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Abstract

A simple theory is devised to describe the non-linear feedback mechanisms involved in the initial growth of a single
diapir or plume head from a low viscosity channel overlain by a much more viscous layer. Such feedbacks arise primarily
from the relation between the growth of a proto-diapir (i.e. an undulation on the upper boundary of the low viscosity
channel) and the draining of the low viscosity channel. In the period of time between its initial exponential growth
(characterized by linear stability analysis) and its separation from the low viscosity channel as a fully formed diapir, the
proto-diapir can undergo a significant cessation in its development due to deflation of the low viscosity channel; i.e. the
proto-diapir’s growth can essentially stall for a long period of time before it separates and begins its ascent through the
overlying medium. The theory is used to determine a criterion for separation of the diapir from the low viscosity channel that
is in terms of the geometrical and mechanical properties of the channel, instead of the ad hoc volume flux widely used in
many models of mantle plumes and plume heads (e.g. Whitehead and Luther, 1975; Richards et al., 1989; Olson, 1990;
Sleep, 1990; Bercovici and Mahoney, 1994). From this separation criterion, self-consistent scaling laws can be formulated to
relate the size of the fully developed diapir and its trailing conduit to the properties of the initial channel, instead of to the ad
hoc volume flux. Basic laboratory experiments involving highly viscous fluids are presented and demonstrate that the
so-called ‘stalling’ period between initial growth and separation does indeed occur. These results suggest that nascent mantle
plume heads may stall for extended periods at the base of the mantle and thereby contribute to variations in thickness of the
D" layer.© 1997 Elsevier Science B.V.

1. Introduction hypothesized to be the cause of flood basalts (White

and McKenzie, 1989; Richards et al., 1989; Camp-

Diapirism is a prevalent geological phenomenon
occurring, for example, in the formation of salt
domes, granites and mantle plumes. Diapiric plume
heads rising from the D" layer at the core—mantle
boundary (or some other thermal boundary layer at a
heated interface) are thought to mark the initiation of
mantle plumes and hotspot tracks and have been
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bell and Griffiths, 1990; see also Bercovici and
Mahoney, 1994; Farnetani and Richards, 1994). The
initiation of a viscous diapir at the interface between
two fluids of different viscosity and density is de-
scribed by linear Rayleigh—Taylor stability theory
(Whitehead and Luther, 1975; see Loper and Eltayeb,
1986, and Ribe and de Valpine, 1994, for applica-
tions to the D" layer). After the diapir forms there
are simple theories for how the diapir separates from
its source region and ascends while being inflated by
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a trailing conduit (Whitehead and Luther, 1975; Ol-
son, 1990). However, there is relatively little under-
standing of the intermediate stage, when the interface
undulation is of finite amplitude (i.e. comparable to
the thickness of the source region) and about to
coalesce into a fully developed diapir. At this stage,
the growth rate of the undulation can possibly dimin-
ish, particularly if it significantly drains the local
source region.

Apart from numerical experiments (e.g. Chris-
tensen, 1984; Olson et al, 1987; Weinberg and
Podladchikov, 1995), non-linear and finite amplitude
Rayleigh—Taylor instability is typically treated with
perturbation theory (Haan, 1989; Fermigier et al.,
1992; Cafaro and Cima, 1993; see review by Kull,
1991), which essentially reveals pattern formation
and symmetry breaking in a field of undulations.
However, a simple theoretical understanding of the
non-linear evolution and growth of an isolated undu-
lation, from infinitesimal to finite amplitude, would
have significant value. Such a theory is necessary to
give a basic estimate for the duration of diapir
initiation. Long lived undulations or proto-diapirs
will clearly affect the apparent structure of the source
region. For example, the time for plume heads to
develop in the D” layer has significant implications
regarding observed variations in the structure of the
D" (Kuo and Wu, 1995; see Loper and Lay, 1995)
and related effects, such as lateral variations in heat
flux out of the core which invariably influence dy-
namo and geomagnetic activity (Gubbins and
Richards, 1986; Larson and Olson, 1991; Loper,
1992; see Loper and Lay, 1995). Since this theory
would provide a link between diapir initiation and
diapir separation, it would intrinsically yield a more
self-consistent framework for relating the physics of
fully developed diapirs to the properties of the source
region. Most simple theories of fully developed di-
apirs depend on specifying a volume flux Q into the
conduit feeding the diapir (Whitehead and Luther,
1975; Richards et al., 1989; Sleep, 1990; Bercovici
and Mahoney, 1994); the length scales of both the
plume head and conduit are thus invariably pre-
scribed by the input volume flux Q. Although Q for
a mantle plume can be inferred from hotspot mass or
heat flux (Davies, 1988; Sleep, 1990) it is not, in
fact, a fundamental property of the mantle; Q is
really an outcome of the dynamics of the plume

