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WAVE DYNAMICS IN MANTLE PLUME HEADS AND HOTSPOT SWELLS 
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Abstract. Laboratory experiments with thermal plumes 
in fluid with temperature-dependent viscosity suggest that 
wave-like instabilities can form in the horizontally flowing, 
disk-shaped head of the plume. The waves propagate ra- 
dially outward from the axis of the plume and appear to 
be most intense in a finite band near the perimeter of the 
plume head. A simple theoretical model shows that, interfa- 
cial waves in a highly viscous fluid may occur if the plume- 
head is comprised of temperature-dependent-viscosity fluid 
that cools as it flows between two boundaries. The model 
suggests that the waves arise as an osci!latory instability 
and that wave formation is most robust in the colder re- 

gions of the plume-head, as indicated by the experiments. 
The theory also predicts that the instability will only oc- 
cur above some critical plume-head flow velocity, and that 
mantle plume conditions are generally supercritical. 

Introduction 

Thermal plumes in the Earth's mantle display significant 
time-dependent behavior. The existence of discrete islands 
in hotspot tracks (e.g., the Emperor-Hawaiian island chain) 
is evidence of the apparently pulsating nature of mantle 
plurnes. Mechanisms to explain time-dependent behavior 
have primarily focussed on the dynamics of the plume con- 
duits. Pulsating behavior has been attributed to the tilting 
and breakup of a plume conduit under large scale mantle 
shear flow (Skilbeck and Whitehead, 1978) or to solitary 
wave propagation along the plume conduit (Scott et al., 
1986; Olson and Christensen, 1986). Here we present the 
results of laboratory experiments and theory which suggest 
that oscillatory behavior can also occur in mantle plume 
heads in the form of horizontally propagating waves. These 
waves possibly result from an oscillatory instability which 
can occur in the flow of cooling temperature-dependent- 
viscosity fluid. Wave propagation and oscillatory behavior 
in plume heads may influence hotspot temporal variability 
and the spatial structure of swells. In this note, we report 
the laboratory observation of the plume-head waves and 
present a simple theory to illustrate a possible mechanism 
for the waves. 

Laboratory Experiments 

The laboratory experiment involves heating "Karo" 
brand corn syrup to 70øC in an isothermal bath and feeding 
the hot syrup into a glass tank (50c•r• x 65cra base; 25cm 
height) of room temperature (25øC) corn syrup through 
a plastic pipe with an inner diameter of 1.5cm and an 
outer diameter of 2.0cm.. The depth of fluid in the tank 
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is zf = 17cm. The bath is placed approximately a meter 
above the tank. Hot syrup from the bath is fed at a con- 
stant rate into the pipe; a hydraulic head forms in the pipe 
which forces out the corn syrup. During the experiments 
the level of the head is, on average, z h = 110cra above the 
bottom (inside) of the tank. At the end of the pipe is a 
narrow nozzle through which the hot syrup flows upward to 
form a plume. The nozzle has a radius of a = 0.15crn and a 
length of zn = 3cra. The rising plume impinges on an over- 
lying room-temperature glass plate and spreads outwards 
into a disk-shaped plume head. The distance between the 
tip of the nozzle and the glass plate is 1.25cm. Once steady 
state is acheired, the plume head essentially maintains a 
constant thickness of Ho = 0.5cra. The level of fluid in 
the tank is maintained by syphoning off syrup from the 
bottom of the tank. Experimental observations are made 
using a shadowgraph technique. Either thermal anomalies 
or undulations in a fluid-fluid interface (which act as se- 
quential concave and convex lenses) appear as bright and 
dark zones on the shadowgraph. 

