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Abstract. A •nodel of mantle convection which generates plate tectonics requires 
strain rate- or stress-dependent rheology in order to produce strong platelike flows 
with weak margins as well as strike-slip deformation and plate spin (i.e., toroidM 
motion). ttere, we exnploy a simple model of source-sink driven surface flow •o 
determine the form of such a theology that is appropriate for Earth's present-day 
plate motions. In this model, lithospheric motion is treated as shallow layer flow 
driven by sources and sinks which correspond to spreading centers and subduction 
zones, respectively. The source-sink field is derived fi'om the horizontal divergence 
of plate velocities and thus directly prescribes poloidal •notion. The toroidal 
fioxv field is solved through the non-Newtonian Stokes equat. ion for shallow la.yer 
tangential flow on the surface of a sphere. Two plate motion models a. re used 
to derive the source-sink field. The first is an idealized "square" plate which is 
used to explore the basic aspects of the model. The second is an analytica,lly 
continuous model of Earth's present-day plates (Bercovici and Wessel, 1994). As 
originally implied in the simpler Cartesian version of this model (Bercovici, 1993), 
the classical power law rheologies do not generate platelike flows as well as the 
hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self- 
lubrication mechanism). For the idealized plate geontetry, the power la.w rheologies 
yield much more diffuse strike-slip shear (i.e., radial vorticity) than the stick-slip 
rheology. For the present-day plate geometry, the power law rheologies fail to 
reproduce the original proportion of left- and right-lateral strike-slip shear, whereas 
the stick-slip rheology gives almost exactly the right proportion. None of the 
fluid theologies examined, however, produce more than approximately 60% of the 
original maxitnum shear. For either plate model, the viscosity fields produced by the 
power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones 
or pseudo-margins are not as small as over the prescribed convergent-divergent 
margins. In contra,st, the stick-slip rheology generates very platelike viscosity fields, 
with sharp gradients at the plate boundaries, and margins with almost uniformly 
low viscosity. Quantitative comparisons with lhe toroidal-poloidal kinetic energy 
partitioning and vorticity fields of the original plate model are also examined, a.nd 
the stick-slip rheology is generally found to yield the most favorable comparisons. 
Power law rheologies with high viscosity contrasts, however, lead to almost equally 
favorable comparisons, though these also yield the least platelike viscosity fields. 
This implies that the magnitude of toroidal flow and platelike strength distributions 
are not necessarily related and thus may present independent constraints on the 
determination of a. self-consistent plate-mantle theology. The results of this study, 
however, predict that if such a rheology can indeed be uniquely determined, it is 
likely to be in the class of stick-slip, self-l•brica.ting theologies. 

Introduction 

The physics of thermal convection provides one of the 
most prevalent underlying principles of atmospheric, as- 
trophysical, oceanographic, and geophysical dynamics. 
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'1'o each field, convection yields a unique enigma, e.g., 
the Great Red Spot in the atmospheric circulation of 
Jupitcr, or the generation of magnetic fields in stel- 
lar and planetary interiors. For convection in the solid 
mantle of Earth, perhaps the greatest enigma is plate 
tectonics itself. Since the plates circulate through the 
mantle, they are necessarily part of thc overall con- 
vective flow, and their surface motion represents the 
horizontal planform of some form of thermal convec- 
tion. Howevcr, the plates are nothing like basic fluid- 
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dynamical convective flow. Narrow spreading zones oc- 
cur where there are no upwelling currents to force them 
open [Lachenbruch, 1976]. Downwellings are asymmet- 
rical such that only one side of a convergent zone sinks 
[e.g., Gurnis and ttager, 1988; King and [lager, 1990]. 
Deformation is almost entirely focused in narrow bands, 
while the majority of the flow field is composed of nearly 
rigid blocks [e.g., [/Veinstein and Olson, 1992]. Finally, 
there is the generation of an apparently superfluous flow 
field. A large part of the motion at Earth's surface 
involves convergence and divergence (called poloidal 
flow) and is common to all classical forms of convec- 
tion. It is associated with upwellings and downwellings 
and provides the mechanism through which gravita- 
tional energy (or heat) is released. However, an al- 
most equal a. mount of motion is generated which is un- 
seen in most forms of thermal convection and seemingly 
accomplishes little apart from dissipating energy; this 
motion is called toroidal flow and represents strike-slip 
shear and plate spin [Hager and O'Conneil, 1978, 1979, 
1981; I(aula, 1980; Kaula and Williams, 1983; Forte 
and Peltlet, 1987; Gable et al., 1991; O'Connell et al., 
199]; Olson and Bercovici, 1991] 

These enigmatic features of the plate tectonic form of 
mantle convection are typically assumed to arise from 
Earth's complicated deformation mechanisms, i.e., the- 
ology [Kaula, 1980]. Indeed, as the flowing mantle be- 
comes a tectonic plate, it goes from displaying largely 
fluid behavior to nonfluid behavior such as both contin- 

uous (plastic) and discontinuous (brittle) failure. The 
rifting of the surface at spreading centers is most prob- 
ably forced by subducting slabs at great distances and 
this requires nearly rigid stress guides. Moreover, the 
existence of toroidal motion in the mantle's creeping 
style of convection is only mathematically assured in 
fluid wldch allows lateral variations in viscosity [e.g., 
Chandrasekhor, 1961; Kaula, 1980; Uhristensen and 
liarder, 1991]. 

To obtain a unified theory of plate tectonics and man- 
tie convection, it is of primary importance to determine 
a plate-mantle rheology which allows plate tectonics to 
arise self-consistently from a convecting mantle. Given 
the very nature of plates (with strong, slowly deform- 
ing interiors and weak, rapidly deforming margins), the 
strength or viscosity of the plate-mantle material must 
be dependent on the deformation rate and hence the 
velocity field. Candidate rheologies have either viscosi- 
ties dependent on temperature (which, through convec- 
tion, is itself a nonlinear function of velocity) and/or are 
non-Newtonian wherein viscosity is explicitly stress- or 
strain rate-dependent. 