head’s initiation. In short, Q necessarily depends on
the viscosity, buoyancy and the thickness of the
source region.

In this paper, we propose and examine a simple
non-linear theory that simultaneously models the
growth of a single diapir and the shrinkage of the
diapir’s source region. This theory thus accounts for
the growth of a proto-diapir, from an infinitesimal
disturbance to a finite amplitude undulation about to
separate into a fully developed diapir. We examine
the condition for its separation from the source re-
gion, and, from this, estimate the initial scales of the
starting plume head and its trailing conduit in terms
of the properties of the source region. Finally, to test
the validity of our theory, we compare our model
predictions to some basic laboratory experiments. It
should be noted that, strictly speaking, our theoreti-
cal and experimental diapirs have only chemical
density anomalies which diffuse much less rapidly
than do thermal density anomalies. This assumption
is clearly appropriate for the formation of salt domes
and granitic bodies; however, the extent to which
mantle plumes are chemical or thermal is not entirely
known, though they are likely to be predominantly
thermal.

2. Theory
2.1. Plume-head initiation

At the heart of our model is a simple non-linear
feedback mechanism. A dome-shaped disturbance or
proto-diapir grows on the interface between a vis-
cous fluid channel and an overlying higher-viscosity,
higher-density layer. The disturbance coincides with
a pressure low which is mainly due to the buoyant
hydrostatic head of the disturbance. Fluid in the
lower-viscosity channel flows toward the pressure
low, causing the channel to deflate, the dome-shaped
disturbance to grow, and the pressure low to increase
in magnitude, and so on. Moreover, as the surround-
ing channel shrinks, flow within it becomes more
constricted, limiting the fluid supply to the proto-di-
apir. Nevertheless, the proto-diapir will grow until its
Stokes ascent velocity exceeds its own growth rate,
at which point it will separate from the channel
(Whitehead and Luther, 1975).
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Fig. 1. Sketch of diapir-initiation model. See text for further
definition of symbols.

We construct the model to examine a single plume
head growing from an initially uniform layer of
density p, and viscosity w, overlain by an infinite
half space of higher density p, and much higher
viscosity p, (Fig. 1). We assume the width of the
growing plume head 2a and its distance from neigh-
boring plume heads 2R is determined by linear
Rayleigh—Taylor stability theory (Whitehead and
Luther, 1975); i.e. both R and a scale as the wave-
length of the least stable infinitesimal disturbance.
We adopt an axisymmetric geometry centered on the
growing plume head and separate the low viscosity
layer into two regions. The first region is that of the
growing dome-shaped disturbance contained within a
radius of r=ga; the second is the uniformly flat
source region between r=a and a stagnation
perimeter at r = R. (The stagnation perimeter is the
line where the suction from other growing diapirs
cancels that of the diapir in question; this is not a
crucial assumption or feature, but does simplify the
model some.) The growing proto-diapir is modelled
as a Gaussian-shaped disturbance with a height above
the top of the low viscosity layer prescribed by
he *"/< such that the radius r=a marks the
boundary between the growing disturbance and the
deflating flat-layer region. The Gaussian shape is
justified somewhat by numerical models (e.g. Farne-
tani and Richards, 1995) and our laboratory experi-
ments (see below). The maximum height & grows
with time, though « is assumed to stay constant.
(The constancy of a is based on the assumption that
as the disturbance grows it is free to rise and extend
vertically since it is buoyant and unbounded from
above; it will thus not spread laterally like a gravity
current. The constant-a assumption, however, clearly

