~ 1072 — 10719 m?). In thefollowing, we adopt

the commonandsimplifying assumptiorthatn = 2, which
impliesthatc is a constant

HmHf
c= ——mm—, (11)
ko (ptm + Nf)

andwhenpy < i, ¢ ~ py/ko.

Our modeltakesinto accounthe surfacetensionos atthe
interfacebetweenthe two phases.The interfacedensity«,
i.e., the areaof interface per unit volume, is a function of
porosity and vanishesvhenthe mixture becomesa single-
phasemedium,i.e.,when¢ = 0 or ¢ = 1. We generalizea
suggestiorby Ni and Bedkermann[1991] andassume

a = O‘0¢a(1 - ¢)b7

wherethe exponentse andb arebetweer0 and1. This ex-
pressionis in agreementvith that obtainedfor a hexagonal
netof matrix grainswhena = b = 1/2 [Stevenson 1986;
Riley et al., 1990, Riley and Kohistedf 1991]. If 1/{R) is
the averageinterfacecurvature(definedto be positive when
theinterfaceis concareto thefluid phaseandnegative when
corvex to thefluid), thenit canbe shovn (seeBRS1)that
2 do

2 _da_ a—¢la+b)
(R) ~dp " ¢0-a(1—g)0-0"

(12)

(13)

One important physical implication of (13) is that the
stressnducedby surfacetensiono (da,/d¢$) will becomepo-
tentially infinite when¢ goesto O or 1. Moreover, theinter-
facecurnvaturechangessign when¢ = ¢. = a/(a + b);
this effectis associateavith a changeof dihedralanglefrom
> 60° to < 60° [seeMcKenzie 1984; Kohlstedf 1992] (al-
though,in fact,two-phaseheorydoesnotaccounfor grain-
graininterfacesrelative to which the dihedralangleis mea-
sured).A very small ¢, thuscorrelateswith thefluid phase
or meltbecominginterconnecteat low porosities.

The set(1)-(4) is still not complete. |t is easyto realize
thatonemoreequationis neededfor example,an equation
relating P,, and P;. We know thatin the caseof adiabatic
equilibrium with no motion anda constantsurfacetension,
the Laplaceconditionshouldapply:

da

AP + qub =0.
However BRS1 have shown that this often usedcondition
[e.g.,Drew, 1983;Ni andBedkermanl1991],maynotgener
ally hold. Whenmotion occurs,the surfacetensionshould
no longer equilibratethe pressurediscontinuity but rather
the normalstresgdiscontinuity[ Landauand Lifshitz, 1959].
In the caseof variablesurfacetension,i.e., a temperature-
dependent, adiscontinuityin shearstresshouldalsooccur
acrossinterfaces. This is often calledthe Marangonieffect
[LandauandLifshitz, 1959]. Thereis alsonoreasorfor pro-
cesse®ccurringat the interfacebetweenthe two phasedo
beadiabatic.

(14)
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Accordingly, BRS1have proposeda moregeneral albeit
morecomple, conditionwhichyields

D¢ Da
_ (o + 15) (Do’
-G () s

where K is a constantelatedto the topology of theinter-
faceand¥ is thedeformationalvork
T = cAv® + ¢Vvy : T;+(1-¢)Vvy :1,. (16)

As shawvn by BRS1, Ky is of orderl. In (15), f isin-
terpretedasa partitioningcoeficient (from 0 to 1) thatchar
acterizeghe percentagef deformationalwork that, rather
thanbeingdissipatedasviscousheating,actsto deformthe
interfaceandis thus effectively consenative, or reversible,
sinceit is storedasinterfacialsurfaceenepgy. Theexistence
of both storedand dissipatve component®f the deforma-
tional work in mediawith internal microstructure suchas
defectshasbeenrecognizedinceatleastthe 1930s[Farren
and Taylor, 1925;Taylor and Quinney, 1934].

Whenthe characteristioselocity of an experimentis di-
vided by X, the rate of porosity changeis also decreased
by the samecoeficient, whereaghetermsontheright-hand
side of (15) are decreasedy X2. Thereforethe Laplace
condition(14) appearsasit should,from (15) whenthe de-
formationratesgo to zero. However, in all situationswhere
theporosityevolveswith time, the matrixandthefluid pres-
suregcannoteassumeequalcontraryto whatwasassumed
in somepreviouspapergseeAppendixA) [McKenzie 1984;
Spiggelman 1993a,1993b,1993c;Sdimeling 2000].

In this paperwe will assumehatthe partitioningcoefi-
cient f is zero. In a companionpaperby Bercovici et al.,
[this issue(b)] we will show thatin casedar from equilib-
rium, i.e., when f # 0, our equationsprovide a damage
theorywhich predictsshearocalization. Surfacetensiono
will alsobetakenasa constant.Theseassumptionsignifi-
cantly simplify thetwo Navier-Stokesequationq3) and(4)
andimply thatthe pressurgump conditionis

AP+JZ—a
I N V) R S VSRR
= —-Kp 51— 9) V- [p(1 = @) (vim — vyg)].  (17)

In the following sectionswe will examine a seriesof
problems, beginning with the simplestidealized casesof
forcedcompactioranddeformationwithoutsurfacetension,
to illustrate the most basicapplications;thesewill include
one-dimensionakcompactionand sheay two-dimensional
uniaxialcompressionandthree-dimensionaphericatom-
paction. We will then close by examining gravitationally
forcedcompactionwith andwithout interfacial surfaceten-
sionfor simpleapplicationgo magmapercolatiorproblems.

Wewill compareourresultswhenappropriatevith thoseob-

tainedfor the sameexamplesbut with differentequationsy

McKenzie[1984] and Richter and McKenzie[1984]. We

will useM84 and BRS to refer to the previously usedset
of equationgseeAppendixA) andto our setof equations,
respectiely. M84 replaceshe pressurgump condition(15)

by AP = 0 andintroducesa bulk viscosityin the rheologi-
cal equation(9). In thesecomparisonsve will assumehat

thereis no surfacetensionandthat s < pip,.

2. Behavior of a Mixture Under Simple Stress
Fields

In this sectionwe considervariousexamplesof simple
compactionand deformation. As a simplification, we as-
sumeno buoyang effects,i.e., eithergravity g = 0 or the
matrix andfluid phasesave the samedensitieSp,, = py).
We alsoassumehereis no surfacetensionon the interface
betweenthe phaseqo = 0). The fluid hasa very small
viscosity comparedo that of the solid py << p,, SOWe
neglectthefluid viscousstresses 5

2.1. One-Dimensional Forced Compaction

We first considera layer of thicknesdl, infinite in hori-
zontal extent and containinga mixture of uniform porosity
¢o. Thesystemis assumedo be one-dimensionasuchthat
Vi = Um,(2,8)Z, vy = vy, (2,t)z and¢ = ¢(z,t), and
the bottomboundaryof thelayer, at z = 0, is impermeable
(vf, = vm, =0atz = 0).

In this example, the mixture conseration equation(5)
canbeintegratedtakinginto accountheboundarycondition
atz = 0 yielding

pvy. + (1 = $)um. = 0. (18)

This shows that the matrix and fluid velocities must have

oppositesignsandthatthe only way to compactthe matrix

is to allow the fluid to be expelledthrougha porouspiston.
Thisexperimentcorrespondf whathappensn somecoffee

filters or coffee presseswhereathin metallicscreerpushed
througha coffee-watermixture separatethe coffeefrom the

groundg(seeFigurel).

We considerthat the top of the matrix is pusheddown
at constantvelocity —vg andthatthe positionof the piston
attimet is lo — vot. Obviously, the maximumtime of the
experimenthasto be shorterthant = ly¢o/vo, thetime at
which all the fluid will be extractedandwhereonly matrix
grainswill remainbelow the piston.

The problemcanbe solvedin termsof v,,,, and¢ only
by combiningtheaction-reactiorequation(8) with (17) and
(18). With theassumptiorr = 0, we obtain

52,0° (fc(l - <Z5)2 [¢(11_ &) o —6;¢)vm,]

oz
9 [(1_@%])—1%1:0, (19)

oz
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Figure 1. The one-dimensionatompaction‘coffee-press”
experiment.

wherex = 3K,/4, andthenthe porosity can be updated
using(2). Equation(19) displaysa basiclengthscale,i.e.,

thecompactiorlength
[4pm
3c

(for simplicity, hereandin the following, we assumethat
¢ is a constant). Our definition of the compactionlength
o, Is differentfrom thoseof both McKenzie[1984], who
usespo+/ (¢ + 4pm /3)/c, and Stevenson1986], who uses
V/ tim /c. In thecaseof constanporosity¢ = ¢y, it is useful
to defineanotheldengthscaleby

h = 6m+/do(1 — do) (K + o).

Whenthe porosity is small, 9 << k ~ 0.75, the com-
pactionis controlledby the differencein pressurebetween
thetwo phasesatherthanby thenormalstresgn thematrix.