The dynamic viscosity of room temperature syrup is r/c = 
45/> (Helfrich and Whitehead, 1990), and an increase in 
temperature to 70ø• ' yields up to a factor of 100 decrease 
in viscosity based on typical viscosity laws for corn syrup 
(e.g., Weinstein and Christensen, 1991). The viscosity of 
fluid leaving the nozzle r/h may be estimated by comparing 
the observed volume flux through the pipe (•o • 1.Ycma/s 
with the theoretical volume flux (assuming Poiseuille flow 

through the nozzle) 7raipg(Zh-Zf+Zn) sr•hzn where p = 1.42g/cm a 
is the density of the corn syrup (Helfrich and Whitehead, 
1990). This comparison indica.tes that •lh is only a factor 
of 10 less than •c, possibly because of cooling in the pipe 
due to imperfect insulation. Vertically averaged horizontal 

i ? (20 - velocity in the plume head s r o • •yrrHo (where r •s the 
radial distance in the plume head from the plume axis), 
which yields Reynolds numbers/•e of p[/oHo/rlh • 0.1 near 
the plume axis (r = lcm), and p[roHo/rlc • 5 x 10 -• near 
the plume-head perimeter (r = 20c•r•). While/i•e near the 
axis of the plume head is not <<1, the wave phenomenon, as 
discussed below, is most pronounced near the perimeter of 
the plume head where/i•e is unequivocally <<1. Thermal 
diffusivity • of syrup is approximately 1.6 x 10-acm•/s 
(Weinstein and Christensen, 1991), thus the Peclet number 
Pe lies between 10 and 200. The occurrence of the waves in 

a low Re, high-to-moderate Pc flow lends credence to the 
applicability of these experiments to real mantle plumes. 

Once the pancake-shaped plume head is formed, out- 
wardly propagating, nearly concentric wave-like features 
can be observed (Figure 1). The features have wavelengths 
on the order of !cm and propagation speeds on the order 
of lcra/s near the plume axis and become imperceptibly 
slow at the perimeter of the plume head. The propaga- 
tion speed of the features appears to be proportional to 
the velocity of the radial flow, l.hus the features may be at 

1791 



1792 Bercovici' Waves in Mantle Plume Heads 

Fig. 1. Pla. n view shadowgraph of the plume head. Dark 
and light nearly concentric circles are the waves. The thick 
straight shadow is from the pipe feeding the plume; the 
width of the pipe (with attached metal spine) is 2.5cm, 
for scale. The small dark circular regions are areas in the 
plume head that have become cold a.nd started to sink (this 
is also due to slight loss of water from the syrup while being 
heated in the isothermal bath). The thick, dark, irregular 
lines on the left and right are due to syrup overflowing onto 
the overlying glass plate from imperfect, syphoning. 

least partially advected by the radial flow. The features 
also become strongly pronounced in a finite band near the 
perimeter of the plume head. We infer their appearance 
in the shadowgraph to be due to undulations in the thick- 
hess of the plume head, i.e., waves on the fluid-fluid inter- 
face bet•veen the plume head and underlying colder syrup. 
(Surface tension effects, e.g., capillary waves, are not a con- 
sideration because the two fluids are completely miscible.) 
It is doubtful that the nearly axisymmetric wave-like fea- 
tures are thermal anomalies from small-scale convection. 

Given the experimental paramel, ers, the thin plume head 
is probably not convectively unstable. Moreover, convec-. 
tion in the presence of horizontal flow tends to assume a 
pattern of rolls aligned in the direction of flow if the flow 
is relatively fast (e.g. Richter and Parsons, 1975), or a 
three-dimensional spoke pattern if l. he flow is slow and the 
upper surface is rigid (as in these experiments) (Griffiths 
and Campbell, 1991). 

The plume-head waves appear consistently in seven ex- 
perimental trials, though they are most pronounced when 
initiated by squeezing the conduit once or twice at. the start 
of the experiment. Once started, the waves persist for the 
duration of the experiment. The occurrence of the waves 
is typically accompanied by oscillations in the level of the 
hydraulic head in the pipe with frequencies on the order of 
1Hz and greater. Whether the wa.ves cause the pressure 
oscillations or vice-versa is not known, and it is possible 
that the fluid in the pipe could undergo oscillatory behav- 
ior (due to cooling in the pipe; see Whitehead and Helfrich, 
1991) which then excites waves in the plume head. How- 
ever, the waves in the plume head are typically faint near 
the axis of the plume and grow toward the perimel.er of 
the head; it is doubtful that oscillations in the pipe could 

cause such behavior. A dynanfic mechanism is necessary 
to allow/,he waves to propagate undamped across a viscous 
plume head, let alone experience growth. 