does not hold when the diapir separates from the
source region and develops a tail.) The flat layer
region surrounding the plume head has height H
which diminishes with time as the plume head grows.
Since w, > w,, linear stability theory prescribes
both a and R to be proportional to (u,/u )/ *H,
where H, is the initial, undisturbed channel thick-
ness, i.e. H at time ¢ = 0.

In the flat low-viscosity channel region (a < r <
R, 0 <z < H), there is primarily radial flow with
velocity v,; we employ shallow-layer lubrication
theory to obtain the radial volume flux per unit
length

g=| vdz=—— (D)
0

where P is pressure, to be defined shortly. We have
assumed that the interface with the overlying highly
viscous medium 1is effectively a no-slip boundary,
while the bottom boundary of the channel is assumed
free-slip, as appropriate for the core—mantle bound-
ary of the Earth; a no-slip bottom boundary would
simply require multiplying the right side of Eq. (1)
by 1/4. By continuity

oH 1o
e () @

at r ar

However, in our simple model H is assumed inde-
pendent of r, thus, by Egs. (1) and (2),

{1 9 aP
—|==lr—]}=0 (3)
ar\ r dar\ or
We apply the boundary conditions that
P=P,at r=R (4)
where P, is the over-burden pressure,

apP
—=0at r=R (5)
ar
since r= R is an assumed stagnation point, and
P=P,—f(Apgh—p') at r=a (6)

where Ap=p, —p;; p’' is the dynamic pressure
opposing the inflation of the plume head due to
motion of the overlying viscous medium; and f is
some fraction <1 (see Appendix A) to account for
the fact that we are measuring the pressure at r =a
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not r=0. Given these conditions, the pressure is
given by

Y(r) ,
P=P, —fm(ﬂpgh—p) (7
where
Y(r)=r*/R*+2log(R/r) — 1 (8)

The opposing pressure p’ from the overlying medium
is not easily determined in the case of a finite value
of h (i.e. where h is not < H). The two limiting
forms of the plume head are (1) when the distur-
bance is infinitesimal and (2) when the plume head
is nearly a diapir ready to separate. In either case, the
pressure opposing vertical motion is of the form
p' = cu,W/a (Batchelor, 1967) where W is the ab-
solute vertical velocity of the interface, i.e. W=
(d/deXh+ H) and ¢ is some constant probably
between 3 and 27 (Batchelor, 1967; Whitehead and
Luther, 1975; Turcotte and Schubert, 1982) (also see
the following section for reasons why a alone is
assumed the relevant length scale in p’). For the
sake of simplicity and consistency with the limiting
states of the plume head, we adopt this form of p’ in
the present analysis, i.e.

py d
'=¢c——(ht+H
p=cn—(h+ H) ©

The deflation of the flat channel surrounding the
growing plume head is given by Eq. (2), which,
using Egs. (1), (7)-(9), leads to

dH af
DU — £
dr 3u,R*Y(a)
o d(h+H)
X|Apgh—c— — 1
( pgh—c—— (10)

By conservation of mass, the growth in volume of
the plume head is given by

i 27Tfahe_4’z/“2rdr+ wa’H| = —2ma (a)
dr 0 9

(11)
which, with Eq. (1) and Egs. (7)—(10), leads to
ﬁ = Lfﬂ
dt  3yw,a’¥(a)

where y= (1 —e™*). (Note that Y(a) >0 for all
a < R.) We non-dimensionalize H by its initial value
H,, time by
_
Apga

t (13)

(which is comparable to the time for the fully devel-

oped diapir to traverse is own girth) and A by
3Y(a) p, R%a

hy = —— 14
° Afe p, H} (14

(which follows a posteriori from the scaling factors
H, and t,). By dividing the dimensionless version of
Eq. (10) by that of Eq. (12), and using the initial
conditions (on the dimensionless quantities) that