For geophysicaépplication©nmeltextraction,ky ~ 5 x
10719 m?, u,, ~ 10'® Pa's, andthe magmaviscosity can
vary from ps ~ 10 Pa s (oceanicspreadingridge basalt)
to uy ~ 10* Pa's (wet siliceousmelt) andto p; ~ 10%°
Pa s (dry siliceousmelt). Thesethreemagmasorrespondo
compactioriengthsof 8 km, 250m, and30 cm, respectiely.

An analyticalsolutionto (19)is easilyderivedin thecase
of a spatially constantporosity¢ = ¢, (i.e., we canonly
derive the exact solutionat t = 0 but not at further times
when porosity hasevolved). The integration constantsare
obtainedfrom the valuesof the matrix velocity on the top
vm.(lg) = —ve andat the bottomuw,,,(0) = 0. Thefluid
pressuraés alsosetto zeroatthetop. After somealgebrawe

obtain
(1 = ¢) sinh(z/h)
¢0 Slnh(lo/h) ’

Om

(20)

(21)

vy, (2) = vo (22)

i e
_ 4pmvo  h o [cosh(lo/h) — cosh(z/h)]

B ="ag sinh(lo/h) - @4

Po(2) = Apmvg  h 1

3 62,42 sinh(lo/h)
62
- |cosh(ly/h) — cosh(z/h) (1 — Koo h—’;)] , (25)

 Apmuo cosh(z/h)
3h sinh(lo/h)’

From theseexpressionswe seethat the force per unit
surfaceacrossthe mixture, ¥ = ¢o(—Pf + 74,.) + (1 —
¢0)(—Ppm, +Tm_. ), isindependentf depthandcorresponds
to theforce perareaexertedon thepiston;i.e.,

(26)

Tm..(2) =

_4,umv0 h 1

Yy =
3 02 ¢2 tanh(lo/h)

(27)

(by sign conventionfor X, oppositeto that of pressurethe
fluid is expelledwhenX is negative). The factthatX is a
constants an obvious requiremenif the mechanicakqui-
librium of the fluid and could have beendeducedrom the
Navier-Stokesequationof the mixture (7).

Fromtheexperimenterspointof view thesystenbehaes
like adashpotith afriction coeficient,

y— BT _ A (BN
T w3 \Umdo

The normalizedcoeficient v/, is depictedin Figure2 as
afunctionof ¢, for 2 valuesof I /§,, (we arbitrarily choose
lo/é, = 0.1, 10). Whentheporositygoesto zero,v goesto
infinity andthe mixture becomes singlephasencompress-
ible matrix. As ¢ — 1, thefriction coeficientapproaches
0, andthefluid canescapdreely throughthe piston(strictly
speakingneglecting gor; with respecto (1 — ¢o)z,, be-
comesmpossiblevhengy, = 1). Anincreased, atconstant
porosityandcompactioriengthincreaseshefriction coefi-
cient: theenepy costto drive the Dargy flow becomedarge
andthe matrix appearsstiffer. The minimum friction coef-
ficientis obtainedin thelimit i, /A — 0 (negligible Dargy
term)in which case

lo/h
tanh(lo/h)’

(28)

(29)

The samecoffee-presexamplecanreadily be donewith
the M84 equationsthat containan intrinsic bulk viscosity
in therheologicalequationandassumehe equalityof pres-
sures(see Appendix A). The analytical solution (28) for
¢ = ¢o becomes

ve = 7(4%; %) (1= ¢o)

lo/h¢

tanh(lo/h¢)’ (30)
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Normalized Friction Coefficient v/p
=
o

0.4 0.6
Porosity ¢

0 0.2

Figure 2. Normalizedfriction coeficient»/u,, asa func-
tion of porosityfor Iy /d,, = 0.1, 10. OurpredictiongdBRS)
areshown by thick lines (Ko = 1). At low porositythefric-
tion coeficient is significantlylargerthanthat predictedby
previoustheories(dashedineslabeledM84, following (30)
with ¢ = ). Thefriction increaseswith ly. This friction
coeficientis oftenmuchlargerthanl, which correspondso
the shearviscosityof the matrix.

whereh is definedby

(4pam + 3¢)

g3 (1 - ).

h (31)

In this casewhenthe Darcy termis negligible lo/h << 1,

(4um3+ 3¢) (1= o).

Sincebulk viscosityhasnever beenmeasuredmostauthors
have assumed, = u,,. However, the comparisonof (29)
with (32) and Appendix A shav thata ¢ of order ., /$o
would have beenmore appropriate(of course,when the
porosityis not uniform, a comparisorof the two theoriesis
moredifficult). Accordingto our equationghefluid is more
difficult to extractunderone-dimensiondbrcedcompaction
thanpreviously estimatedA similarconclusiorhasbheenob-
tainedby Sthmeling[2000] usingadifferentapproactbased
on averagingmethodgor anelasticmediumcontaininghet-
erogeneitie§dO’Connell and Budiansly, 1977; Sdhmeling
1985].

Theanalyticexpressiorfor thechangen porosityattime
t=0,
0¢ vo cosh(z/h)
T = _(1— J A
ot~ 1%y sinh(lo/h)’
suggestshe formationof a compactedoundarylayer. The
porosity decreasesnostly near the top, and this tendsto
closethe pathwaysneededy thefluid to percolatethrough
thematrix. To understanadvhathappensn laterstageof the
experiment,i.e., whenthe porosityis no longerconstantn

(32)

min(ve) =

(33)

depth,we mustsolve the equationsnumerically We solve
(19) with afinite differencetridiagonalsolver afterachange
of variableto work onaregulargrid, thenupdatetheporosity
explicitly using(2).

Figure 3 depictsthe variationwith depthof the porosity
(Figure 3a) andvelocity (Figure 3b) at varioustimes. The
depthis normalizedby . The piston,whichis at z/ly =
1 at the beginning, is moved down to z/l, = 0.95 at the
end. Not all the fluid canbe expelledfrom the mixture. In
particular the experimentendswhen the porosity nearthe
pistonreache®, thereforesealingthelayer With thechosen
numericalvaluesthis happenstt¢/r = 0.83, which means
that17%of thefluid remaingrappedn the matrixbelow the
compactedoundaryayer.

Thevelocity profilesdepictedn Figure3b shav thatuntil
the surfaceporosityreache®, the velocity profilesarequite
linear The decreasén the porosity nearthe piston arises
from an effective compactionthatis inducedby the matrix
material collecting againstthe piston during its downward
motion. In fact,it is easilyverifiedin the coffee-pres&xper
iment(Figurel) thatasthe pistonis pusheddown througha
well stirredmixtureof waterandcoffeegroundsthegrounds
accumulateon top and indeedplug the filter. As a conse-
guence o maintaina significantvelocity, a larger pressure
mustbeapplied.

The force per unit surfacethathasbe be exertedon top
of the mixture, X(t) variesthroughtime. It is transmitted
throughthe mixture aspressureandviscousstress.Assum-
ing thattheexpelledfluid is removedsothat Py remainszero
nearthe piston,the systemis equivalentto a dashpotwith a
time-dependeritiction coeficient

[(1 9 (4”?'” 627»: - Pm)]z:lo—vot -9

Whent = 0, this friction coeficient mustbe equalto that
predictedby (28) (v/pm ~ 24 when(lo/(6mdo))? = 0.1
andgg = 0.05).

Theevolutionof v(t) / um is shavn in Figure4 asafunc-
tion of t/7. The force per unit surfacethat must be ex-
ertedto pushthepistonatconstantelocityis proportionato
this normalizedfriction coeficient,andv(t = 0) is exactly
that predictedby the analyticalexpression(28) (horizontal
dashedine). As fluid is expelled,the porositydecreaseand
alargerforcehasto beexerteduntil asingularityoccursnear
t/T = 0.83, whereg(1) reached.