In this paper, we seek the rheology •vhich interacts 
with the so-called convective part of the plate velocity 
field, the divergent or poloidal field, to yield (1) the non- 
convective or toroidal (strike-slip and spin) field and (2) 
platelike strength (or viscosity) distributions. Our the- 
oretical •nodel is composed of a shallow fluid layer (the 
lithosphere) driven by sources and sinks; these are de- 

rived from the plates' divergent-convergent motion and 
thus represent spreading centers and subduction zones, 
respectively. The theologies we examine are not limited 
to classical mantle-silicate rheologies [e.g., Weertman 
and Wcertman, 1975; Ranalli, 1987] since we wish to 
describe platelike behavior and not just mantle creep; 
it is also unlikely that the en•pirically derived silicate 
theologies are sufficient to obtain plate behavior [Chris- 
tenscn and Ilarder, 1991; Wcinstein and Olson, 1992; 
Bercovici, 1993]. 

This paper is the cmnpanion study to an earlier paper 
which examined this problem with an idealized Carte- 
sian model [Bcrcovici, 1993]. Here, we present the 
spherical version of the model and incorporate present- 
day motions of Earth's tectonic plates. 

Theory 

The essence of the non-Newtonian source sink model 

with consideration for model assumptions is discussed 
by Bercovici [1993]. We summarize the salient points 
here which are necessary for development, of the spher- 
ical model. 

Kinematics 

The theory only allows horizontal motions within a 
thin spherical fluid (lithospheric) layer. The horizontal 
velocity field is divided into its poloidal and toroidal 
components through a ttehnholtz relation 

t'n - Vu4) + I7 x (•f) 

where 'vn - (0, t,o, re) is the horizontal velocity vector, 

VH_(0 1 0 1 0) 'r 00'rsin0 0½5 (2) 
is the horizontal gra. dient, (I> is the poloidal scalar po- 
tcntial, and •6 is the toroidal vector potential (• is the 
unit normal in the radial direction). As always, r, •, and 
d are spherical coordinates, i.e., radius, colatitude, and 
longitude. 1torizontal flow is driven by a field of sources 
and sinks, i.e., a prescribed horizontal divergence field 
D = Vn-v•. The poloidal potential is thus determined 
by the sourcc-sink field via Poisson's equation 

•7 2 o. (3) 

The fluid is assumed incoInpressible (i.e., V.E -- 0, 
where v is the complete velocity vector), and although 
vertical velocity v• is itself assumed negligible in the 
layer, we still require that its vertical gradient is 

= -o (4) 

which is used in the second strain rate invariant, for the 

non-Newtonian viscosity. Equation (4) simply states 
that there is mass ejection and injection through the 
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bottom boundary of the layer (assuming the top is im- 
permeable), to or from the underlying medium. Itmv- 
ever, it is important to note that v• is only truly negli- 
gible if the fluid layer is infinitesimally thin. 

Dynamics: The Toroidal Equation 

The only aspect of the horizontal flow not prescribed 
by the source-sink field is the toroidal motion (or, al- 
ternatively, the radial vorticiiy). For this flow field we 
use the Stokes flow equation with variable viscosity 

0 - -VP + vV•"v_ + 2v•/. 6_. (5) 

where P is the nonhydrostatic pressure (the hydrostatic 
pressure gradient having cancelled with gravitational 
body threes), •/is dynamic viscosity, and 

Rheology 

Most mantle dynamic studies employing a non-Newt- 
onian rheology use a basic pseudo-plastic, i.e., power 
law or Ostwald-de Wade theology. As suggested by 
Bcrcovici [[993], such a theology may not be sufficient 
to generate plate tectonic type flows and self-lubrication 
mechanisms (i.e., wherein flow resistance, not just vis- 
cosity, can decrease with added strain rate) are possibly 
important. (Indeed, the main purpose of this paper is 
to test whether this suggestion applies to realistic plate 
tectonic motions.) To describe both pseudo-plasticity 
and self-lubrication, we use a simplified form of the Car- 
reau equation [Bird ½t al., 1987] 

V- (7 + •.2)«(•/•-•) (10) 

1 (V_v + [Vv] •) (6) 
is the strain rate tensor. The fluid layer is asstuned to be 
bounded above and below by relatively inviscid media 
(see Bercovici [•9931 •b• discussion of this assumption). 
These boundaries are thus assumed free-slip and as the 
layer is shallow, vertical shear stresses are assumed zero 
across the layer; therefore, throughout the layer [Chan- 
drasekhar, t961] 

This condition is used to prescribe radial derivatives 
of horizontal velocity and also implies that horizontal 
divergence D and radial vorticity 

2 
•,,,.- i.. V x v--Vu• (8) 

are independent of r. Only a single equation is neccss- 
sary to determine the toroidal potential; this is the ra- 
dial vorticity equation, i.e., L" Vx of (5). After evalu- 
ating this equation at. the sphere's surface r - R and 
•tondi•nensionalizing V and Vu by l/R.; D, w• and e_' 
by Dmax - maxIDI; v_ by RDmax; (I) and ß by R2Dmax; 
and tl by a reference viscosity r/o, we obtain (after some 
manipulation and use of (7)) 

- + v.x v.(2- 
- + v x (v. 5) (9) 

where L 2 - _•7•t; note that radial derivatives are elim- 
inated through (7), leading to the factors of L 2- 2. The 
last term on the left side of (9) can be reduced, and por- 
tions involving first order derivatives in r/can be com- 
bined with the second and third terms (see the Carte- 
sian analog of Bercovici [1993]). However, for compu- 
tational purposes, this term is treated somewhat differ- 
ently, as discussed below. Note that without horizontal 
variations in viscosity, (9) is a homogeneous equation in 
½; as the domain is naturally periodic, this would only 
yield a null solution in •. 

where 

- + + - m,,) (ll) 

is the second strain rate invariant, and the strain rate 
elements are 

O,I:, 1 02,I: , cot 0•-• q- sin2 0 Oq• 2 O0Oq• si-•0 (12) 

O• 10u• 02 (•I , ) 1L2 •o, - cotO•-•- + sin2 0 0• 2 + 000& si--•--•0 + • •' 
(t3) 

In obtaining (11), we have used the fact that the ra- 
dial and colatitudinal normal strain rates are •rr = -D 

and a00 = D- •, and by (7) the vertical shear rates 
•0 and • are zero. The power law index is n, and the 
constant ̂/simply determines a maximum viscosity (i.e., 
precludes singularities in the viscosity field) for each n. 