H=1and h=¢€at t=0 (15)
we obtain

A+e—h
H=T; (16)

substitution of this expression for H into the dimen-
sionless version of Eq. (12) leads to an integrable
non-linear evolution equation for A

dh h(A+e—h)’

A N tp(A+e—h) (17
where
ho e Mo (18)
3yY(a) p, @
and
1/=1—i=1—27a—22 (19)
Ah, R

Typical values for the parameter A lie between 10
and 1000 (see Appendix A) where the smaller A
corresponds to large values of a/R and large A are
associated with smaller a/R. For most proto-diapirs
we expect a/R = 1/2 which corresponds to a value
of A that is O(10). The parameter v does not vary
significantly, i.e. 0.75 < » < 1.0.

Fig. 2 shows dh/d¢ versus h for several values
of A (with e=10"? and »=0.9). Initially, dh/d¢
increases linearly with A, which is indicative of
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Fig. 2. Curves of dh /d¢ versus & from Eq. (17) for three values
of A. For all three cases v =0.9 and € = 0.01.

exponential growth in 4; however, dh/dr eventually
reaches a maximum when

v(A+e—h)' +X2(A+e—4h) =0 (20)

and goes to zero when A= A+ €. Therefore, h
achieves a maximum of A + € since its growth rate
vanishes when it reaches this value. Obviously, this
is the value of & whence H =0 (see Eq. (16)), i.e.
when the source region is entirely depleted. More-
over, note that A controls the final value of A
because it determines the width of the undulation
(e.g. large A means small a/R); i.e. if the entire
volume of the source region (to the stagnation
perimeter) is drained into the undulation, then obvi-
ously a narrow undulation will grow to a greater
height than a broad one.

The dynamical equation for undulation height, i.e.
Eq. (17), can be integrated, with the constraints of
Eq. (15), to yield an implicit analytic solution for A:

2

loe( h | ( Ah/€ )
t= +
vlog(h/€) (Are) 8| T
A2 1 1
+ 2 7 5,2
A+te\2(A+e—h)" 2A

1 1
T Or(Ate—n) ()\+6)A) Y

Fig. 3 of & versus ¢ shows initially gradual
growth of the plume head, followed by rapid (ex-
ponential) inflation and, finally, a levelling of the

inflation rate as the plume head’s supply becomes
depleted. However, after a certain time, the plume
head necessarily separates from the source layer; this
separation is indicated by the change to positive
curvature in the h-versus-t curve (see Section 2.2
and Appendix B).

2.2. Plume-head separation
We wish to examine the conditions whereby the

proto-diapir separates from the channel or source
region; this will allow us to estimate the duration of

1
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Fig. 3. Curves of h* =(h— €)/(hy,, — €) (where h,, is the
maximum A calculated, i.e. & at the final time) versus dimension-
less time ¢ for various values of A (indicated on the figure) with
B =0.25 (top frame) and various values of B (indicated on the
figure) with A =10 (bottom frame). These calculations use Eq.
(17) or Eq. (21) for plume growth prior to separation (i.e. for
1<t,,) with =09, € =001 (sec text and Appendix A for
discussion of dimensionless parameters). After separation (1 > f,,)
the curves obey Eq. (B2) with a =2 (see Appendix B).
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the period between its initial exponential growth and
its separation into a fully developed diapir. We can
also obtain a separation criterion in terms of viscosi-
ties and initial channel thickness, instead of in terms
of an ad hoc plume volume flux Q (Whitehead and
Luther, 1975). Moreover, we can infer the sizes of
the trailing conduit and diapir at the point of separa-
tion, independent of Q.