V() = i—z

2.2. Deformation Under Shear

The friction coeficient v that has beenobtainedfrom
(28) is possiblylarger thanthe matrix viscosity g, How-
ever, this effect reflectsthe factthatv includesresistancéo
compressiorof matrix grains,which approachefinity as
¢ goesto zero. Thusv is not truly analogoudo viscosity
Indeed,on a macroscopi@verage the mixture viscosity is
smallerthanthatof a purematrix.
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1

0.1
0.8 r 1

0.5

o
o

0.83

Height z/l,

o
I

0.2 r

0.4 0.6 0.8 1

Porosity ¢/q,

0.8 r

0.1

o
o

0.83

Height z/|,

o
~

0.2 r

-0.6 -0.4 -0.2 0

Velocity v, /v,

Figure 3. (a) Normalizedporosity (¢/¢$o) asa function of
normalizecheight(z/lo) for differenttimes(t/r = 0.1, 0.3,
0.5,0.7 and0.83) for (ly/(dmeo))*> = 0.1, Ky = 1, and
¢o = 0.05. As time increasesthe heightof the mixture be-
low the pistondecreasesb) Normalizedvelocity (v,,,. /vo)
asa function of normalizedheightfor ¢/ = 0.1 and0.83.
Until closeto theendof the experimentthe velocity profile
remainsroughlylinear

Letusagainconsideralayerinfinite in thez andy direc-
tions but with thicknes2l, (suchthat—Iy < z < +lg) and
in which porosity is constantand equalto ¢o. A standard
experimentalapproachto measuringnacroscopioiscosity
is to submitthis layerto simpleshearby imposinghorizon-
tal velocitiesv,,, = vy, = fvy atz = +l. The obvious
solutionof (1)-(4) and(17) (with o andApg = 0) is simply

Um, = Uf, =g (35)

£

Ea
(36)

In order to imposethis deformation,a shearstress(1 —
00)Tm,. = (1 — o) m (vo/lp) mustbeapplied.Thisshavs

Vfz = Umz = 0.

800
£
= 600
=
c
i)
B .
= L exact solution
= 400 —
=]
(0]
N
g
5 200 r . .
z analytical solution
0 -
0 0.2 0.4 0.6 0.8

Normalized Time t/t

Figure 4. Evolution of friction coeficient v(t)/u., asa
functionof time. This coeficientis proportionalto the pres-
sureneededo expel thefluid at a constantvelocity. When
the porosityreached® neart/T = 0.83, the friction coefi-
cientgoesto infinity andforbids a further extractionof the
fluid phase. The horizontaldashedine correspondgo the
analyticalprediction(27).

that under shearthe mixture behaveslike a homogeneous
Newtonianbodywith viscosity(1 — ¢g) - Thesameresult
wouldalsohave beenobtainedusingM84 asthedeformation
occurswithoutdilation of the matrix.

2.3. Two-Dimensional Uniaxial Compression

Anotherway to measurequivalentviscosityis to subject
a sampleto uniaxial compression.We considera sample
with squarecrosssectionin the z-z plane(where|z| < I,
|z| < lp) butinfinite in y; the sampleis squeezedn the
z direction by impermeablepistonswith imposedvertical
velocities,—vy onthetop (z = +1y) andwg at the bottom
(z = —lp). We assumehat the matrix andfluid have the
sameverticalvelocities
(37)

z
Um, = Vf, = —Vo7-3
lo
we canverify thattheseaxpressiongreexactsolutionswhen
the contactsbetweerthe pistonsandthe samplecorrespond
to free slip conditions. The squaresectionis unconstrained
laterally (in the z direction),andthe fluid and matrix have
differenthorizontalvelocitiesvy, andvy,,. As in section
2.2 we searchfor solutionswith o = 0 andApg = 0 and
with a constantinitial porosity ¢y, i.e., solutionsare only
valid neart = 0.
With the above assumptionsthe total massconseration
(5) canbeintegratedin = andyields

X

dovy, + (1= do)vm, = vo
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while the action-reactiorequation(8) resultsin

h? 8%vp,,

%0 027 (39)

- (Umm - Ufm) = 07
whereh is the length parametedefinedin (21). Thenthe
fluid pressureP; canbe deducedrom thefluid momentum
equation(3), and the matrix pressureP,, canbe deduced

from the pressureondition(17).

We solwve theseequationswith the boundaryconditions
that both the fluid pressureandthe horizontalnormalcom-
ponentof the matrix total stress,— P,,, + 2, (Qvp,, /0x —
(1/3)V - v,,), vanishatz = +l,. After somealgebrawe
obtain

o= s e O
e = g = v gzh e EQZEEZ//Z))’ 1)
Pr=2(1— ¢0)“’Z]“° (1 - %) . (42)

P =2(1- %)“’Z)“"

E=(1—-¢0)Tm,. —poPr — (1 — o) P,

_ Hm Vo o  cosh(z/h)
= —4l=¢o) = (1_(ﬁ+¢o) cosh(lo/h))' “

ThequantityY: in (44)is theforceperunitsurfacethathas
to be exertedby the experimenteron both pistons. Whena
similar experimentis performedwith a homogeneoublew-
tonianviscousfluid, the ratio betweenthe appliedpressure
andtheshorteningateis simply —4 timestheviscosity The
equialentviscosity n of the mixture underuniaxial com-
pressionis therefore—Io(X)/(4vo), where (X) is the z-
averaged®. Thisleadsto theapparentiiscosity

h o
1=d0 |1 lo (K + ¢o)
which is always smallerthan p,,, andslightly smallerthan
the sheamixture viscosity (1 — ¢o)um. It is, however, al-
wayslargerthan(1/4) um&(1 — ¢o)/(k + ¢o), whichis ob-
tainedwhenly /6, ~ 0

Figure5 depictsthe equivalentviscosity of the mixture
accordingto (45) (solid lineslabelledBRS).Wheng¢, = 1,
the equivalentviscositytendsto thefluid viscositywhich is
zeroin our approximation. As soonas¢g > lo/dn, the
equivalentviscositydecreasedsA large samplealwayslooks
stiffer thana smalleronebecauséarcy flow candraw and
expelfluid from essentiallyeverywheran asmallsamplebut

tanh(lg/h)|, (45)

N = tm(

1.0

0.8 r

© o
~ o

Normalized Viscosity n/u,
o
Y

0.0

0.4 0.6 0.8 1

Porosity ¢

0 0.2

Figure 5. Equivalentviscosity of the mixture as function
of porosityfor two differentvaluesof Iy /d,,, (0.1,10). Our
predictions(BRS) with Ky = 1 are depictedwith a solid
line andcomparedvith thoseobtainedby previoustheories
assuming{ = u,, (dashedines labeledM84). At small
compactioniength,e.g.,atly/6,, = 10, BRSandM84 pre-
dictionsareindistinguishable.

canonly draw fluid from proximalregionsin alargesample,
andthusnotall fluid is readilysqueezeffom alargesample.
Whenly /6, is large,theviscositiesmeasuredindershearor
normalstressesreequal.

If we were to use M84 equations,insteadof (45) we
would obtain

h 3,u lo
" To Gt 30) 00 <h<>] > (40)

whereh¢ hasbeendefinedby (31). Althoughboththeories,
with andwithout bulk viscosities predictthe samebehavior
at¢o = 0 or 1, BRSpredictsthatthe mixtureis significantly
stiffer thanwhenusingM84, unlessa bulk viscositysignifi-
cantlylargerthanu,, is chosen.

Squeezingf the mixture leadsto expulsion of fluid as
seenin Figure 6 wherethe matrix (Figure 6, bottom), and
the fluid (Figure 6, top) velocitiesat z = Iy areshowvn as
functionsof ¢. Whenthe porositytendsto 0 or 1, boththe
matrix andfluid velocitiesarewy; thatis the minor phases
simply adwectedby the major one (thick lines BRS). This
is in contrastto the solutionsobtainedwith the M84 set of
equationsyhichleadto

h¢ (1= ¢o)

= (1—do)pm |1

6pm  sinh(z/h¢)

V. =00 E+ s @0 (djam+ 30) coshllo/he) 1)
h( 6un  sinh(z/h¢)

= 48

Ome = V07 = 0 G 30 coshllofhe)” D)

With ¢ = u,, andthe porositytendingto zero,thefluid ve-
locity atz = I, tendsto afinite valueequatto (1+30/+/7)vo
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(seeFigure6 dashedineslabeledM84). A very surprising
predictionof (48)is thatthehorizontalextensionof theover-
all mixture cancorrespondo horizontalcompactionof the
matrix phase. This happendor small samples)y << 4,
suchthatDargy flow drawsfluid easilyfrom mostof thevol-
umeandfor a bulk viscositysmallerthanyu,,. In this case,
the expulsionof fluid with solittle Darcy resistanceppears
to be sofastthatthe matrix hasto collapsein x to compen-
satefor the excesdossof fluid. However, compactiorof the
matrix underextensive stressesloesnot occurwith BRSun-
lessKy < ¢g/2, aconditionin contradictionwith the fact
that Ky is of order1.

2R e
o N N
—
7/
-

N M84 L=y,

Fluid Velocity v/v,

PO N A O ©
w
Py
n
/
/
/

o \
= N\ BRS
205 I\ e
5 ~mea g,
e N\ e T
>0
X
5 M84 Z=p1, /10 /j
= ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0
Porosity @

Figure 6. (top) Horizontal fluid velocities normalizedby
the vertical velocity vy atx = I, for ly/4,,=0.1usingBRS
(Ko = 1) or M84 setof equations. Whenthe porosity is
zero, the first drop of fluid is expelled with a ~12 times
higher velocity accordingto M84, while the fluid is sim-
ply transportedlongwith thematrixaccordingo BRS.The
fluid velocity decrease® vy wheng, = 1. (bottom)Matrix
velocitiescanbe negative accordingto M84 when({ < iy,
(thin line with ¢ = ., /10).