, /• •) The maxilnum viscosity is thus 7•( l - Since the 
maxinmm strain rate is O(l), then max(•. •) m 2 and 
thus the minirotan viscosity is always approximately 
(v + 2) «(•/•-•) 

When n > 0, (10) describes the basic power law rheol- 
ogy; dilatancy occurs for 0 < n < 1, Newtonian flow for 
n - 1 and pseudo-plasticity for n > 1. For n < 0, self- 
lubricating theologies occur because for •. > v/-n7, the 
flow resistance 2r/• (actually, the square root of the sec- 
ond deviatoric stress invariant) decreases with increas- 
ing strain rate (Figure 1). We call the self-lubricating 
theology with n = -1 the Whitehead-Gans (WG) the- 
ology as it was proposed by Whitehead aud Gans [1974] 
to be a continuum model of stick-slip behavior. 

Figure I shows stress and viscosity versus strain rate 
for the WG and several power law rheologies. In this 
study we consider power law rheologies up to n = 21 to 
demonstrate asymptotic behavior. The viscosity plot in 
Figure 1 shows the WG and the n = 21 cases with 7 ad- 
justed such that they have identical maximum viscosi- 
ties and similar minimum viscosities. Although these 
two cases have comparable viscosity contrasts, the dis- 
similarity between their viscosity curves plays a crucial 
role in the problem of [)late generation. 
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Figure 1. Constitutive relations for various rheologies. (top) Stress a - 2• versus strain rate 
• for power law (PL) and Whitehead-Gans stick-slip (WG) rheologies; stress for the power law 
(PL) cases are multiplied by 20. (bottom) Viscosity • versus • for the range of strain rates over 
whict• most of the viscosity variation occurs in the PL cases. 

Solution Method 

To solve (9), we first separate viscosity into constant 
and variable terms, i.e., 

(14) 

where r/max is the maximum viscosity. This separation 
scheme has been shown to facilitate nmnerical stability 
[Christensen and Harder, 1991]. An approximate solu- 
tion to (9) is obtained with a spectral transform tech- 
nique similar to that of Glatzmaicr [1984]. D, 
q•, and r/' are represented by spherical harmonic series; 

(D, w,., •, •, r/') - 
• +l 

/=0 m=-l 

(•5) 

where Yt"' is a normalized spherical harmonic function 
of degree l and order m and D?,w?, 4>}", •? and •/•" 
are the spherical harmonic transforms of D, wr,rI', • 
and rf. By definition of a spherical harmonic, LuY• • = 
/(/+1)• "•. The toroidal equation (9)can thus be trans- 
formed to 

Vx qq+ - - 
1 

+ v,,/x v,[(2 - v,,/. %,[(2- 

+ 27. V x (V,'. •) }15 •*d(cos O)d& (16) 
from which each •" can be solved algebraically. The 
rigtit side of (16) is evaluated by fast Fourier transforms 
and Gaussian quadrature [Glatzmaicv, 1984]. Equation 
(16) could also be solved with a purely spectral-Galerkin 
approach using Wigner-3j or Clebsch-Gordan symbols 
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[see Ribc, 1992]; however, there is no apparent com- 
putational advantage to this technique especially since 
viscosity itself is a nonlinear (usually irrational) func- 
tion of the flow field and thus the strain rate elements 

and viscosity must be calculated in the physical (0, •5) 
domain. 

The calculation of the nonlinear terms on the rigtit 
side of (16) deserves sotne discussion. The spectral rep- 
resentation is used to facilitate evaluation of derivatives; 
e.g., L• = y]•,• 1(1 + 1)•}n• m. Derivatives in q5 are 
straightforward (e.g., 0q'/0•b = Y•.t,• imrlJ'•}] '•) and For 
derivatives in 0 we use the recursion relation [see Wash- 
ington and Parkinson, 1986] 

sin 0 = l•+•Y•.q_*• -(1 + 1)•'•Yz"__• (17) O0 

where 

•l 2 _ m 2 ½}• - 4• (18) 
The fourth term of the integrand on the right side of 
(16) requires a slightly more elaborate treatment [Glatz- 
maier, 1984]. VVe express this term as 

1 0 (sin 20g) Of 2f-. V x (Vr/. •)- sin 0 O0 O•b 
wilere 

(19) 

(s,f) sin 0 Oq' D - 

1 Oq'(•½,O, •o4,)]. (20) + sin 0 065 

Given the recursion relation (17), then 

•' V X (Vr]''•)}5 m*d(COsO)d(• -- 

(1 + l)½•'g•_t - le}_•igz'•l - imf[ n (2•) 

where g• and f/• are the spherical harmonic transforms 
of f and g. 

Equation (16) is solved iteratively until • achieves 
reasonable convergence. The convergence error is 

Y]t,• I•1 •(j) - •}•(J-1)12 

where j implies the iteration number. Convergence is 
assurned when e reaches a nmnber which is << 1. For 

cases with relatively low viscosity contrasts between 
weak and strong fl•fid, convergence is readily attained 
with e < 10 -v. However, for cases with large viscosity 
contrasts (of order 1000), convergence is •nore difficult 
to achieve and the minimum e is as much as O(10-s). 
Thus the high viscosity contrast cases must be inter- 
preted with some caution. The minimum value of ½ will 
be denoted in the captions to relevant figures. 

Net Lithospheric Rotation 

It is irnportant to note that the solutions to (16) for 
the spherically symmetric toroidal mode (1 - 0) and 
the net rotation modes (1 - 1) are indeterminate. The 
spherically sy•nmetric mode is indeed meaningless. The 
net rotation modes clearly cannot appear in terms pro- 
portional to La-2 (or l(l+ 1)-2) •nd cannot contribute 
to any of the strain rate elements, and hence have no 
eftfeet on viscosity (as expected). Thus net rotation 
cannot be obtained with this model, suggesting that 
horizontal normal stresses in the lithosphere, such as 
ridge-push or slab-pull (which the source-sink formula- 
tion essentially models, kinematically), cannot generate 
net lithospheric motion. This supports the hypothesis 
that net rotation comes from underlying mantle trac- 
tions [O'Connell et al., 1991; Ricard et al., 1991]. 