Theory 

Our working hypothesis is that the observed waves are 
intrinsic to thermal plumes in fluid with temperature- 
dependent viscosity. Isoviscous theory can predict no more 
than rapidly decaying waves, and experiments with isother- 
mal (i.e., chemical) plumes have not reported similar wave- 
like features in the plume head (e.g., Griffiths and Camp- 
bell, 1991). Alternatively, Whitehead and Helfrich [1991] 
demonstrated that the flow of a cooling, temperature- 
dependent-viscosity fluid can undergo oscillations and fin- 
gering. However, their theoretical model was most appli- 
cable to moderate and low Reynolds number flows under 
quasi-stat. ic thermal equilibrium. This is not completely 
appropriate for viscous plumes. Here, we present a simple 
theory to illustrate how a cooling temperature-dependent- 
viscosity fluid flowing between two parallel boundaries, in 
which one boundary is deformable, can experience an oscil- 
latory wave-like instability similar to the observed plume- 
head waves. For simplicity, we employ a model that differs 
slightly from the experiment to facilitate a more tractable 
analysis. In the theoretical model, fluid flowing between 
the boundaries is heated and cooled uniformly (at the 
boundaries and/or internally) in the horizontal direction 
such that the steady state temperature is constant in this 
direction. In contrast, heat in the experiment is supplied 
from the source of fluid and advected toward the perime- 
ter of the plume head. The theory and experiment thus 
differ in the mode by which heat is supplied. The model, 
however, serves to illustrate the essential physics. 

Although the plume head is nearly an axisymmetric 
disk, for simplicity we model it as an infinitely long two- 
dimensional Cartesian channel of thickness H. The channel 

is bounded above by a no-slip, rigid boundary and below by 
a deformable boundary underlain by a denser, much more 
viscous fluid, such that the boundary is assumed no-slip 
also. (The lower boundary condition is a significant sim- 
plication as it requires the underlying fluid to have a much 
higher viscosity than the cold plume-head fluid.) Using a 
friction factor approach (Bird et al., 1960), the vertically 
averaged equation of motion for incompressible Stokes flo•v 
in the x direction (i.e., parallel to the boundaries of the 
&annel) is 

12,0)3 = o? 
H •- r2x 

where 0 is the vertical average of velocity in the x direc- 
tion, and the nonhydrostatic pressure P is assumed inde- 
pendent of z. The temperature-dependent viscosity r/is, 
for simplicity, prescribed by 

vhv (2) r/h + r/• ' 

• is the vertically averaged dimensionless temperature 
where 0 < • < 1. r/h and r/c a.re the minimum and max- 
imum viscosities, respectively, and r/t = r/c- r/h. This in- 
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verse dependence of viscosity on temperature roughly ap- 
proximates the rheology of highly viscous materials (i.e., 
viscosity is more sensitive to thermal fluctuations at colder 
temperatures). By conservation of mass, 

OH 
Ot + oz - o . (3) 

We also employ a one-dimensional advection-diffusion 
equation for ©' 

00 00 - 

o-F + oW = (4) 
where diffusion is represented by a heat transfer coefficient 
for diffusion accross the channel (geometrical factors being 
absorbed into the thermal diffusivity n; see also White- 
head and Helfrich, 1991) and e represents internal heat- 
ing or cooling. Dependent variables are linearized around 
steady state channel flow such that •r - •ro+•, • = •o+•, 
H = Ho+h and P = Po(x)+Apgh (where Ap is the density 
contrast between fluid in the channel and the underlying 
fluid, and g is gravitational acceleration). Po is a pressure 
whose horizontal gradient drives fluid with average tern- 