2.4. Radial Compaction

McKenzie[1984] proposeda methodto measuresxperi-
mentallythebulk viscosity(atleastasathoughtexperiment)
which entailssqueezing sphericakwo-phaséody. We re-
examinethis thoughtexperimentusingboth M84 andBRS.
We againassumeno surfacetensionandthustheonly differ-
encebetweerour equationsandthoseof McKenzig[1984]is
the useof abulk viscosity( by M84 andthe pressurgump
condition(17) by BRS.

With zerobuoyangy forces(g or Ap = 0) andzerosur
facetension(c = 0) andtheassumptiorthatthefluid stress
T, is negligible, theaction-reactiorequation(8) leadsto

—¢(1 - 9)VAP + ¢V -[(1 — ¢)T,,] — cAv =0. (49)

Thefluid and matrix velocitiesarerelatedthroughthe total

mixture conseration (5). Adoption of sphericalsymmetry
(whereinvy = fvy, (1), vy, = o, (1), andr is theradius
from thecenterof thesphereyesultsin ¢vy, +(1—@)vp,, =

B/r?, whereB is a constantthe solutionis nonsingularat
theorigin only if B = 0 in whichcase

¢vf, + (1 = $)vm, = 0.

2.4.1. Sintering and hot-isostatic-pressing approxi-
mation. In whatMcKenzie[1984] refersto asthe “sinter-
ing andhotisostatigpressing’approximationtheinteraction
forcecAv is ngglected.Althoughwe alsoneglectthis term,
for the moment,we mustnotethatasis evidentfrom (49),
this approximatioris only valid aslongas¢ is nonzero.

In our model,evenwith the sinteringapproximationthe
fluid andmatrix pressuresannotbeequal. Therequirement
that the microscopicstressesiormal to the comple inter-
facesmatchimposesanaveragepressurgump relatecto the
rate of phaseseparatior(seeBRS1). In the casewherethe
porosityis constantaccordingto (17) with 1y << p,, and
using(50),

(50)

Kopm 1 arzvmr
¢0 or )

This expressioncanbe introducedin the momentumequa-
tion (49) for which the only solutionthat is nonsingularat
theoriginis v,,,, = Cr, whereC is aconstantThis velocity
yieldsa zerostresgensorandparticularlya zeroradial vis-
cousstress,,,.. = 0regardles®f C (becausef theabsence
of bulk viscosityin BRS). Thereforeonly pressuresre ap-
plied to thetwo phasesn a pureisotropiccompactiorwith
constanporosity
Theexperimentethatsqueezethesphereof mixtureim-
posesaforceperunit areaon thefluid andmatrix of

AP = (51)

r2

Xp=—Fy (52)

_Pm:_Pma (53)

respectiely. Thesetwo forcesareappliedin proportionsg,
and1 — ¢o, respectiely. Whenthe two forcesare equal
(e.g.,in an experimentwherethe surfaceis enclosedin a
rubbermembrane)P,,, and P; areequal,andthereforethe
pressurgump condition(51) impliesthatv,,, = 0.

In thecasewherethespheres enclosedy aporousmem-
branethat allows the fluid to escapdreely, ¥y = Py = 0
(in the sinteringapproximationthefluid pressures uniform
andremainszeroinsidethe matrix). The experimenterap-
plies aforce perunit areaat the surfaceof the sphereof ra-
diusR, ¥ = (1 — ¢g) X (R), and(51) implies

Ym = Tm,.

_ (1 = ¢o) vm,
¥ =3Kom ™ 7 (54)
Usingthemassconserationrelation
0
990 _ (1 _ ¢)V -vin = 3(1—d0)C,  (55)

ot
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we deducehattheporosityevolvesatconstansurfacestress

as
0o b))
== 0.
ot HmKO
BRS predictsthatat constantappliedstressthe compaction
velocity tendsto zerowhenthe porosity vanisheg54). In
otherwords,the porositydoesnot evolve arymore,andthus
cannotbecomenggative, whenit reachegero(56).

The samethought experimentusing M84 would have
given[seeMcKenzie 1984]

(56)

¥ =31 ¢o)<”;§ (57)
Odo X
e (58)

Contraryto (56), (58) obtainedusing M84 with a constant
bulk viscosity can allow negative porositiesas the com-
pactionvelocity doesnotreachzerowhengg = 0.

Figure7 depictsthe normalizedratio of the appliedforce
to the radial strainrate (X R)/(mvm, ) accordingto (57)
and(54) (assuming, = u,, and Ky = 1). We predictthat
it is muchmoredifficult to extractthe fluid thanpreviously
thought.

The previous solutionsare obtainedunderthe sintering
approximationc = 0. In fact, with minor modifications
the solutionsalso hold whenthe fluid phaseis simply void
(of coursereplacingthe fluid phaseby void impliesthatthe
equation®f massandmomentunctonserationsfor thefluid
are meaningless) However, asalreadymentionedassoon
asthefluid phasds notvoid andhasanonzeroviscosity the
Dargy termvarieslike ev,,, / ¢; thusits importancencreases
at vanishingporosity andthe termis no longernegligible.
We only discusghe influenceof this termusingBRS equa-
tions,but asimilarexercisecanbedonewith M84 equations.

2.4.2. Beyond the sintering approximation. When
keepingthe Dargy term, the radial compactionof a spheri-
cal body satisfieg(49) in sphericalpolar coordinates|f the
nonradialcomponentsf v,,, arezero,v,,, satisfies

Zg(l or’upy,
or'r2 Or

whereh hasbeendefinedin (21). The only solutionto (59)
whichis nonsingulaattheorigin is

) = Vm, =0, (59)

U, = Cﬁ—j(r cosh(r/h) — hsinh(r/h)),  (60)

whereC is anintegrationconstantKnowing v,,,., theradial
viscousstresss readilydeduced

4 h
Myr — o mC_
Ty, 3,u r

. [(3% + 1) sinh(r/h) — 3; cosh(r/h)| . (61)

Contraryto whathappenswith the sinteringapproximation,
the stresstensoris no longerisotropic, T,,,, # Tmee =
Tmy,- The Dargy force introducesa directionalterm that
alwaysbreakssotropy.

Thefluid pressurés obtainedby integrationof the fluid
momentunequatiorandthe matrix pressurés thendeduced
from the pressurgump (51),

sinh(r/h)

fim
— K ———~=.
o r/h

o

In thecasewherethespheréas enclosedy arubbermem-
brane masscontinuity (50) implies, asin section2.4.1,that
C = 0 andthat only the internal pressuresP,, and Py
are equalandresistthe force appliedby the experimenter
Y. When the surroundingjacket is permeable the pres-
sure Py is zero at the surface of the mixture and the re-
sistanceto deformationis due to both pressureand nor-
mal stresg(which unlike in section2.4.1is nonzero).From
Y = (1 - ¢o)(Tm,., — Pm), Wherer,, andP,, aregiven
by (61) and(62),0negetsatr = R,

P =Py — (62)

r= %/J/m(l - ¢0)U]T;T
h/R = (h/R)? tanh(R/R) ’

whichisin agreementvith (54) whenthecompactioriength,
dm, goesto infinity. Figure7 depictsthe normalizedoverall
resistanceof the sphereas a function of ¢y. Here again,
the mixture resistances muchlargerthanwould have been
estimatedwith M84 assuminga constantbulk viscosityin
(57).

3. Médt Migration

3.1. Basic State

We now studythe processy which a mixture segregates
naturallyunderthe effectsof gravity andsurfacetension.We
assumehatthefluid densityp; is lessthanthe matrix den-
Sity pm (Ap = pm — py > 0). The procesof melt segre-
gationwas previously studied[e.g., Richter and McKenzig
1984; Ribe 1987; Spiggelman 1993a,1993b,1993c], but
with equationsncludingabulk viscosity In this sectionwe
alsoretaintheviscousstresse the Navier-Stokesequation
for the fluid phase,andwe take into accountthe effects of
surfacetensionassumingnearequilibrium conditions; that
is, o is constaninddifferentfrom zeroin (17).

We first look for a steadysolutionwhenthe mixtureis in-
finite in all directionsandhasaconstanporosityg,. Gravity
—g7 isassumedonstanaindactsin thenegative z direction;
we alsoassumehe basicstatevelocitieshave only z com-
ponentsandareconstant.

From(5) we seethatthe averageverticalvelocity vy, +
(1 — ¢)v,, is constant.lt is thereforeappropriateto work
in theframeof referencavherethis averagevelocityis zero.
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Figure 7. Normalized resistance to compaction
(RY)/(4mvm,) for a spherical mixture of homoge-
neousporosity as a function of porosity The solid lines
correspondo our solutionsin the sinteringapproximation
(BRS) or with a finite compaction length (BRS with
R/§,, = 10). Thedashedine correspondso the solution
givenby McKenzie[1984] usingthesinteringapproximation
and a theorythat includesa bulk viscosity (¢ = u.,) (see

(57)).