Regardless of physical implications for the lack of net 
rotation in the model, we are still forced to assume a 
no-net-rotation frame of reference. Indeed, the rate of 
net rotation in Earth's lithosphere is reference frame 
dependcut; hencc its relevance is unclear. It has been 
suggested that the no-net-rotation flame is a viable ref- 
erence frame [Minster et al., 1974; Lithgow-Bertelloni 
et al., 1993], though it does tend to artificially remove 
•nuch of the spin vorticity extant in large plates (espe- 
cially the Pacific)[Be',•ovici and Wessel, 1994]. Here 
we adopt the no-net-rotation fi'ame out of necessity; we 
can only state that it is a physically plausible frame but 
that suggestions about the importance of net rotation 
are by no means implied. 

Results 

In this section we examine model results (arising 
from the solution of the toroidal equation (9)) for var- 
ious source-sink fields and theologies. In each case the 
source-sink field is D- Vn. •, where •(0, •) is the ve- 
locity field of a plate motion model. We examine two 
plate models' one for an idealized rectangular plate, 
the other for Earth's present-day plates. In each case 
the radial vorticity of the plate model O• - •. V x • 
is known. Our qualitative diagnostics are (1) the fluid 
velocity field (co•npa.red to the plate velocity field), (2) 
the fluid vorticity field w• - L2• (compared to the 
plate vorticity &•), and (3) the fluid viscosity field •. 
Our quantitative diagnostics are the toroidal-poloidal 
kinetic energy ratio 

KEr/KEp - l(1 + 1)l?l = (23) 
(where kinetic energy is essentially used here as a mean- 
square velocity) and vorticity deviation (or mean-square 
misfit) 

IWI = ' (24) 
The kinetic energy ratio KE•/KEp measures energy 
partitioning between toroidal and poloidal flow fields 
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(KET/KE•, = 1 indicates equipartitioning). The vor- 
ticity deviation contains both a comparison of the net 
power in the vorticity fields wr and &r, as well as the 
spatial correlation between each field. The success of 

the fluid model lies in its ability to reproduce the plate 
model's kinetic energy ratio 

i 2 

(25) 

and to generate a srnall f• (e.g:, f• - 0 implies perfect 
reproduction of the original plate model). In all cases, 
contpa.risons to the plate model velocity and vorticity 
fields are in a no-net-rotation reference frame. 

All the numerical solutions presented here are calcu- 
lated with the spherical-harmonic series truncated a.t 
/max - 170; the physical grid (on which nonlinear terms 
are calculated and transformed) correspondingly has 
512 longitudinal by 256 colatitudinal grid points. (The 
relation between /max and the number of grid points 
is prescribed to reduce aliasing effects; see Glatzmaiev 
[1984].) The adequacy of the numerical resolution is 
tested by examining I<ET/KE_p and f• as/max increases 
(for 85 _< /max _< 25.5) for the most non-Newtonian so- 
lutions (in particular, the WG and n- 21 power law 
theologies) and both plate models; these quantities are 
sufficiently independent of truncation at /m•x -- 170 to 
insure adequate numerical resolution. Power spectra 
for the numerical solutions are also examined and a, re 

found to fall off between 7 and 8 orders of magnitude, 
also indicating that the solutions are well resolved (see 
below). 

Idealized Pla•e Motions 

The model presented in this paper employs contin- 
uum theory and hence requires a contimmus (or more 
specifically an analytically differentiable) source-sink 
field D. As in the work by Bercovici [1993] and Bercovici 
and Wesscl [1994], we represent plate geometries with 
analytically continuous shape [unctions. The velocity 
field of a single moving plate is 

x s(o, 

where W is the angular velocity vector of the plate 
about its Euler pole and _R is the position vector of a 
point on the plate. The function S is the sha. pe function 
of the plate; it is I inside the plate, 0 far outside the 
plate, and transitions smoothly from I to 0 at the plate 
margins. In this subsection we simply use the "rectan- 
gular" plate geometry of Bercovici and Wessel [1994] 
in which W - Wœ (where • points from the sphere's 
center to the north geographic pole), __R- 3, and 

5) (27) COS/• • 

where 

tanh ( x-xø+b a )-tanh(•-•ø-6) d 

s(x, Xo, b, d) - 2 tanh(b/d) . (28) 
The parameter fi is the plate half width in the latitu- 
dinal direction; to make the plate "square" (i.e., have 
margins of equal arc length) the half width in the longi- 
tudinal direction is fi/cos/•. The parameter 5 is the 
plate margin half width. The angular speed of the 
plate W is chosen such that the maximum D is unity. 
q"his idealized plate model is constructed so that each 
plate edge is uniquely identified with either toroidal or 
poloidal •notion. 

Figure 2 shows velocity (•), horizontal divergence (D) 
(i.e., the source-sink function) and radial vorticity 
for this plate model with particular choices of fi and 5. 
The background flow opposite to the plate motion ap- 
pears because the velocity is shown in a no-net-rotation 
frame of reference. It is worth noting tha. t even though 
the plate is contrived to be "square", the maximum vor- 

velocity --- 

vorticit••-- 

Figure 2. Velocity, horizontal divergence, and radial 
vorticity for the "square" plate model with fi = 45 ø and 
5 = 2 ø. The maximum dimensionless velocity is 0.0514; 
minimum and maximum divergence are -t-1; minimum 
and maximum vorticity are 4-0.7425. Contour interval 
for both divergence and vorticity is 0.3 
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n=3 n=-I 

Figure 3. Velocity fields for various non-Newtonian flows driven by the source-sink field (i.e., the 
horizontal divergence) from Figure 2. Power law indices are indicated. All cases are for 7 = 10-a 
The ma.xirnum velocity for the n = 1, 3, 21, and -1 cases are 0.0415, 0.0430, 0.0441, and 0.0470, 
respectively. The minimum values of the convergence error e for the Newtontan and the power 
law cases (• > 1) sitown are less than 10-7; for the WG case (r, = --l) the min(e) = 6.5 x 10 -6. 

ticity is significantly less than the maximum divergence,, 
unlike that of a square plate in a Cartesian geometry 
[see Olson and Bcrcot, ici, 1991; Bercovici and W½ss½l, 
199l]. 