We expect separation to occur when the Stokes or
free ascent velocity W, of the forming diapir exceeds
its growth rate (d(h + H)/dt) (Whitehead and
Luther, 1975). The effective resistive viscous force
on the freely ascending diapir is approximately
2, aW,, where {2 is essentially a solid angle deter-
mined by the effective surface area on which the
force acts (Batchelor, 1967); for a perfect sphere
surrounded by an infinite viscous medium (2= 4.
The primary length scale in the resistive force is
assumed to be a since the pressure and normal stress
act downward effectively on the horizontal cross-sec-
tion of the plume head while traction along the
vertical sides of the plume head is negligible since
1, << u,. Therefore, we expect A to play very little
role in the scale of the resistive force. (This is also
the rationale used in obtaining Eq. (9).) The buoy-
ancy force is 2mya’h,hApg (where we continue to
use dimensionless 4) and the Stokes velocity is then

2ayApgah h
W= (22)
Ou,
Separation occurs when
hy d H,
— —|h+—H]|<W, (23)
t, dt hy ‘

In dimensionless form this becomes

dh  2myc
9 < 0 h (24)
Using Eq. (17), separation occurs when
hzhsep=A+e—BA2/3 (25)
where

2myc 1/3
b7 )

To evaluate the sign of B, we consider that (1) ¢
is no larger than 27 (and actually reduces to the

order of 3 when the proto-diapir is large and about to
separate); (2) y=0.1227; and (3) {2 is probably
between 27 and 47 (since the low viscosity source
region underlying the diapir could reduce by as
much as half the effective surface area on which
stresses in the overlying viscous medium can act).
This implies that B> 0 and thus h,, <A+ €, ie.
separation will, with reasonable certainty, occur be-
fore h reaches its maximum size of A + €. The time
from initiation to separation 7, can be determined
by substituting A, into Eq. (21).

Fig. 3 shows the growth of the undulation to the
separation point for various reasonable values of S
and A. Separation occurs at the second inflexion
point in each curve, i.e. where curvature goes from
negative to positive as h resumes its growth after an
effective stalling period. After separation (i.e. ¢>
tsep) h represents the height to the top of the rising
diapir which continues to be inflated by the trailing
conduit (see Appendix B). The stalling period in the
growth of the proto-diapir lasts between approxi-
mately 1 and 5 dimensionless time units (recall that
t, from Eq. (13) is the dimensional time scale).

2.3. Size of the separated diapir and trailing conduit

By conservation of mass, the volume flux @ into
the diapir at the time of its separation balances the
deflation rate of the flat channel, i.e.

O dr |,

sep

wR*H,Apga B’(A+ e— BAY7) 7
o A1+ vB%)
Assuming Poiseuille flow in the trailing conduit, we
estimate its radius after the plume head separates to
be

L[ 8em )"
mldpg

(28)

Moreover, the initial volume of the plume head, i.e.
at separation, is

V.=2ymwa*hyh
3myY(a) u, R*a’
- ( )_1 > (/\+€"BA2/3) (29)
2fc  py Hg
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We can now obtain some basic scaling relationships
for the conduit radius and plume head size in terms
of the viscosity contrast (u,/u,) and the linear
dimensions H,, R and a. The conduit radius follows
the scale relationship of

b*  u, Rla

i (30)
Hy p, Hy

and the initial plume head volume obeys

Vv, u, R

B 31
TR*H,  u, Hg (3D
where we have used terms of highest order in A and
also the dependence of A on a/R (see Appendix A).
These may be simplified by noting that @ o R and

by linear stability theory R/H, ~ (u,/p,)"?; thus,

b~H, (32)
and
2/3
e (22) m (33)
M

The above scaling relationships suggest that while
the trailing conduit is as narrow as the source region,
the volume of the separated diapir or plume head
may be much larger than H; i.e. the radius of the
diapir will be significantly larger than the radius of
the conduit. This gives a rigorous basis for address-
ing one of the more classical questions of mantle
plumes, i.e. why a starting plume head is much
wider than the plume itself, without appealing to an
ad hoc volume flux Q.