Sincethe basicstatepressurdifferenceP,,, — Py isonly a
functionof ¢y, it is aconstantand(1)-(4) have the solution

P}) = —pgz + ¢oafl—z , (64)

o

_ da
P) =—pgz—(1— (/50)0@ , (65)

b0
v = o1~ o)’ s, (66)
A

Vi = =631 60) =7, (67)

wherep = ¢opr + (1 — ¢o)pm Is the averagedensity of

the mixture. The superscripizerorefersto the basicstate
with constantporosity We choosetwo materiallyinvariant
expressiongor thepressuredyut acommonintegrationcon-
stantcouldbeenaddedo thetwo pressuregsincethereis no
zeroreferencepressuren aninfinite layer). Fromtheseex-

pressionsve canalsodefinethe basicstatemelt extraction
velocity,

Arg,

c

Vi—Vm = ¢o(1— o) (68)

3.2. Marginal Stability

Let usassumehata perturbatiorwith wave vectork, an-
gularfrequeny w, andgrowth rates is addedo theprevious

10

basicstate. The netflow is thereforecharacterizedy the

guantities
q=q°+q exp(st)expi(k - u — wt), (69)

wherethe quantitieswith atilde arefirst-orderperturbations
andwhereg represents ¢, v, Py, Py, Or ¢. Thesesxpres-
sionsare thenintroducedinto (1), (3), (4), (14), and (18).

Fromthe matrix massconseration(2) we get

(w+¢s)¢§+(1—¢0)k-vm+¢g(1—¢0)k,z¥¢3=0, (70)

wherek, is the vertical componenbf k. The sumof mass
consenationequationdi.e., (18)) gives

. . Apg -~
¢0k-vf+(1—¢0)k-vm+¢0(1—¢0)kz$¢=0, (71)
thefluid force equation(3) yields,

—idokP; + Apg(1 — ¢0)zd + (Vi — V)

~s k95 + gk(k 7] =0, (72)
andthematrix force equation(4) resultsin
—~i(1 = ¢0)kP + Apgpoid — c(¥m — V)
(1= 60) B + 3( Tm)] =0, (73)
wherek? = k - k. Surfacetensionequilibriumgives
Py - By,
= —oayp %QS +ikc(62, + 6)%)
Nk — kg o+ K (26 — 22915 (7a)

C
whered; = /4uyz/3c is thecompactioriengthof the melt,
andaccordingo (12) we have definedG (¢ ) by

G(do) = ¢3 (1 — )"

‘a1l —a)+ (a+b—1)(2a — (a+ b)go)po] . (75)

The factoron the right of (75) in bracletsis positive def-
inite within the intenals0 < a,b,¢ < 1 sinceit hasone
extremumab/(a + b) atgy = a/(a + b) andhasthevalues
a(l1—a) andb(1—b) whengy = 0 andl, respectiely; there-
fore G(¢o) is positive for ary exponentsz andb betweerD
andl.

We have alreadyseenin theintroduction(seealsoBRS1)
thatthe value¢. = a/(a + b) correspondso a porosity at
whichthematrix-fluid (or solid-melt)interfacechangegrom
concae (relative to thefluid) to corvex; this porositythresh-
old correspond$o adihedralangleof 60° [Kohlstedt 1992].
However, thevalueg. is notassociategvith arny particularly
specialvalueof G(¢); thatis, G(¢) doesnot changesignat
¢ = ¢. andis not even extremumat this value. Thusthe
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macroscopiaynamicsof the mixture doesnotchangevhen
theporositycrosses..

In orderto solve (70)-(74) we first find the inner prod-
uct of the wave vectork with (72) and(73). The mamginal
stability problemleadsto the dispersiorrelation

w = ¢o(1 —¢0)¥k‘i

2(1-240) —¢o(1—o)k? ($307, — (1~ 0)?d%)
1+¢o(1—¢o)k*((k+¢0)0Z, +(1+K—0)07) ’

(76)

gQ

C

| Gl
1+¢o(1—o)k?((k+0)dz, +(1+K—¢0)d3)

The solutionsare thereforetraveling waves with an expo-
nentiallygrowing amplitude.Thedispersiorrelationfor the
wave frequeng (76), correspondso thatfound by Spiael-
man[1993a]in thecaseK, = 0, 6y = 0, and¢y << 1.

Figure8adepictsphasevelocitiesof porositywavesUpp
for variousporosities(usingk - Upn = w with (76)). The
correspondinggroup velocities, Ug, = Viw, Which are
the velocitiesof melt paclets, are also shavn (Figure 8b).
All thesevelocitiesare normalizedby their melt extraction
velocity z-(68) and plotted as a function of the normalized
wave numberkd,,. We have only consideredberturbations
with a vertical wave vector(k = k.z). Porosityperturba-
tionswith ary verticalvariation(i.e., k., # 0) will propagate
vertically. Porosityperturbationghatare constantin z will
notpropagatetall.

At low porosityandsmallwave number(kd,,, ¢o << 1)
the porositywavesandthe melt pacletstravel roughlytwice
asfastasthe backgroundxtractionvelocity (68). At large
wave number porositywavesandmelt pacletstravel at sig-
nificantly lower velocitiesthanthe backgroundield andcan
eventravel downward. An increasen porositydecreasethe
wave velocity. When ¢q is largerthan0.5, porositywaves
and melt paclets always propagatedownward with respect
to thefluid extractionvelocity. This suggestshatthe veloc-
ity of amelt paclet candecreasevith time sinceits upward
motionwill be accompaniedby a porosityincreaseaccord-
ingto (77).

We canscaletheseresultswith parametersppropriateo
spreadingidges(d,, = 8 km, §y ~ 0 km, Ap = 500 kg
m—3, u,, =10'8 Pas). In this case kd,, = 50 would cor
respondoughlyto a wavelengthof 1000m. The extraction
velocities(68) would be 145,1211,and1816mmyr—! for
porositiesof 0.02,0.20,and0.60,respectrely.

Thefactthatthe porositywavesalwayshave growing am-
plitudesis not relatedto a particularchoice of the power
law coeficientsa andb in (12) since G(¢) is positive (or
d*a/d¢?® < 0) for ary choiceof a and b between0 and
1. This indicatesthat surfacetensionalwaystendsto sepa-
ratethe two phases.The physicsis asfollows: Whentwo

(77)
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Figure 8. (a) Phaseand (b) group velocitiesof vertically
propagatingporositywaves. The velocitiesare normalized
by the melt extraction velocity (68). Three porositiesare
used0.02,0.20,and0.60. We assumé&j; = 0 andK, = 1.

Smallwave number(long wavelength)perturbationgravel

thefastest.

pointsin the mixture, A and B, have different porosities,
they have differentaverageinterface curvaturesand there-
fore differentsurfacetensions. Sincethe differencein sur
facetensiono|[(da/d¢) , — (da/d¢) 5] alwayshasthe op-
positesignto thedifferencen porosityg 4 — ¢p (giventhat
d*a/d¢? < 0), the differencein fluid pressurgrelative to
the matrix pressure Py — Pp,,) 4 — (Py — Py)p alsohas
the oppositesignto ¢4 — ¢, which indicatesa fluid flow
towardregionsof higherporosity

Equation(77) is independenbf Ap; surfacetensionin-
ducesa self-separatiorof the two phaseswithout ary in-
fluenceof gravity. Figure9 shaws the normalizedgrowth
time of thesurfacetensioninstabilities(3cag) / (4spm). The
surfacetensioninstability doesnot selecta preferredwave-
length. However, short-wavelengthinstabilities grow the
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fastessinceover shortdistancest is not enegetically diffi-
cultto overcomethe Dargy resistancandto draw fluid from
thesurroundings.