Velocity. The velocity fields (v) [or a few non- 
Newtontan flows are shown in Figure 3 ; these sam- 
ple tl•e full range of power-law indices, from Newtontan 
(n: 1), to mantle-like (n: 3) to extreme (, = 21). 
Also displayed is the flow field with the WG stick-slip 
theology ('n = -1). In the cases shown, 7 = 10 -a 
yielding a high-viscosity contrast for n = -l, but not 
for the power law cases. High viscosity contrast power 
law cases are discussed later. 

The most dramatic difference in velocity occurs be- 
tween the purely irrotational Newtonian flow field and 
the non-Ncwtonian fields; differences amongst the non- 
Newtonian flow fields are in fact fairly subtle. The max- 
imum velocity occurs for the WG (n = -1) case and is 
91% of the maximum '__5; yet this maximum is not so 
different from the other fluid dynamical cases (even the 
Newtonian one has a maximum velocity which is 81% 
of the maximu•n v_-). Stone or the subtle qualitative dif- 
Ferences between the WG and the power law cases are 
worth noting. The contrast between the background 
and plate flow across the convergent zones is slightly 
more noticeable in the WG case than elsewhere; how- 

ever, the contrast across the strike-slip margins appears 
fairly equal amongst, all cases. Most notable is that the 
source and sink maiutain dipolar flow (i.e., •nonopolar 
divergence or convergence at the corners of the plate) 
for the power law cases, even up to n = 21; however, 
the dipole effect is largely eliminated in the XVG case. 

Radial vorticity. Figure d shows radial vort. icil.y 
ov• for the same non-Newtonian cases as in Figure 3 
(w• = 0 for tim Newtontan case). There is little dif- 
ference in vorticity between the two power-law cases 
(n = 3 and n = 21) in either the shape of the field or 
amplitude (the n: 21 vorticity field has sliglttly larger 
extrema). The WG (n = -1) theology is quite distinct 
from tim power-law cases, producing narrower, more in- 
tense bands of vorticity (or strike-slip shear) reminiscent 
of the original plate's vorticity (see Figure 2). The ex- 
trema for all three cases occur at the corners of the plate 
(or ends of the source and sink), however the WG case 
maintains some additionally complex structure which 
acts to eliminate dipolaf flow at the corners. The max- 
imum c•,. for the WG rheology is 50% greater than that 
of the n = 21 case, though even the WG maximum 
vorticity is only 40% of the maximum •, 

Viscosity. Figure 5 displays the viscosity fields for 
the same non-Newtonian cases as in Figures 3 and 4. 
Shading is used to indicate the viscosity lows or the 
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Figure 4. Radial vorticity fields for the three non- 
Newtonian cases of Figure 3. All three cases are shown 
with the same contour interval of 0.038. The minimum 

and maximum vorticities for the n - 3, 21, and -1 
cases are 4-0.1 488, 4-0.1774, and 4-0.2687, respectively. 
Convergence errors are discussed in Figure 3. 

weak pseudo-margins. All rheologies show deep vis- 
cosity lows over the source and sink since the strain 
rates there are largely prescribed. However, the viscos- 
ity lows along the strike-slip margins vary considerably 
between the different rheologies. The power law cases 
have relatively shallow viscosity lows, and in the case 
of n = 3, they are not actually contiguous along the 
strike-slip margin. The viscosity low in the WG case is 
contiguous and abnost constant around the entire plate 
margin, for strike-slip as well as divergent-convergent 
zones. Finally, the WG rheology produces the most 
constant viscosity highs and lows and the sharpest vis- 
cosity gradients at the margins (even for the source and 
sink regions). 

High viscosity con•ras• power law cases. To 
determine whether the results so far are more indicative 

of prescribed viscosity contrast than choice of theology, 
we examine power law cases (n _• 1) with -/= 5 x l0 -•'. 
With this 7, the viscosity contrast at the highest power 
law index (n = 21) is comparable to that for the WG 

(n- -1) case with 7- 10 -a Figure 6 shows velocity, 
vorticity, and viscosity for the solutions with n - 5 and 
n.- 2 l. (The n - 5 case is shown as it yields relatively 
high and low values of KET/KE•, and •, respectively, 
as discussed in the next section.) Both cases appear less 
platelike than any of the previous calculations. The 
velocity fields are not significantly different from the 
other cases (though clearly velocity is not a very precise 
diagnostic). Their vorticity fields, however, are fairly 
diffuse, do not have any narrow extrema (even at the 
plate corners), and are more distributed throughout the 
background material (i.e., outside the original plate) 
than other cases. The viscosity fields show the largest 
deviation from tile previous cases; viscosity lows are 
very broad, while viscosity highs are relatively narrow 
and small, even in tile region of the original plate. This 
behavior is, in fact, to be expected. Figure 1 shows how, 
for n - 21, •/stays of the order of 10 down to very low 
strain rates for either 7- 10 -a or 7- 5 x l0 -•. The 
viscosity for '), - 5 x 10 -• only exceeds 100 for • < 0.01, 
while the entire range of • is between 0 and O(1). Thus, 
even though the case with 7 - 5 x 10 -• yields large 
viscosity contrasts, the high viscosities are only attained 
for a very narrow range of strain rates. Low viscosities 
therefore occur for the •najority of strain rates; thus 
most of the fluid (instead of just the narrow margins) is 
weak. (This phenomenon also relates to the "plateness" 
regimes mapped out by Weinstein and Olson [1992]). In 
contrast, the WG rheology obtains high viscosities for 
• < 0.5, and thus a sizeable portion of the fluid layer 
is strong. This exercise suggests that the differences 
between the power law and WG rheologies observed so 
far are not simply due to different viscosity contrasts. 

Kinetic energy partitioning and vor•ici•y de- 
viation. Figure 7a shows the toroidal-poloidal ki- 
•etic cnergy ratio I•ET/KE• (see (23)) and vorticity 
deviation • (see (24)) versus n,. For n _> 1, curves 
for both '7 - 10-a and '7 - 5 x 10 -7 are shown; the 
values for the WG case are also shown for compari- 
son. The kinetic energy ratio for the plate model is 
KET/KEp - 0.72. The maximum KET/KEp and 
minimum •] are achieved by the WG case. The power 
law rheology with '7 - 5 x 10 -7 and small n, how- 
ever, yields values of KET/KEp and • comparable 
to those of the WG case, even though it produces the 
least platelike flow and viscosity fields (see previous sub- 
section and Figure 6). For the power law rheologies, 
KET/KEp and • appear to approach asymptotic va.1- 
ues with increasing n. With 7- 5 x 10 -7, an increase 
in n actually yields a decrease in KET/KEp and an 
increase in •, i.e., an adverse effect on the generation 
of platelike toroidal flow. 