3. Laboratory experiments

One of the more intriguing suggestions of the
non-linear theory presented here is that between the
exponential growth of the initial infinitesimal undu-
lations and the free ascent of a fully developed diapir

Fig. 4. Photographs of a laboratory experiment showing the
initiation and growth of undulations on an interface between two
different layers of cor syrup (i.e. a high viscosity layer overlying
a much thinner layer of lower viscosity and density). Times and
scale are indicated. See text for discussion of experimental details.
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are feedback effects which potentially cause the di-
apir formation to stall for a finite period of time.
However, given the simple and approximate nature
of our model, this feature of the non-linear theory
needs to be experimentally tested. We therefore car-
ried out several basic Rayleigh—-Taylor laboratory
experiments and measured undulation height for

17
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many individual diapirs during their development
and ascent.

Laboratory experiments were conducted in an
acrylic cylindrical tank with an outer diameter of
30.75 cm, an inner diameter of 29.8 cm and a height
of 30.5 cm with its lid. The tank was filled to a
height of 28.8 cm with highly viscous corn syrup

13 15

1

h + H (mm)

600

time (sec)

h + H (mm)
6.2 72 82 9.2 10.2

52

o
-
1400 1600

T
1700

time (sec)

1800 1900 2000

Fig. 5. Undulation height from the tank bottom %+ H versus time for selected laboratory diapirs (shown in Fig. 4). These diapirs were

chosen to exemplify the stalling period in diapir growth; other ex

periments showed both comparable and smaller stalling periods. The top

frame records the growth of one of the first diapirs in the given experiment; these diapirs arise from a 5-mm-thick layer and are thus the

largest diapirs to form. The bottom frame records one of the later s

econdary diapirs (in the same experiment, shown in Fig. 4 behind the first

diapirs); the secondary diapirs are significantly smaller as they arise from a layer that is deflated to approximately 4 mm by the first field of
diapirs. The apparent repeated leveling of the data in the bottom frame is due to the fact that the resolution of the photographs of the
experiments and the maximum available precision of the measurements of height were not sufficient to precisely track the boundary

between the two fluids during the exceedingly slow growth an

d ascent of the smaller diapirs. This problem with our measurements

undoubtedly influences the apparent duration of the stalling period between 1550 and 1750 s. Thus, to reduce measurement bias, both data
sets were fit to curves (solid lines) based on smoothing (i.e. convolution filtering) the data consistently with a Gaussian filter with a 200 s

full width.
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(LSI Specialty Products Liquidose No. 444) which
has a density of 1460 kg m~* and a viscosity of
607 330 cP (where cP is centipoise, and 1 cp = 10~?
Pa s). On top of this was added a 5-mm layer of
lighter and less viscous Karo corn syrup (died purple
to enhance its visibility) with a density of 1320 kg
m~* and a viscosity of 3839 cP. The viscosity
contrast between these fluids is approximately 160
and the density contrast is 1.1. As the two fluids are
entirely miscible, capillary forces are negligible. The
tank was allowed to sit for approximately 12 h to
permit air bubbles to escape and to ensure that the
fluid layers had uniform thickness. Diffusion be-
tween layers over this time period was negligible.
The tank was tightly covered during this time to
reduce evaporation of water. When the syrups were
mostly bubble-free, a thin disk of acrylic, cut to fit
into the top of the tank and lined with teflon tape,
was placed on the fluid surface. Care was taken so
that no air bubbles became trapped during this pro-
cess. Waterproof tape was used to secure the disk
and to prevent leaks when the tank was inverted.
After these preparations were made, the lid was put
on the tank and the tank was inverted, so that the
5-mm layer of Karo syrup was overlain by the
28.8-cm layer of thicker corn syrup.