10.0

[y
o
T

©,=0.02

Normalized Growth Time 300 /4u,.s

0.1 :
0 50
Normalized Wavenumber kg,

100

Figure 9. Normalizedgrowth time of surfacetensionin-

stabilities as a function of their normalizedwave number
fora = b = 1/2in G(¢), Ko = 1, 6 = 0, and
¢o = 0.02,0.20 and0.60, asin Figure8. All wave numbers
areunstablebut shorterwavelengthinstabilitiesgrow faster
Becausehe surfaceenegy tendsto +oc whenthe porosity
vanishesinstabilitiesgrow thefastestt smallporosity

Thesurfacetensiorbetweersolid silicatesandtheirmelts
o istypically of order0.1-1.0Jm~2 [CooperandKohlstedt
1982;Lasaya, 1998]. A simplemodelcanhelpusto choose
avaluefor aq. Let usconsidera cubeof mixture of volume
L3 crossedy N tubulesof fluid with thesameradiusd. The
porosityof this mixtureis of order¢ ~ Nwd?/L?, while the
interfacedensityis @ = (2N=d)/L? = (2¢)/d. Equation
(12) impliesthata = ag¢® atlow porosity andtherefore
that the radius of the tubules decreasesvith the porosity
d = 2¢(*~ % /ay. Thisbehaior is in quantitatve agreement
with experimentgvon Bargen and Waff, 1986]. Assuming
a porosity ¢ of a few percent(i.e., 0.01 < ¢ < 0.05) for
tubuleswith radiusd of 1-100um anda = 1/2 impliesthat
ap = 2 x 10 to 5x10° m~L. During magmacompaction,
the surfacetensioneffects measuredy ooy shouldthere-
fore take valuesbetween200 J m—3 and 500 kJ m—3 (the
lower valuehasbeenusedby Stevensor{1986]). Theseval-
uescorrespondo pressureheadsoag/pg of 7 mmand17
m. For pu,, = 10'® Pa s the normalizationfactor of Fig-
ure 9, (4pm)/(3oag), would be 210 Myr and 84 kyr for
oag = 200 I m—2 andoag = 500 kJ m—2, respectiely.
At low porosity growth timesof a few tensof thousand®f
yearsthuscanbeobtained.

Thefactthatshort-wavelengthporositypacletstravel the
slowestwhile their growth rateis the largestsuggestghat
surfacetensioncangenerateyeologicalstructuredik e dikes
orsills. Theability of surfacetensionto generaténstabilities
doesnot dependon the fluid viscosity The fastesigrowing
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instabilitiesof (77) occurwhenkd,, is large, i.e., eitherat
shortwavelengthor whenthe Dargy flow is not thelimiting
factor For a = b = 1/2 this minimumgrowth time is

R RN N )
which indicatesthat only the matrix viscosityis important;
highly viscousmeltsareasunstablewith respecto surface
tensionasare lessviscousmelts (within the approximation
thatpy < ). In fact, sincethe melt extraction velocity
decreasesvith u¢, surfacetensionwill have moretime to
act with highly viscousfluids thanwith lessviscousones.
(Thesurfacetensioninstability is alsoanintegral partof the
shearlocalizationinstability andis explored further in the
third paperof the serieg Bercovici etal., thisissue(b)].)

The previous solutionsof plane unstablewaves are not
theonly solutionsto (70)-(74).If wetakekx (72)and(73),
we find anotheisolutioncorrespondingo flow someavhatre-
latedto theRayleigh-TylorinstabilityandRayleigh-Benard
corvection. More precisely a solenoidal(i.e., nondivergent
or incompressiblejlow is excitedandsatisfies

_Apg - k-z

vi=— ¢ (@~ 5K
14 3(1— ¢)202,k? (79)
(L4 21— 90)o2 k) (1 + 2 god2k?) — 1
Apg ~ .. k-2
Vm 27 ¢ (Z - ?k)
1+ 3282k2
: 1900 . (80)

(14 3(1 — ¢0)02,k%) (1 + $4063k2) — 1

Thetotal velocitieshave both solenoidalcomponents(79)-
(80), and compressiblepropagatingcomponents. The in-
ducedsolenoidalvelocities have zero vertical vorticity z -
(k x vip) =z - (k x vy) = 0; they arepurelypoloidal.

Thesolenoidakolutions(79) and(80) arenonzeroonly if
thebuoyancgy torqueApg k x z is nonzero(i.e, whenk has
a horizontalcomponent). Thus unlike porosity waves that
aredriven by perturbationswith vertical wave vectors,this
poloidal/solenoidamotionis sensitve to horizontalpertur
bationsof density just asin ordinaryRayleigh-Benardcon-
vectionor the Rayleigh-Taylor instability. Horizontal vari-
ationsof porosity andthusof density inducevertical mo-
tions. Regionsof low densityrise, but the two phasedave
differentupwardvelocities.

Theverticalcomponent®f the solenoidalelocitiesnor-
malizedby the melt extractionvelocity (68) aredepictedin
Figure10. At large wave number only the fluid movesand
thefluid velocitiesarecomparabldo gz~5/ ¢o timestheextrac-
tion velocity (see(79) whenk — o0). At very smallwave
numberthe Darcy term forcesthe velocitiesof the matrix
andthefluid to becomesqual.
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Figure 10. Matrix (solid lines)andfluid (dashedines)ver-
tical velocitiesof the solenoidaimotions. The velocitiesare
normalizedby ¢o(1 — ¢o)pAp/c, i.e., the productof the
melt extraction velocitiesby the amplitudeof the porosity
perturbationWe assumej; = 0 andk -z = 0 and¢ = 1.
At shortwavelength(largewave number)only thefluid is in
motion. At long wavelength(shortwave number) fluid and
matrix velocitiesbecomeequal.

3.3. Nonlinear Solutions of the Compaction Problem

Although the simple maiginal stability analysisalready
shaws the compleity of two-phaseflows, it is clearthata
naturalprocesswill be affectedby all the nonlinearitiesof
the equations. When all the complexities of the equations
aretaken into account,the porosity paclets ¢ will interact
with the backgroundlow.

We again examine the compactionproblem but in the
nonlinearregime. We restrictthe equationgo one dimen-
sion, althoughwe areawarethattheir solutionsmay be un-
stablein threedimensiong Scottand Stezenson1986; Bar-
cilon and Lovera, 1989]. The mixtureis confinedto a layer
of thicknesd, which containsa matrix with initial volume
fraction1 — ¢¢ anda lighter fluid phasewith volumefrac-
tion ¢¢. On thetop andbottomof the layer the matrix and
fluid velocitiesarezero. Theequationgo solve arethemass
consenation equation(18), the porosity evolution equation
(2), the action-reactiorequation(8) assumingr ; = 0, and
the pressurgump condition(17).

Assumingpurely vertical flow, using (18) (with the im-
permeabldoundaryconditions)to write Av, = vy, /¢, and
normalizingz by Iy andv,,, by (3p,,913)/(4.m), we obtain

o 1 8(1 — ¢)'Umz
o\st-05; oo 2
b OV,
+2 [(1 - ¢)7] }
L C@) 90 yvm. oy wBe o g

¢(1 - ¢) 9z ¢ Pm
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where oo
£=—10Hr (82)
pmglo
;8
A= 52 (83)

Porosityevolution is still controlledby (2) which retainsits
form evenwith thenormalizationf z andt.

Equation(81) is solved numericallyby afinite difference
methodwith a tridiagonalsolver. The porosityis thenad-
vancedby a time adaptve explicit method. We consider
casegq(1) with surfacetensionbut no buoyang forces, (2)
without surfacetensionbut with buoyancgy, and(3) with both
surfacetensionand buoyangy. In all caseswe assumeor
simplicity thata = b = 1/2 in thesurfacetensionexpression
(12) andthatk = 3/4 (i.e., Ko = 1). Clearly, the behaior
of the varioussolutionsdependn the relative importance
of the Dargy termu,,,_ /¢ andthe viscousterm proportional
to .

3.3.1. Surface tension without gravity. This type of
solutionwill be alsodiscussedy Bercovici et al. [this is-
sue(b)] in connectionwith damagetheory However, it is
alsonecessaryo shav herethe essentiakffectsof surface
tension.

Fromthe stability analysiswe know thatthewavelengths
shorterthan the compactionlength are the most unstable.
WhentheDargy termis notthelimiting factor, 6,,, = +oc or
A << 1, only shortwavelengthsareeffectively presentand
all areequallyunstable Figure11 shovstheevolution of the
solutioninitiatedwith a singlelong-wavelengthperturbation
¢ = 0.05 + 0.001sin(7z/lp). We use201finite difference
grid pointswhich aresufficient for stablecorvergence.The
ratheruniform initial porosity evolvesinto a single narrov
sill of purefluid.

The previous solution, obtainedby neglectingthe Dargy
term underthe assumptiorthat A << 1, cannothold very
long. As the porosity decreasesn the sidesof the high-
porosity instability, the importanceof the Darcy term in-
creasesandin the end, it dominateshe dynamics. In the
extremecasewhere\ >> 1, the porosity conseration (2)
and(81) canberecastas

o6 .0 8¢
A AL

The porosity obeys a diffusion equationwith a variable
andnegative diffusivity D = —£G(¢) [seealso Sterenson
1986]. With our equationghis processoccursat all porosi-
tiesandindicatesthat surfacetensionactsto unmix or sep-
aratethe two phasesvhatever their respectie proportions.
The situationmay be differentwith silicate meltswherea
contribution to the surfaceenegy comesfrom grain-grain
interfaceqRiley etal., 1990].

A negative diffusivity corresponds$o avery unstablepro-
cess causingjust thereverseevolution of normaldiffusion.