Figure 7b shows KET/KEp and • versus '7 for the 
WG (n - -1) rheology. The most platelike toroidal 
fields are clearly obtained for '7 < 10-2. This occurs 
because the maximum strain rate in the fluid must bc 

significantly greater than the cutoff strain rate of 
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Figure 5. Viscosity fields fi>r the three non-Newtonian cases of Figures 3 and 4. Shading 
is included to display viscosity lows and highs; minimum and maxinmm viscosities arc thus 
indicated on the gray-scale bars. The contour interval for the n - 3, 21, and -1 cases are 1.22, 
1.75, and 66.63, respectively. 

['or the flow to become platelike; otherwise, the margins 
are not su•.ciently weak. 

On the whole, the best quantitative reproduction of 
the original plate's toroidal field is attained by the WG 
case with sufficiently small 7, although the power law 
rhcology (with very small 7) yields comparable restilts 
at moderately small n. Neither case, however, is close 
to yielding ideal results, particularly with •'espect to 
f• (which ideally would be 0). More desirable values 
of KE•,/KEp and f• might be obtained with the WG 
rheology and 7 < 10-4, but this is presently beyond the 
capability of the numerical model(er). 
Present-Day Plate Tectonic Motions 

Classical plate tectonic theory describes motions at 
Earth's surface in ternas of independently moving rigid 
bodies [Morgan, 1968; Minster and Jordan, 1978; De- 
Mets et al., 1990]. This yields discontinuous changes 
in velocity at plate margins, and thus the surface di- 

vergcnce D and vorticity •5• of such a model are singu- 
larites. In the source-sink model, D must be at least 
second-order differentiable. Thus classical plate tec- 
tonic theory cannot be directly applied to our contin- 
uum model. In fact, Earth's tectonic plates are not 
discontinuous; i.e., intraplate deformation is significant 
and plate margins have some finite width. Some refine- 
mcnt of the plate tectonic model to accotint for mar- 
gin widths (even crudely) is therefore required for this 
study. We thus use the analytically continuous plate 
model of Bercovici and Wessel [1994]. In short, this 
plate modcl smooths the boundaries of the present- 
day plates and describes each plate's shape and margin 
thickness with analytically continuous functions analo- 
gous to (28). Plate 1 shows divergence D and vorticity 
5• fbr this plate model in the no-net-rotation reference 
frame (i.e., the 1 = 1 modes of the vorticity are re- 
•noved). As can be seen, the model captures the basic 
chara.cter of the present-day plates, though it tends to 
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Figure 6a. Velocity, vorticity and viscosity for the high viscosity contrast power law cases 
(i.e,. '7 - 5 x 10 -7) with n - 5. The maximum velocity is 0.0475. Minimum and maximum 
vorticities are :[:0.1330, vorticity contour interva.1 is 0.027, and convergence error e is 2 x 10 -6. 

reduce the curvature of plate boundaries. Velocity is 
not shown in this or subsequent figures; as the Philip- 
pine plate tends to ovewhelm the velocity scale, the ve- 
locity fields are not particularly enlightening. Both the 
divergence and vorticity fields are normalized by the 
maximum D (the value of which is shown). Notice the 
minimum (negative) vorticity (corresponding to right- 
lateral strike-slip) is slightly less in magnitude tha, n the 
vorticity maximum. This is primarily due to the fact 
that the eastern boundary of the Philippine plate is 
closer to the plate's Euler pole. 

The following non-Newtonian flow solutions are only 
for '7 = 10 -a. Higher viscosity contrast cases (i.e., with 
nmch smaller '7) were not obtainable with satisfactory 
convergence. 

Radial vorticity. Plate 2 displays w• for the same 
three rheologies of Figure 4. The largest vorticity is gen- 
erated by the n = 21 case. However, both power law 

rheologies underestimate the minimum vorticity, lead- 
ing to the blue shift in their vorticity fields (i.e., the 
zero, background vorticity is shifted off the center gray 
shade into the blue end of the color scale). The ratio of 
the magnitudes of the minimum and maximum w• for 
both n = 3 and n = 21 is approximately 1/2. In con- 
trast, the original plate has a. ratio of 0.89. The WG rhe- 
ology generates vorticity extrema with approximately 
only 50% of the original plate's magnitudes. However, 
it produces more n. cgative vorticity (right-lateral slip) 
than. the other rheologies and yields a more proportion.- 
ate distribution. The vorticity field has little if any blue 
shifting, and the ratio of the magnitudes of the mini- 
mum and nlaximum w• is 0.87, very close to that of 
the original plate model. However, the minimum and 
maximu•n vorticitics primarily occur along the Philip- 
pine plate. 'Vorticity at other plate boundaries seems 
to be underestimated by the power law rheologies and 
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Figure 6b. Stone as Figure 6a, except for n - 21. The maximum velocity is 0.0475. Minimum 
and maximun• vorticities are -t-0.0947, vorticity contour interval is 0.019, and e- 8.4 x 10 -6. 

over esti[nated by the WG rheology with respect to the 
vorticity at the PhilipI)ine plate. Nevertheless, the WG 
theology appears to succeed best at producing the more 
subtle strike-slip zones, such as at the South-West In- 
dian Ridge and the Romanche Fracture Zone (in the 
central Atlantic). 

