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ABSTRACT
Paleoproterozoic suture zones mark the formation of supercontinent Nuna and provide 

a record of North America’s assembly. Conspicuously young ages (ca. 1.715 Ga) associated 
with deformation in southeast Wyoming craton argue for a more protracted consolidation of 
Laurentia, long after peak metamorphism in the Trans-Hudson orogen. Using paleomagnetic 
data from the newly dated 1899 ± 5 Ma Sourdough mafic dike swarm (Wyoming craton), we 
compare the relative positions of Wyoming, Superior, and Slave cratons before, during, and 
after peak metamorphism in the Trans-Hudson orogen. With these constraints, we refine a 
collisional model for Laurentia that incorporates Wyoming craton after Superior and Slave 
cratons united, redefining the Paleoproterozoic sutures that bind southern Laurentia.

INTRODUCTION
Paleoproterozoic amalgamation of Lauren-

tia’s Archean cratons likely involved closure of 
expansive oceans (Hoffman, 1988) born from 
fragmentation of Neoarchean supercratonic land-
masses (Bleeker, 2003). One ancestral connec-
tion, between Superior and Wyoming cratons, 
is compatible with both stratigraphic (Roscoe 
and Card, 1993) and paleomagnetic (Kilian et 
al., 2015) records from both blocks, while their 
2.1–2.0 Ga mafic dike swarms (Bowers and 
Chamberlain, 2006; Cox et al., 2000; Mueller 
et al., 2005) document their rifting and breakup. 
This breakup initiated a brief period of indepen-
dent movement of Wyoming craton prior to its 
incorporation into Laurentia. Because the dates 
of sutures surrounding Wyoming craton sug-
gest multiple episodes of deformation, meta-
morphism, and arc collisions after development 
of the Trans-Hudson orogen (THO), especially 
along the northwestern and eastern margins, 
there is some question of when Wyoming craton 
joined Laurentia and which pieces were contigu-
ous with Wyoming craton prior to its docking 
(Fig. 1). Was Wyoming craton fused to the Medi-
cine Hat block (MHB) long before collision with 
Hearne craton (Boerner et al., 1998)? Was Wyo-
ming craton connected with both the MHB and 
Hearne craton before collision with Superior cra-
ton in the THO (Eglington et al., 2013)? Or was 
Wyoming craton on its own (or with the MHB) 
during development of the THO, subsequently 

becoming a late addition to Laurentia (Chamber-
lain et al., 2002; Dahl et al., 1999)?

We present a precisely dated primary paleo-
magnetic pole for the ca. 1.899 Ga Sourdough 
dikes, which represent a newly recognized 
swarm and a significant addition to the mafic 
magmatic record of Wyoming craton. By com-
paring this new paleomagnetic datum with 
coeval data from Superior and Slave cratons, we 

investigate their positions at a crucial time inter-
val, providing initial conditions for the subse-
quent series of collisions that stitched Laurentia 
together. Coupled to existing geochronologic 
constraints on suturing along Wyoming’s mar-
gins, we present a novel kinematic model for the 
late stages of assembly of Laurentia.

COLLISIONAL CONSTRAINTS
The best exposures of Wyoming’s Paleopro-

terozoic suture zones are found along the south-
eastern and northern margins of the craton. In 
the south, the Medicine Bow orogeny and the 
Cheyenne belt are well defined by metamorphic 
and deformational pulses from 1.78 to 1.74 Ga 
(Chamberlain, 1998; Houston et al., 1989; Jones 
et al., 2010) and have been interpreted to doc-
ument accretion of the Yavapai arc terrane to 
Wyoming craton (Condie, 1992). The best age 
constraints for sutures along Wyoming’s eastern 
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Figure 1. Geologic map 
of Precambrian basement 
from central Laurentia with 
Archean cratons (green) 
and orogens labeled and 
colored according to rock 
age. Dark gray area rep-
resents 1.715 Ga suture 
discussed in this study. 
LSC—Little Sand Creek 
xenoliths (Barnhart et 
al., 2012; Bolhar et al., 
2007); SGH—Sweet Grass 
Hills xenoliths (Davis et 
al., 1995); LBM—Little 
Belt Mountains; BT—
Beartooth Mountains; 
BGH—Bighorn Mountains; 
LM—Laramie Mountains; 
aeromag.—aeromagen-
tic. The Mid-Continent 
Rift System (ca. 1.1 Ga) is 
stippled. Magnetic anoma-
lies between Superior, Wyoming, and Hearne cratons may represent small crustal fragments 
(e.g., Sask) of Archean to early Proterozoic crust that were sutured into Trans-Hudson orogen 
(THO) and Black Hills–Dakotan orogens. It is uncertain how far south THO extended and which 
fragments were connected before Wyoming craton arrived. Archean basement ages from drill 
cores in northeastern Wyoming and southeastern Montana (USA) likely derive from fragments 
within Dakotan orogen (Peterman, 1981). Boundaries of Great Falls tectonic zone are estimated 
from Ross (2002). Other margins modified after Foster et al. (2006) and Worthington et al. (2016).
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margin come from syn-deformational pegma-
tites in northwest-vergent thrusts of the Hartville 
uplift directly dated at 1714 ± 2 Ma (U-Pb zir-
con; Krugh, 1997) and late deformational fabrics 
superimposed on Cheyenne belt metamorphism 
in the eastern Laramie Mountains (Wyoming) at 
1722 ± 6 Ma (207Pb/206Pb titanite; Allard, 2003). 
The Black Hills region (South Dakota and 
Wyoming) experienced WSW-ENE shortening 
(1.770–1.740 Ga; Allard and Portis, 2013; Dahl 
et al., 1999), WNW-ESE compression (1.740–
1.715 Ga; Allard and Portis, 2013; Dahl et al., 
2005), and thrust-related shear heating that pro-
duced the Harney Peak granite (Dahl et al., 1999; 
Nabelek and Liu, 1999) at 1.715 Ga (Redden et 
al., 1990). This tectonic history contrasts greatly 
with the timing of peak metamorphic conditions 
(ca. 1.81 Ga) for various locations of the THO 
(Ansdell et al., 2005).