After approximately 10 min, the thin buoyant
layer began developing undulations where the Karo
corn syrup accumulated (Fig. 4). The undulations
were approximately 10 mm wide and dome-shaped,;
they were detectable either by looking level at the
lower layer or looking down through the base of the
tank where they appeared as regions of enhanced
opacity. The first set of diapirs tend to form near the
walls of the tank. As these diapirs mature and sepa-
rate, another set of diapirs formed closer toward the
center of the tank; these secondary diapirs were
approximately 2 /3 the size of the first ones. Over a
period of 9 min the initial undulations became bell-
shaped. However, after about 20 min their develop-
ment often appeared to become arrested and the
growth of the diapirs stalled (Fig. 5). For the first set
of bigger diapirs this stalling period was relatively
brief, i.e. between approximately 1 and 2 min. For
the second set of smaller diapirs this period was
much longer, i.e. between 5 and 10 min. That the
stalling period is most pronounced for the smaller
diapirs occurs because these diapirs form from a

thinner layer that has been depleted by the first
diapirs; therefore, the source region is exhausted
more rapidly for the secondary diapirs. However, the
theoretical model also predicts that the smaller
proto-diapirs will stall for longer times since the
relevant time scale is proportional to a~! (see Eq.
(13)), where a is the undulation radius; thus all
processes, from initial growth to stalling to separa-
tion and ascent, will take longer for the smaller
plumes. Eventually all the undulations gather into
diapirs and separate from the bottom source layer.
The approximate nature of the theory makes it im-
possible to carry out a detailed comparison between
model and experiment. However, the experiments do
verify, in particular through the occurrence of the
stalling period in the development of the proto-di-
apir, that the theoretical model captures the essential
physics of finite amplitude diapir and plume head
initiation.

4. Discussion and conclusions

4.1. Stalling of plume-head initiation: implications
for structure of the D"

The theory and laboratory experiments presented
here indicate that after an undulation on an unstable
fluid interface begins to grow exponentially from an
infinitesimal disturbance, its growth can become ar-
rested for a finite period of time before separating
into a fully developed diapir. This stalling period can
last between 1 and 5 7,, where the time scale ¢ is
given by Eq. (13). For mantle plume heads arising
from the D" layer, ¢, is between approximately 10
and 50 Myrs (using 3 <c<2m, u,=10" Pa s,
Ap=40 kg m ? as a likely lower mantle thermal
density anomaly, g =10 m s * and a = 100 km).
This implies that proto-plume heads could stall at the
D" for 10 to several 100 million years before sepa-
rating into fully developed plume heads.

This has likely significance for the structure and
dynamics of the D" layer. Analyses of the structure
of the D" layer suggests that it is not uniform (Olson
et al., 1987; Kuo and Wu, 1995; see Loper and Lay,
1995). This may be inferred to be caused by chemi-
cal heterogeneity, or thickness variations induced by
descending slabs or slab-induced cold currents im-
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pinging on the D". Typically, a narrow plume con-
duit emanating from the D" probably would not be
large enough to cause a significant change in D’
thickness. Nascent plume heads are traditionally
thought to be too buoyant to reside near the D” for
long (given their potential for relatively rapid ascent).
However, this study suggests that proto-plume heads
may indeed linger near the core-mantle boundary
for extended periods of time, thereby inducing rela-
tively long-lived variations in the thickness of the
D". As the D" is quite possibly the bottom thermal
boundary layer of the mantle convection system it
provides the primary control on heat flow and re-
lease of gravitational potential energy from the core
(see Loper and Lay, 1995). Moreover, the D" possi-
bly has finite electrical conductivity (Jeanloz, 1993;
Shankland et al., 1993; cf. Boehler, 1993) and may
therefore control the flux and diffusion of magnetic
field lines out of the core. Therefore undulations in
the thickness of the D" would impose a laterally
heterogeneous thermal and electrical boundary con-
ditions on core magnetoconvection (Gubbins and
Richards, 1986; see Loper and Lay, 1995) and thus
have a direct influence on the structure and evolution
of the geodynamo.