Viscosity. Viscosity fields for the three cases of 
Plate 2 are shown in Plate 3 . The structure of the 

viscosity lows is largely controlled by the divergence 
field. The only large boundary that has significant vor- 
ticity without also having a great deal of divergence is 
the San Andreas fault (see Plate 1). Thus the defor- 
mation rate at most of the plate margins is essentially 
prescribed by the source-sink field. At the San Andreas 
fault, however, the existence of a weak margin is depen- 
dent almost exclusively on the generation of vorticity. 
The power law theologies appear to fail at creating a 
significant viscosity low at this boundary (the viscosity 
there is not even very low, being closer to the maximum 
viscosity than the •nininum). Thus the Pacific plate 

boundary is not closed with these rheologies. The WG 
rheology succeeds in generating a viscosity low at San 
Andreas, though the viscosity there is not the minimum 
possi.ble value; even so, the Pacific plate boundary ap- 
pears closed. The WG rheology is also more successtiff 
at generating weak margins at the South-West Indian 
Ridge and the Romanche Fracture Zone and thus more 
efficiently closes the Antarctic plate boundary and al- 
lows the Mid-Atlantic Ridge to be contiguous. None of 
the theologies are very successful at closing the South 
American, African, and Arabian plates, all primarily 
slow moviug plates. 

An important feature of the viscosity fields is the vis- 
cosity gradients near margins. The power law rheology 
allows weakening of material well outside of plate mar- 
gins; this is especially noticable on the oce;•n side of 
the Marianas trench and across South-East Asia and 

Indonesia. These weak zones do not correspond to any 
regions of intraplate deforma. tion and are thus not nec- 
essarily desirable features. In contrast, the WG rheol- 
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Figure 6b. Salne as Figure 6a, except for n - 21. The maximum velocity is 0.0475. Minimum 
and ntaximum vorticities are +0.0947, vorticity contour interval is 0.019, and e = 8.4 x 10 -6. 

over estilnated by the WG rheology with respect to the 
vorl.icity at the Philippine plate. Nevertheless, the WG 
rheology appears to succeed best at producing the more 
subtle strike-slip zones, such as at the South-West In- 
dian Ridge and the Romanche Fracture Zone (in the 
central Atlantic). 

Viscosity. Viscosity fields for the three cases of 
Plate 2 are shown in Plate 3 . The structure of the 

viscosity lows is largely controlled by the divergence 
field. The only large boundary that has significant vor- 
ticity without also having a great deal of divergence is 
the San Andreas fmdt (see Plate 1). Thus the defor- 
mation rate at most of the plate margins is essentially 
prescribed by the source-sink field. At the San Andreas 
fault, however, the existence of a weak margin is depen- 
dent almost exclusively on tile generation of vorticity. 
The power law rheologies appear to fail at creating a 
significant viscosity low at this boundary (the viscosity 
there is not even very low, being closer to the maximum 
viscosity than the •nininum). Thus the Pacific plate 

boundary is not closed with these rheologies. The WG 
rhcology succeeds in generating a viscosity low at San 
Andreas, though the viscosity there is not the miniinure 
possible value; even so, the Pacific plate boundary ap- 
pears closed. The WG rheology is also more successtiff 
at generating weak margins at the South-West Indian 
l•idge and the Romanche Fracture Zone and thus more 
efficiently closes the Antarctic plate boundary and al- 
lows the Mid-Atlantic Ridge to be contiguous. None of 
the rheologies are very successful at closing the South 
A•nerican, African, and Arabian plates, all primarily 
slow moviag plates. 

An important feature of the viscosity fields is the vis- 
cosity gradients near margins. The power law rheology 
allows weakening of material well outside of plate mar- 
gins; this is especially noticable on the ocean side of 
the Marianas trench and across South-East Asia and 

Indonesia. These weak zones do not correspond to any 
regions of intraplate deformation and are thus not nec- 
essarily desirable features. In contrast, the WG rheol- 
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normalized by 
Din. x = 247.68 Gyr-1 

Plate 1. ttorizontal divergence D and radial vorticity &r for the analytically continuous plate 
model of Bcrcovici and W½sscl [1994]. The plate inargins arc specified to have a uniform 400 
km half width. This half width gives the best truncation error in the spherical harmonic repre- 
sentation of the platc's divergence and vorticity [Bcrcovici and W½ss½l, 1994]. The color scale is 
stretched to enhance structure about the extrema. 

power law (at large n) and WG cases, though the value 
associate with the WG rhcology is slightly smaller. As 
implied by the idealized ]nodel and by Bcrcovici [1993], 
all power law cases appear to reach an asymptotic limit 
in how well they can produce tectonic plates. 

Kinetic energy power spectra. The spherical 
harmonic power spectra of the plate tectonic toroidal 
and poloida.1 kinetic energies have been well studied 
[e.g., IIagcr and O'Conn½ll, 1978, 1979, 1981; O'Conncll 
½t al., 1991; Lithgow-Bcrtclloni ½t al., 1993] and are 
known to have distinct features at low spherical har- 
monic degrees. The power spectra for the plate model 

(which, although simplified, has very nearly the salne 
power spectra as the discontinuous plate model; see 
Bcrcovici and Wess½l [1994]) and the non-Newtonian 
flow models are shown in Figure 9. For the flow mod- 
els, the toroidal energy is largest for the WG-theology 
at most l, followed sequentially by the n = 21 and n = 3 
cases; all three non-Newtonian solutions, however, have 
less toroidal energy than the plate model. The spectra 
for tile three non-Newtonian cases mirror the plates' 
toroidal energy spectrum reasonably well (to 1 = 20), 
with solne exceptions. The power law theologies do not 
have a local maximum at I = 2, nor a local minimum at 



2026 BERCOVICI: GENERATION OF PLATE TECTONICS FROM MANTLE FLOW 

0.450 

0.195 

0.110 

0.025 

-0.230 

0.670 

0.295 

0.170 

0.045 

-0.330 

0.450 

0.135 

- :• 0.030 

-0.075 

-0.390 

Plate 2. Radial vorticity wr for three non-Newtonian flows driven by the divergence (i.e., source- 
sink) field D from Plate 1. For all cases, 3' - 10-3. The convergence error for the power law 
cases is ½ _< 10 -?, while for the WG (n - -1) case, ½ - 2.6 x 10 -5. The color scale is stretched 
to enhance structure about the extrema. 

I = 4 (which is one of the more prominent features of 
the plate model's spectrum). While the WG theology 
does produce these features, the minimum at I = 4 is 
more subtle than that of the place model. 