(84)
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Figure 11. Porosityasafunction of depthat differenttimes
for§ = 1, A = 0, andAp/p,, = 0. Theinitial porosity
hasan averagevalueof 0.05andhasa sinusoidalperturba-
tion of wavelengthl, andamplitude0.001with its maximum
atlo/2. The surfacetensiongenerateshe instability. The
Dargy term hasbeenneglected. A singleinstability is pro-
duced.

In thisregard,theonly thing onelearnsfrom numericalsolu-
tionsto (84) is thatary initial conditionresultsin arandom
distribution of layerswhere¢ equalseitherl or 0.

It is thereforemoreinterestingto studyintermediateso-
lutionswherebothviscousandDarcy termsarekept. Figure
12 shaws the evolution of the solutioninitiated by the same
long-wavelengthperturbatiorasin Figurellbutwith \ = 4.
The fluid now drainsinto a numberof smallsills primarily
becausehe Dargy resistanceprohibitsthe fluid from being
drawn acrosdargedistancestesseneny is thereforeusedin
generatingnultiple instabilitiesthanin generatingonelarge
one (which would pull fluid acrossthe entire depthof the
layer).

3.3.2. Gravitational settling without surface tension.
As in section3.3.1,we candefinetwo extremeregimesac-
cordingto whetherthe gravity termis balancedy the vis-
coustermor theDarcy term.

In the casewherethe matrix viscousterm is dominant,
A << 1, thefluid caneasilybe extractedfrom a large dis-
tance. This is confirmedby the simulationdepictedin Fig-
ure 13. In the oppositecasewherethe Darcy termis dom-
inant A\ >> 1, the matrix velocity is given by —¢?(1 —
@) (Ap/pm)z analogoudo (67). Porosityconseration be-
comes
99  Ap ¢

= +2-0(1 - 9)1-20)5" =0,

0
ot Pm 0z (85)

which is a nonlinear propagationequationfor a porosity
wave of phasevelocity 2(Ap/pm)d(1 — ¢)(1 — 2¢). This
phasevelocity is in agreementvith (76). Porositywaves
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Figure 12. Porosityasa functionof depthat differenttimes
for § = 1, A = 4, andAp/p,,, = 0. The parametersire
similar to thoseof Figure 11, but the Darcy term hasbeen
kept. Becauseof the presencef a Darcgy resistancevhich

prohibitsthe fluid from beingdrawn acrosdarge distances,
thenumberof instabilitiesincreasesvhencomparedo Fig-

urell.
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Figure 13. Porosityasafunctionof depthat differenttimes
for§ =0, A = 0andAp/p, = 1. Themixtureis gravita-
tionally unstableandthereis no surfacetension.Thematrix
viscoustermis dominantin thedynamics.

propagateupward or downward dependingon whetherg is
greatetthanor lessthan1/2 (althoughthefluid alwaysflows
upward). The nonlinearityof the phasevelocity makesthe
extraction of the fluid difficult. In the rear of a porosity
paclet (¢ < 1/2 andd¢/dz > 0) the porosity decreases,
0¢/0t < 0, andthis draining of the matrix hampersthe
propagatiorof the next rising porositypaclet.

In the absenceof a viscousterm the direct relation be-
tweenvelocity andporosityforbidstheimpositionof bound-
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ary conditionson v,,,,. Therefore,in Figure 14 we depict
an intermediatecasewhereboth viscousand Darcy terms
are kept. The fluid migratestoward the surface but much
moreslowly thanin Figure13. As thefluid cannotbe dravn
from a distancemuchlargerthanthe compactioriength,the
porosity decreasesore or lessuniformly belov a shallov
layerveryrich in fluid. Porositypacletscalledmagmonsare
alsogeneratedt depthandtravel in the mixture [Scottand
Sterenson 1986; Barcilon and Lovera, 1989; Spiggelman
1993b].
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Figure 14. Porosityasa function of depthat differenttimes
for ¢ = 0, A = 10, andAp/p,, = 1. Theinitial porosityis
constantThemixtureis gravitationally unstableandwithout
surfacetension.Becausef the presencef the Dargy term,
porositypaclketsaregenerated.

3.3.3. General case. Asseernwith (81),surfacetension
forcesbalancegravity (assumingp << 1) when

a(l—a) oag

¢'= Apg’
i.e.,eitheroveraveryshortdistancgin which casethe buoy-
antstressApgly is small) or whenthe porosityis very low
(in which casethe averageinterfacecurvatureda/d¢, and
thusthe surfacetensionforce, is large). For modelingin a
ridgecontext we cantake (o) /(Apg) betweerdOmmand
100m for oy = 200 Jm~3 andoay = 500 kI m—3, re-
spectiely. (Ap = 500 kg m~3, p,,, = 3000 kg m~3). This
implies that surfacetensiononly actson a scaleof a few
hundredmetersat most.

To shaw that surfacetensioncanbe animportantsource
of instabilities,we performthe computationfor a layer of
thickness50 m anda compactioniengthd,, = 8000 m. We
startwith a porosity ¢ = ¢o[1 — 0.5 cos(27z/lp)], where
¢o = 0.01. Assumingthatthe mamginal stability analysis
remainsvalid, the porosity waves should slowly drift up-
ward (U,, = 0.71 mmyr—! accordingto (76)), the matrix
shouldcompact(v,,,, = —0.74 mmyr—! accordingto (67))

lo = (86)

andthe fluid shouldflow upward (v;, = 74 mmyr—' ac-
cordingto (66)). Becauseof surfacetensionthe wave am-
plitudesshouldincreasewith time, andthe porosity should
reachzero after a time of order1/s (see(78)). After this
time the continuity of the flow is interrupted andsills form.
If wetake (cap)/(Apg) betweerdOmmand100m, growth
times shorterthan 24 Myr andlongerthan 24 kyr are ob-
tained(see(78)). In the next simulationswe usecay = 50
kJ m—3, which lies in the rangeof valuesestimatedn sec-
tion 3.2. This shouldleadto a local draining of the matrix
after~200kyr.

In Figure 15 the time evolvesfrom left to right andthe
porosity (horizontalaxis) is plotted asa function of height.
From Figure 15ato Figure 15b, the porosity wave moves
slowly upward. The nonlinearityof the equationgyenerates
harmonicsthat start propagatingat differentvelocities. At
t = 220 kyr (betweenFigures15band15c)the fluid is to-
tally squeezedut from the matrix nearthe bottom,andthe
continuity of theflow is interrupted.Thenasill developsby
aprogresste drainingof the matrix mostly from the bottom
of thesill (Figures15dto 15k). Thetop of the sill alsomi-
gratesslightly downward. At large time, (Figure 15k) the
completeunmixing of the two phasedeavesa fluid sill of
thicknessl m.

Thetime neededo squeezeut the fluid variesqualita-
tively aspredictedby (78),i.e., proportionallyto p.,, /(cag).
With the conserative valuesthat we have chosen,this is
alreadyshort comparedto most plate tectonicsprocesses.
However, oy couldbefurtherincreasedy afactor10while
the matrix viscosity could be decreasedby mary ordersof
magnitude(Ahern and Turcotte [1979] and Turcotte and
PhippsMorgan [1992] consideru,, = 10'® — 10'® Pas).
Thereforedrainingtimesassmallasafew 10yearsarepos-
sible.

As seenin section3.2, surfacetensiontendsto selectthe
smallestwavelengths Porosityevolutionin alayerof thick-
nesdy = §,, = 8000 m is depictedin Figure16. Thefinite
differencecodein this simulationuses2000points,andthe
initial porosityis a periodic randomfunction with an aver-
agevalue ¢y = 0.01 andan amplitudespectrumdecreas-
ing as1/k, wherek is the wave number Exceptfor l,
the other parametersre similar to thoseof Figure 15, and
periodic boundaryconditionsare also applied. From Fig-
ures 16a-16kwe seethe upward migration of the various
porosity peaks. Thesepeaksdeformasthey containdiffer-
ent harmonicsmoving at differentphasevelocitiesand be-
causetheir amplitudesncrease Aroundt = 100 kyrs (Fig-
ure 16f), thecontinuity of theflow is interruptedandvarious
sills startto form. Although long-wavelengthcomponents
arepresenin theinitial porosityprofile, they do notimpose
the periodicity of thefinal distribution of sills (Figure 16Kk).
Theselectedvavelengthgesultfrom acompromisédetween
theharmoniccontentof theinitial porosityandagrowth rate
thatfavorsshortwavelengths.
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Figure 15. Time evolution (from (a) O years,(b) 120 kyr,
(c) 250 kyr, (d) 420 kyr, (e) 620 kyr, (f) 850 kyr, (g) 1.1
Myr, (h) 1.4 Myr, (i) 1.8 Myr, (j) 2.2 Myr, to (k) 16 Myr)
of porosityasa function of depth(Ky = 1, Ap = 500 kg
m—3, 1o = 50 m, §,,, = 8000 M, p,, = 10'8 Pas, p,, =
3000 kg m~3, ooy = 50kIm~3). For clarity,eachprofile as
beenz hifted by 0.1 porosityunit with respecto theprevious
profile. The initial porosityis a sinusoidalfunction with a
maximumat z/lo = 0.5. The porositywave travels upward
until the surfacetensiondriesthe matrix at onepoint (att =
140 kyr, i.e., betweenFigures15band 15c). The evolution
ultimatelygeneratessill of purefluid (Figure15k).