On the northern margin of Wyoming cra-
ton is the Great Falls tectonic zone (GFTZ), a 
broadly defined and poorly exposed orogenic 
belt that connects the MHB to Wyoming craton 
(Fig. 1; Boerner et al., 1998). The Little Belt 
Mountains (Montana) host magmatic and defor-
mational ages of ca. 1.87–1.86 Ga (Mueller et 
al., 2002), which are also prevalent in the Clear-
water block in northern Idaho (Vervoort et al., 
2016). Linear aeromagnetic anomalies within 
the GFTZ are truncated on their northeast end by 
north-south structures interpreted as part of the 
THO (Ross, 2002). Farther north, the prominent 
Vulcan aeromagnetic low (Fig. 1) is interpreted 
to be the suture between the MHB and Hearne 
craton (Eaton et al., 1999), and although there 
are no direct dates for this event, lower crustal 
xenoliths from the MHB are as young as 1.745 
Ga (Davis et al., 1995).

Along the northwest margin of Wyoming 
craton (southwest portion of the GFTZ), the 
Highland Mountains (Montana) yield K-Ar and 
40Ar/39Ar cooling ages from 1.8 to 1.7 Ga (Har-
lan et al., 1996; Mueller et al., 2005; Roberts 
et al., 2002), and the Tobacco Root Mountains 
(Montana) contain cooling ages from 1.78 to 
1.70 Ga (Brady et al., 2004), defining the Big 
Sky orogeny (Harms et al., 2004; Condit et al., 
2015). An abrupt end to the orogeny is docu-
mented by rapid cooling of the region; horn-
blende, biotite, monazite, and zircon all yield 
similar isotopic dates from 1.75 to 1.71 Ga 
(Brady et al., 2004; Cheney et al., 2004a, 2004b). 
Collisions in northern and eastern Wyoming thus 
occurred simultaneously, correlating the Big Sky 
event with tectonism in the east and in the MHB 
(Davis et al., 1995).

SOURDOUGH DIKES
Far from these Paleoproterozoic tectonic 

events on the margins of Wyoming craton, 
Laramide basement uplifts in the interior of the 
craton expose regions characterized by Protero-
zoic orogenic quiescence, interrupted only by 

emplacement of numerous mafic dike swarms. 
Most of these are older than 2.0 Ga (Kilian et 
al., 2015), but herein we document one younger 
swarm. We name this the Sourdough swarm and 
present its paleomagnetic, trace element geo-
chemistry, and U-Pb age results.

Field and laboratory methods are described in 
the GSA Data Repository1. The Sourdough dikes 
crop out in the central Bighorn and Beartooth 
uplifts where Laramide tilting is negligible. Most 
dikes have subophitic texture, dominated by pla-
gioclase, pyroxene, and magnetite (with minor 
sericite), and typically have northwest-southeast 
trends (335°–290°) and widths ranging from 
0.3 m to ~30 m. The vast majority of samples 
contain a single-component remanence held by 
(titano)magnetite. Principal component analysis 
(Fig. 2A) yielded notably steep northeast-down 
(or southwest-up) directions that are confirmed 
to record primary thermal remanence from the 
time of initial cooling by two positive baked-
contact tests into older mafic dikes (see the Data 
Repository). Geochemical analysis of 15 Sour-
dough dikes yielded similar concentrations of 

1 GSA Data Repository item 2016283, supplemen-
tary text, nine figures, five tables, and references, is 
available online at www.geosociety.org​/pubs​/ft2016​
.htm, or on request from editing@geosociety.org.

trace elements (Fig. 2). The slopes of the rare 
earth element (REE) patterns for all samples (Fig. 
2C and 2D) are consistent, with only minor varia-
tion among mostly the light REEs. Collectively, 
the data suggest that all dikes represent the same 
magmatic event, with minor geochemical dif-
ferences being the product of interactions with 
different crustal rocks.