4.2. Scaling of mantle plumes and plume heads

It is typically assumed that one of the more
fundamental features of mantle plumes is that start-
ing plume heads are immense in size while their
trailing conduits are relatively narrow. The several
hundred kilometer radii of plume heads is inferred
from the volume of flood basalts (Richards et al.,
1989; Mahoney et al., 1993; Bercovici and Ma-
honey, 1994) while the less than 100 km radius of
the trailing conduits is thought to be reflected in the
width of hotspot tracks and in that, until possibly
recently (Nataf and VanDecar, 1993), plumes could
not be seismologically resolved. The classic physical
explanation for this difference in size between plume
head and conduit is that given a particular volume
flux along a mantle plume, the mobility of the
leading plume head is constrained by the large vis-
cosity of the surrounding mantle and therefore can-
not move until it is inflated by the particular volume
flux to a very large size. In contrast, the mobility of
the fluid in the conduit is determined by its own

lower viscosity, thus permitting greater flow veloci-
ties and thereby accommodating the volume flux
with a narrow conduit. While this explanation is
intuitively appealing it invokes an ad hoc volume
flux that is not a fundamental property of the mantle
system. In this paper we have presented a simple
model of how plume heads form without assump-
tions of a volume flux; this allows us to infer the
scales of the conduit and the plume head purely from
the properties of the source region. We find that the
plume head indeed obeys a different scaling than the
conduit, i.e. the conduit scales as the thickness of the
source region, while the plume head radius goes as
this thickness multiplied by ( w,/u,)*/°. The physi-
cal explanation for the different scales does not
change (i.e. it still depends on the difference in fluid
mobility between the conduit and the plume head);
however, the theory presented here provides a more
self consistent explanation as to why mantle plumes
are so much narrower than their starting plume heads.
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Appendix A. The dimensionless parameter A

The parameter A is given by
2fc  w, H()3
A= ——— — —
3yY(a) py a
If we assume that R is half the wavelength of the
initial undulation, then according to linear

Rayleigh—Taylor stability theory (Whitehead and
Luther, 1975)

(A1)

“ 1/3
R=7r(—2) H, (A2)
3
Thus A becomes
2fc R
A= ———— — A3
myY¥(a) o (A3)
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To determine a numerical range for A we note
that y=3(1 —€%)=10.1227 and 3<c<27. An
upper limit on f is clearly 1.0. A lower limit on f
can be estimated by replacing the Gaussian shaped
undulation with a flat-topped cylinder of equal radius
and volume and thus a height of 2yh. Thus the
hydrostatic pressure near the edge of the cylinder
would be P, — 2yApgh. We therefore assume that a
lower limit on f is 2 y= 0.25. A reasonable range
of a/Ris 1/10<a/R <1/2; a maximum value of
1/2 for a/R is chosen because the channel flow
approximation (in the region outside the undulation)
is poor for values of a/R too close to unity. Thus, in
the end, we find 10 < A < 1000.

Appendix B. Trajectory of the ascending diapir

We desire a simple model to describe the ascent
of the plume head or diapir once it separates from
the source region. This model is merely appended
onto our non-linear model in order to compare to the
laboratory experiments. We assume that after separa-
tion the diapir rises with a velocity approximately
equal to its Stokes velocity; therefore after separa-
tion,

h, dh  Apg [ 3V\*/°
B 47

(B1)

where V is the volume of the diapir, and for simplic-
ity we have neglected the change in thickness of the
source region H (assuming it is broad enough that
its drainage by the conduit causes a negligible change
in H). As the diapir ascends it is inflated by the
trailing conduit with a volumetric flux Q which,
upon the diapir’s separation from the source region,
is given by Eq. (27). Thus, assuming Q does not
change after separation, V = Qr,(1 — tsep) + V, where
tep 18 the time to separation (obtained by substituting
hep from Eq. (25) into Eq. (21), V; is the initial

t, dt - 3u,

1

diapir volume upon separation as given by Eq. (29),
and we have neglected the growth in volume of the
conduit itself (Olson, 1990). We therefore obtain

1/2 2/3

dh all+vB?
= (1—1.)+1

Bshsep
dr | Al Bk,

1+ vB?

(B2)

where

(B3)

(B4)

as given by Egs. (17) and (25). Evaluation of a
(using the appropriate scales from linear stability
analysis; see Appendix A) shows that 1 < a/A <2.
Eq. (B2) is used to determine A versus ¢ in Fig. 3
after separation has occurred.
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