Conclusions 

"Plateness" Versus Toroidal Flow 

In their study of two-dimensional non-Newtonian man- 
tle convection, H. einstein and Olson [1992] introduced 

the quantity "plateness". Plateness measures the shape, 
of a plate's velocity distribution: if it has steplike tran- 
sitions in velocity, then its plateness is unity, while 
a smooth sinusoidal transition leads to null plateness. 
An alternative but equally viable "plateness" criterion 
would measure the sharpness of transitions in viscosity 
or strength. Clearly, plateness is a desirable aspect of 
a plate tectonic type flow. Itowever, the results of this 
study indicate that plateness is possibly independent 
of the magnitude of toroidal motion, another necessary 
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Plate 3. Viscosity fields for the same non-Newtonian solutions of Plates 2. Color scale is 
unstretchcd. 

feature of platelike •notion. In particula, r, the high vis- 
cosity contrast power law cases (with 7- 5 x 10 -7' see 
Figure 6) display particularly little pla, teness, especially 
with regard to their viscosity fields. In contrast, the WG 
and low viscosity contrast ('7 - 10-'3) power law the- 
ologies generate quite high plateness. The 7 - 5 x 10 -7 
cases, however, yield values of KET/KE_p and • (par- 
ticularly at smaller •) which are comparable to those 
of the WG case and significantly more platelike than 
those of the •7 - 10-"3 power law cases. Thus, although 
"pl•[teness" and toroida.1 motion with significant magni-- 
rude are desirable goals for a model of plate generation, 

they may have little to do with one another and prob- 
ably must be attained independently. Rather than be- 
ing a fi•rther obfuscation of the plate-mantle coupling 
problem, this point in fact suggests that "plateness" 
and the magnitude of toroidal motion are two indepen- 
dent constraints which make the problem of finding a 
pla. te-•nantle rheology more well-deter•nined. 

Self-Lubrication Versus Power Law Rheologies 

Bervovici [1993] suggested that power law theologies 
are not sufficient to allow plate tectonics to arise from 
tnantlc flow and that self-lubricating rheologies, such as 
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Figure 8. Toroidal-poloidal kinetic energy ratio 
K ET/KEp and vorticity deviation [q versus power-law 
index n for power-law cases (using the source-sink field 
of Plate 1). The values of KET/KEp for the WG case 
and K ET/KEp [br the plate n•odel are shmvn for coin- 
parison. As with PlaCes 2 and 3, 7 - 10-a for all flow 
solulions shown. See Plate 2 for discussion of conver- 

gence error. 

the WG rheology, are necessary to adequately generate 
plates. In this paper we have shown that this suggestion 
applies in a spherical coordinate system and to realis- 
tic plate geometries. None of the theologies examined in 
fact reproduces the original plate models perfectly. Yet, 
the WG stick-slip theology generates the best combina- 
tion of platelike qualities, i.e., relatively large values of 
the kinetic energy partitioning ratio KET/KEp, small 
values of vorticity deviation fl and very platelike flow 
and viscosity fields. Power law rheologies with high 
viscosity contrasts yield reasonably platelike values of 
KET/KEp and [2 (a.t least comparable to those for the 
WG rheology), but the shape of their flow and viscos- 
ity fields are not platelike. For power law rheologies 
with low viscosity contrast the opposite is true (more 
or less). Itowever, even the WG theology req]fires suffi- 
ciently large viscosity constrasts (i.e., sinall 7) to yield 
platelike flows. More specifically, the self-lubricating 
lnechanism is most effective when strain rates signifi- 
cant, l)' exceed the "cutoff" strain rate of v/-n7 and are 
thus in the self-lubricating regi•ne (see Figure 1); for 
strain rates beneath this value the fluid merely acts as 
an extremely viscous medium. 

Future Avenues 

The self-lubricating theology employed in this paper 
is of course an ad hoc formulation designed to capture 
the basic nature of the stress-strain rate relation with 

minimum complication. Actual self-lubrication mech- 
anisms involve more complicated physics such as the 
feedback effect of shear heating in fluid with temperature- 
dependent viscosity [Schubert and Turcotte, 1972; Yuen 

o o - KE T (WG) 

'• (PL, n--•ly' •_••' 
.E •,- (PL, n=3) • 
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._o 

i i i i 

5 10 20 50 100 
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Figure 9. Spherical harmonic power spectra for toroidal and poloidal kinetic energies for the 
plate model (thick curves) and toroidal energy for the non-Ncwtonian solutions. All curves are 
normalized by the maximum power. The 1 - i toroidal energy is added to the non-Newtonian 
curves to prevent logarithmic singularities. The KEp curve shows l(1 + 1)lq)•'•12; the KET curve 
,•hows + ])1; the KEr curves all show l(1 + 1)[•}•'[ •. 
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and Schubert, 1979]; indeed the WG rheology can be 
derived from a simple model of this effect [Whitehead 
and Cans, 1974]. Another example may involve the 
lubricating effect of water as it is drawn (in various 
manners) into plate •nargins [e.g., Lenafdic and Kaula, 
1994]; this of course has been postulated to account for 
Earth's unique form of surface tectonics [Tozer, 1985; 
Kaula, 1990]. A natural avenue for work on plate gener- 
ation is therefore to incorporate more physically based 
self-lubricating mechanisms into a nonlinear rheology. 

The source-sink fornmlation employed in this study 
and by Bertoriel [1993] yields perhaps the simplest 
possible rnodel of toroidal flow generation (since the 
poloidal flow is entirely specified). The geometry of the 
sources and sinks, however, tends to overconstrain the 
plate formation problem; i.e., the plate geometries are 
at least 50% prescribed by the source-sink field; thus the 
formation of plates is not completely self-deterrnined by 
the fluid dynamics. A more self-consistent formulation 
(short of accounting for underlying mantle flow as by 
Ribe [1992] and Wei•stei• a•d Olso• [1992]) would be 
to specify only the sink field and allow the sources to 
be generated from the poloidal equation of motion (in 
particular the radial component of the momentum equa- 
tion or _r. V' x V' x (5)). This is essentially analogous to 
driving lithospheric motion only with subducting slabs, 
presumed to be the main source of gravitational poten- 
tial energy release in the mantle. 

If tractable, these rhealogical and kinematic exten- 
sions of the model (to essentially incorporate more self- 
consistent physics) will be the next step to finding how 
plate tectonics arises from mantle dynamics as a self- 
determined, self-organizing structure. 
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