All analyses of baddeleyite (U-Pb isotope 
dilution thermal ionization mass spectrometry 
[ID-TIMS]) from dike BH10 are within 1.7% of 
the concordia curve (N = 3); one analysis is con-
cordant (Fig. 2B; see also the Data Repository). 
A linear regression of the data yields an upper 
intercept date of 1896 ± 3 Ma, with a weighted-
mean 207Pb/206Pb date of 1899 ± 5 Ma. As the 2s 
confidence intervals of each calculation method 
essentially overlap, we favor the more conserva-
tive weighted-mean 207Pb/206Pb date as the age 
estimate for BH10, 1899 ± 5 Ma. This age is 
applied to the primary magnetization of the Sour-
dough swarm; dike BH10 yielded typical paleo-
magnetic and geochemical results for the swarm.

WYOMING’S RUN
Incorporating the tectonic synthesis and new 

Sourdough swarm data presented above, we pro-
pose a novel hypothesis for the path of Wyo-
ming craton toward its ultimate location within 

0

90270

Sourdough Swarm
Mean

BH10
(1899±5 Ma)

BH10
BH49
BH50
BH96
BH98

BH99
BH106
BH61
BH62
BH63

BH90
BT42
BT22
BT23
BT43

Sa
m

pl
e 

/ P
rim

iti
ve

 M
an

tle

80

10

5
YbTmErHoDyTbGdEuSmNdPrCeLaNbTh

200

100

10

4 Lu
Yb

Tm
Er

Ho
Y

Dy
Tb

Gd
Ti

Eu
Hf

Zr
Sm

Nd
P

Sr
Pr

Pb
Ce

La
K

Ta
Nb

U
Th

Ba
Rb

Cs

BH10
BH96

BH61
BH90

BT42

0.335 

0.337 

0.339 

0.341 

0.343 

5.38 5.40 5.42 5.44 5.46 5.48

1885

1890

1895

Upper (Lower) Intercept at
1895.8 ±2.8 [±5.5] (-777 ±940) Ma

MSWD = 0.48
207Pb/206Pb Weighted Mean at

1899.1 ±4.7 Ma
MSWD = 2.7

data error ellipses are 2σ

1 

2 

3 

20
6 Pb

/23
8 U

207Pb/235U

BH10 (44.24970°N; 106.95775°W)
A

B

DC

Figure 2. Paleomagnetic, geochronologic, and geochemical results for Sourdough dike swarm, 
Wyoming craton. A: Equal-area plot showing paleomagnetic results for 16 different mafic dikes, 
in local coordinates. Filled (open) ellipses indicate lower (upper) hemisphere directions; only 
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trace element abundances for Sourdough dikes; C shows only immobile elements.
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the North American cratonic collage. Wyoming 
began its independent journey after 2.15 Ga 
(Fig. 3A), when it was still connected to the 
southern margin of Superior craton as permitted 
by a coherent swath of 2.2–2.1 Ga paleomag-
netic poles (Kilian et al., 2015). Assembly of 
Laurentia began with the collision of Slave and 
Rae cratons along the Thelon orogen at ca. 1.96 
Ga (Hoffman, 1988), followed by the oblique 
collision of Hearne with Rae at ca. 1.9 Ga (Ber-
man et al., 2007) at low paleolatitude (Mitchell 
et al., 2010) (Fig. 3B). Meanwhile, Superior 
occupied moderate paleolatitudes (Halls and 
Heaman, 2000) across the Manikewan Ocean. 
Our new paleomagnetic result from the Sour-
dough dikes also places Wyoming craton at 
mid-latitudes, and although numerous relative 
positions between Wyoming and Superior cra-
tons are possible at ca. 1.90 Ga on the basis 
of the Sourdough dike paleolatitude (Fig. 3B; 
see caption), our favored position (position A in 
Fig. 3B) places them ~60° apart in arc length. 
This location allows the simplest drift path, with 
the smallest axial-plate rotation as Wyoming 
approached proto-Laurentia after rifting away 
from southern Superior (Kilian et al., 2015).

During development of the THO at 1.86–1.83 
Ga, there were nearly simultaneous collisions in 
southern Superior (Penokean orogen) and north-
ern Wyoming (GFTZ; Mueller et al., 2002), but 
there are no compelling reasons to connect these 
tectonically; in our model, Wyoming and Supe-
rior cratons are still separated by a wide ocean 
(Fig. 3C), so the collisions coincidentally over-
lap in age. Metamorphic ages from the Big Sky 
orogen (southwest Montana) and Cheyenne belt 
(southern Wyoming) indicate deformation from 
1.78 to 1.72 Ga (Harms et al., 2004; Condit et 
al., 2015), which is largely absent in Superior 
craton and suggests their maintained separation 
at that time. Simultaneously, northwest Wyo-
ming craton documents metamorphism possibly 
related to accretion on its western margin, which 
may have initiated movement toward Superior 
craton (Fig. 3C). The final suturing of Wyoming 
and Superior cratons, in our model, took place 
at 1.715 Ga, after the Yavapai and Penokean 
orogenies and before additional arc accretion 
occurred (e.g., Mazatzal province) along the 
entire southern margin of proto-Laurentia (Fig. 
3D). The final assembly of Laurentia proposed 
herein is the precursor of supercontinent Nuna, 
which formed after 400 m.y. of successive cra-
tonic amalgamations.
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