_ 

perature 13o through a uniform channel of width Ho at a 
steady velocity (•o = H•vo alpo --•2r•hr•C-•- , where r/o = r/h + r/•o. 
Lower case variables represent infinitesi:nal perturbations. 
The contribution of normal viscous stresses to P is ne- 

glected since these stresses scale as (Ho/R) n (n > 2) 
where R, the horizontal length scale of the plume head, 
is •>Ho. Finally, we nondimensionalize t by Ho•/n, gro 
and fi by nR/Ho •, h by Ho, and x by R, where we choose 
R = V/ApgHo•/(12?hn). With linearization and nondi- 
mensionalization, solving for • via (1) and (2), and given 
that •o is constant in the theory and satisfies steady-state 
diffusion, equations (3) and (4) become 

+ + 20oh = 0 . (6) 
Because of the unspecified heat source/sink e, 0o can as- 
sume a•y value between 0 and 1, and we henceforth treat it 
•s a free parameter. Combining (5) and (6) and assuming 
that h and • ..,e ikx+ert we obtain the dispersion relation 

or2+ (•k• + 1 + i4k•ro) a-(3[ro•- •)k •' 
+ik•;o 3+ rloOø + =0 

(7) 

Two complex roots for cr arise from (7), only one of 
which (the "+"-root) yields instabilities (i.e., can have 
Re(a) > 0). Figure 2 (inset)shows Re(o) versus k for 
the positive-growth root with various values of •ro. Pertur- 
bations can have a positive growth rate which maximizes 
at a single wavenumber k implying that there is a pre- 
ferred wavelength for instability. Though not shown, the 
frequency Irn(cr) is nearly a linear function of k; in the re- 
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Fig. 2. Inset: dimensionless growth rate Re_(a) versus 
wavenumber k (for dimensionless temperature 13o = 10 -2 
and various dimensionless horizontal velocities •[o) for the 
theoretical model. Outer figure: maximum growth rate 
Re(a) and corresponding wavenumber kmax (i.e., the k 

_ 

at which Re(a) is maximum) versus temperature t3o for 
•ro = 0.1. The viscosity ratio is Vc/r•h = 1000 in both 
figures. 

gion of k where Re(a) is maximum, Ira(a) • -ikc where 
3•ro _< c _< 5[•o. The wave thus travels to the right (i.e., in 
the direction of the flow) with phase speed proportional to 
the flow speed, as implied by the experiments. 

We can use the fact that Re(a) is greater than 0 in a 
finite band of k (_i.e., between k = 0 and some k > 0) to 
obtain a critical Uo for the onset of instability. From (7), 
the boundaries of the band (i.e, the k at which Re(a) = O) 
are at k = 0 and 

k _._ 

! 

1+ r/o 13o - 1+• 
l+v/l+'/o 1-J- '1c U3 

(8) 

The band has finite width only if •ro > •c = 

] • (1 + •2•otOO} -1 ;for [•o _< (:•c, Re(g)is every- 
where •0 (see Figure 2). Thus •c is the critical velocity 
above which instability c• occur. The instability is en- 
tirely precluded when •o = 0 or V • = 0 (i.e., •c/•h = 1); 
thus, the instability cannot occur if no he•t is transferred 
(i.e., all the fluid is •t the coldest temperature) or if vis- 
cosity is constant. For a given •c/Vh, the minimum value 

of •c occurs when 0o =½m = [(•- 1)(,c/%.- })]-: 
Thus, we c•n expect that for a given supercritical Uo the 
fluid is most unstable when •o = •m, which for Vc/Vh >> 1 
is near the minimum temperature of •o = 0. 

Figure 2 also shows the m•ximum Re(a) •nd corre- 
sponding k versus •o for specific •o and •c/%. In this 
case, the instability is restricted to the temperature r•nge 
0 • •o • 0.08, •d the growth r•te and corresponding k 
peak close to •o =Om << 1. Thus, the fluid is most un- 
stable (or only unstable) at colder temperatures• •nd the 
least stable wave h• the shortest wavelength. Although 
the theory is not rigorously applicable to the experiment, 
this prediction •ppe•rs to be born out in that the labora- 
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tory waves are most pronounced in (or restricted to) the 
outer, colder regions of the plume head. (Either larger 
amplitude or smaller wavelength undulations will cause a 
more distinct appearance on the shadowgraph.) 