4. Conclusions

In this papemwe have investigatedundamentaproblems
of compactiorusinga new two-phaseheorythatis materi-
ally invariant,includesinterfacial surfaceenegy (e.g.,Sur
facetension),and accountdor differencedn the pressures
of thetwo phasesnsteadof employing a bulk viscosity Al-
thoughthebulk viscosityapproaciM84) employedin vari-
ousprior studiess analogouso compressibléluid mechan-
ics formulations,it is meantto modelcompactiomot com-
pressibility; neverthelessit prescibecompactibility of the
matrix throughan extra rheologicalproperty i.e., the bulk
viscosity¢. In BRS, no bulk viscosityis employed andthe
rheologicallaws remainsimple, yet fluid and matrix pres-
suresare assumedinequalas soonasthereis somephase
separationThisinterpretatioris verysimilarto thatgivenby
Scottand Stezensor{1986]in their AppendixB (althoughin
themainbodyof the paperthey useaconstanbulk viscosity
asis alsoassumedn muchof M84).

Whenthe porosityis variable,thereis no obvioustrans-
formationin which a bulk viscosity as per M84 canbe in-
ferredfrom BRS. However, in simplecaseof constantand
uniform porosity the M84 bulk viscosity approachandthe
BRS pressurdifferenceeffect canbe relatedassuminghe
bulk viscosity{ ~ u.,/¢ (seesection2.4.1and Appendix
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Figure 16. SameasFigure15 but for amorecompleinitial

porosityover a larger height(Ko = 1, Ap = 500 kg m~3,

lo = 6, = 8000 m, u,,, = 10'® Pas, p,,, = 3000 kg m~3,

ooy = 50 kJm—3). Although long-wavelengthharmonics
arepresentn thestartingporosity thesurfacetensionprefer

entially selectsshortwavelengths.The profilesaredepicted
attimes(a) 0,(b) 15, (c) 29, (d) 47, (e) 70, (f) 100, (g) 140,
(h) 240,(i) 400, (j) 600and(k) 900kyr.

A).
We believe that our interpretationpossiblyhassomead-
vantagesith respecto previousformulations:

1. BRSis materiallyinvariant,thatis the equationsare
perfectlysymmetricor invariantto permutation®f the sub-
scriptsm and f (andimplicitly ¢ and1 — ¢) asshouldbe
expected Useof M84’shulk viscosityapproactwhile main-
taining materialinvariancewould requirethat the fluid also
have a bulk viscosity in which casethe mixture of incom-
pressiblefluids would lead to a compressibleone (BRS1).
However, M84 is explicitly for a systemthatis not materi-
ally invariant(i.e.,thefluid is alwaysmuchlessviscousthan
the matrix).

2. With our equationghe macroscopiaheologyof the
mixturebecomeshatof theend-membesinglephasesvhen
¢ = 0or¢ = 1. Thisis notthe casewith theoriesusingbulk
viscosity unlessmassconseration equationsare also in-
voked,; this difficulty promptedvariousauthorsto invoke an
empirical((¢) relationshipsuchthat( — +oco wheng — 0
(andalsowhen¢ — 1) [e.g., McKenzie 1984; Schmeling
2000]. Whena constantbulk viscosityis usedin M84, we
have shavnin section2.4 (radialcompactionthattheporos-
ity candecreasdelon zero. The porosity remainsstrictly
betweerD and1 with BRS.

3. BRS usesthe actualmatrix and fluid shearviscosi-
ties but not thelessconstrainecparameter. Although( is
generallytakento be equalto u,, [€.9., Spigelman 1993c]
we have seenin section2.3thatthechoiceof ¢ smallerthan
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Im [€.9., McKenzieand Holness 2000] leadsto the unex-

pectedresultthat the matrix cancompactunderextensional
stressesln contrasttheparameteik, which controlsdefor

mationunderisotropicstressein BRS (asdoes( whenus-
ing M84; seesection2.4.1)canbe computedrom thetopol-
ogy of the interfaces(seeBRS1). That K, is expectedto

be closeto unity precludesmatrix compactionunderexten-
sionalstressein theBRStheory

We have purposelyusedsimple modelsto discussthe
macroscopiequialent propertiesof a two-phasemixture.
Variousthoughtexperimentshave shovn thatanunconfined
mixture is weaker undernormalstresghanit is undershear
stressandthata partially confinedmixture canbehaelikea
dashpotwith stresshardeningproperties. The resultshave
beenestablishedon clear physical grounds,and in some
caseghey aredifferentfrom thosepreviously obtained. In
particular it is moredifficult to extractthe fluid phasewith
BRS thanwith M84 (with constantulk viscosity). In sec-
tion 2.3 we have seenthat at vanishingporosity the fluid
phaséds trappedn the matrix with BRS but canstill escape
with M84 (again,with constanbulk viscosity).

The presencef surfacetensionhasonly beendiscussed
in the framawork of compaction. It only actson relatively
shortdistancesandthereforet hasbeengenerallyneglected
in large-scalenodeling.However, with all thenonlinearities
of the equationghe creationof a small-scalénstability can
impedethefurtherpropagatiorof thefluid phaseby draving
in thesurroundindluid yielding a preponderancef station-
ary sills ratherthan propagatingnagmongmagmasolitary
waves). Indeed,the resultingdistribution of sills is remi-
niscentof the obsenationsof ubiquitoussills and dikesin
ophiolitemassifgNicolasetal., 1994;CannatandLécuyer
1991]. Therearelarge uncertaintiesn the time constaniof
thisphenomenomut it is likely to beshortcomparedo geo-
logic time. In its presenform, our modelof surfacetension
cannottake into accountthe surfaceenepgy associatedvith
solid-solidcontacts.This canmodify the physicsof the sys-
temat very low porosity, but assoonasthe solid grainsare
wettedby thefluid, our modelshouldapply:.

Directapplicationgo geophysicsfrom oil to meltextrac-
tion andfrom core-mantleio outercore-innercore segyrega-
tion arenumerousalthoughbeyondthe scopeof this paper
Theimportanceof thesephenomenanake anunderstanding
of the basicphysicsof the equationsa prerequisiteto per
forming complec simulations.

Appendix A: A Comparison
Between M84 and BRS

McKenzie[1984] (M84) proposedhefollowing fluid and
matrix force equations:

—¢[VP +pyg2]

+cAv + V- [¢1}] = 0, (A1)

17

—(1=¢)[VP + pnygi]

—cAv+V - [(1-¢)r;]=0. (A2)
Theseequationgiffer from thoseof BRS (seeequationq3)
and(4)) by the absencef surfacetension(c = 0) andand
the assumptiorof a singlepressurdield, P, = Py = P,
or AP = 0. EquationgAl) and(A2) areaugmentedby the
rheologicalrelations

¢T; =0, (A3)
T = i (VVim + [VVi])
+(¢ - %,u:n)V - v (A%)

The fluid phaseis assumednviscid relative to the matrix,
andtheviscositiesu;, and( areeffective viscosities.

When¢ is variable M84 andBRSyield two differentsets
of equationsin particular thefluid momentumequation(3)
in BRS (againwith p¢ negligible) yields

—¢[VP; + prgz] + cAv
Hm D¢

=K ——V¢.
"U-¢) Dt
TheusualmodifiedDargy’s law from M84 ((A1) with (A3))
is thus not recovered by BRS unlessthe porosity is con-
stantin spaceand/ortime; (A5) expresseshefactthatfluid
pressurgradientamustbalanceorcesassociateavith com-
pactionof a nonuniformmatrix, aswell asresistanceo in-

terstitial (Dargy) fluid flow.

In thespecialcasewhere¢ is constantanduniform, there
is a simple correspondencbetweenM84 and BRS. Using
the pressurgump condition (17), equations(3) and (4) of
BRSbecomgwith p; negligible)

(A5)

—¢ [V Ps + ppgz] + cAv = 0, (A6)
—(1= ¢) [VP; + pmga] — cAv
V(1= B+ K0V D =0, (A7)

¢

Theseequationareidenticalto (A1) and(A2) with (A3) and
(Ad) whenP = Py, p¥, = i, and¢ = Kopn, /¢, andwe
use(9) for T,,,. However, evenwhena formalidentification
betweerM84 andBRScanbedone thephysicalapproaches
remainsignificantlydifferent.
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