The critical velocity may be used to estimate whether 
such an instability can occur in a real mantle plume head. 
For tic/rib = 1000 (a typical value for a mantle plume) 
and temperatures in the range Om <_ (3o _< 1 (ass_urn- 
ing that instabilities are largely precluded for 
critical velocities are in the range 0.03 <_ •;c <_ 0.35. 
Redimensionalizing velocity using the mantle-type values 
Ap = 35kg/m a (i.e., a 1% average density anomaly for 
plume material), g = 10m/s 2, Ho = 100kin, r/h = 101SPa s 
and tc = 10-6m2/s, we find that the dimensional critical 
velocity is in the range 0.2cm/yr JOe < 1.9cm/yr, which 
is less than expected mantle plume velocities. Thus, mantle 
conditions are likely to be supercritical for this plume-wave 
instability, especially in the colder regions of the plume 
head. 

The mechanism for oscillation (or wave propagation, only 
part of which is due to advection) may be understood 
qualitatively by imagining an area of the channel thin- 
ning slightly under some pressure perturbation. Because 
of enhanced diffusion, that region becomes colder and thus 
forms a plug due to the consequent increase in viscos- 
ity. Pressure builds up and the channel thickens behind 
the plug, causing diffusion to diminish and thus the fluid 
there heats up. The pressure eventually builds enough to 
push through the cold plug, yet because of thermal inertia 
(i.e., temperature anomalies do not diffuse away instanta.- 
neously) fluid entering the narrowed region is hotter than 
both the cold plug fluid and the original steady state fluid. 
(In the model of Whitehead and Hellrich (1991), fluid over- 
shoots in a similar manner because of momentum inertia.) 
This leads to an excessive drop in flow resistance in the 
narrowed region, causing the high pressure region behind 
it to over-deflate, subsequently cooling and allowing the 
process to begin again. 

The mechanism for the instability can be understood by 
considering how perturbations obtain energy on which to 

-- 

grow. Taking the product of 0 with (6) and integrating over 
one full wavelength (or to homogeneous end boundaries) 
in z, leads to an equation for the growth of energy in the 
instability: 

• / • = -2 / •dx + 46o f nOdx (9) dt 

The first term on the right side is necessarily an energy 
sink while the second term can be a source or sink. Since 
the second term is proportional to the correlation between 
h and õ, perturbations can only grow if h and tJ are less 
than 90 ø out of phase. This occurs because, when a wave- 
like temperature perturbation exists, a volume of fluid ly- 
ing between relatively hot and cold regions will, for exam- 
ple, inflate if the cold region is downstream (since the cold 
region forms a plug). However, since flow resistance 
creases with an increase in either temperature or channel 
width, the inflating volume fills up faster on the side that 
is hotter and wider, causing h and • to be less than 90 ø 
out of phase. Thus there is a net positive (negative) h over 
the hotter (colder) regions, causing thermal diffusion to 
decrease (increase), and thus an added accumulation (loss) 

of heat in the hotter (colder) regions, thereby leading to 
instability. 

Summary and Conclusions 

Laboratory experiments with thermal plumes in fluids 
with temperature-dependent viscosity suggest that out- 
wardly propagating waves form in the horizontally spread- 
ing, disk-shaped head of the plurne. These plume-head 
waves are apparently self-sustaining, which a theoretical 
model suggests is because the waves form as an oscilla- 
tory instability (i.e., the waves can continuously grow from 
small disturbances). The theory also indicates that the 
instability can occur at actual mantle-plume conditions. 
Both the experiment and theory indicate that the waves 
are most pronounced in the colder regions of the plume 
head. Thus, if the waves (or wave-like structure) are to be 
observed in an actual hotspot swell, they might be most 
noticeable near the flanks of the swell. 
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