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ABSTRACT. The supercontinent Rodinia is hypothesized to have been assembled
and positioned in tropical latitudes by the early Neoproterozoic Era. Paleomagnetic
data from limestones of Svalbard and basaltic dikes of South China have been
interpreted to record rapid changes in paleogeography driven by true polar wander
that may have rotated the supercontinent in association with the �800 Ma Bitter
Springs carbon isotope event. To further constrain early Neoproterozoic paleogeogra-
phy and to test proposed rapid rotations, we have developed sequence- and chemo-
stratigraphically constrained paleomagnetic data from the Bitter Springs Formation of
the Amadeus Basin of central Australia. A new paleomagnetic pole for the post–Bitter
Springs stage �770 Ma Johnny’s Creek Member (Bitter Springs Formation) provides a
positive test for a long-lived history of Australia and Laurentia in a single superconti-
nent as its similar position to late Mesoproterozoic north Australia poles reproduces
the closure of the Laurentian “Grenville Loop.” This new pole also provides support
for the hypothesis that there was significant rotation between north and south�west
Australia at the end of the Neoproterozoic as this rotation brings the south�west
Australia �755 Ma Mundine Well pole into much closer proximity to the north
Australia Johnny’s Creek pole. Syn–Bitter Springs stage carbonates of the Love’s Creek
Member of the formation contain a well-behaved remanence held by magnetite. The
direction of this remanent magnetization falls on the Cambrian portion of Australia’s
apparent polar wander path suggesting that the magnetite may have formed authigeni-
cally at that time. If primary, the Love’s Creek direction is consistent with the true polar
wander hypothesis for the Bitter Springs stage, is internally consistent with the relative
sea level changes inferred from the formation, and can constrain Australia to a
SouthWest North America East AnTarctica (SWEAT) fit. A remanence held by pyrrho-
tite in carbonates of the Bitter Springs Formation corresponds to the apparent polar
wander path of Australia at �350 Ma. This component can be used to constrain the
history of the Devonian-Carboniferous Alice Springs Orogeny as it demonstrates that
regional folding of basinal sediments occurred prior to �350 Ma, but that the latest
stages of tectonism in the hinterland drove fluids through the sediments that altered
redox conditions to favor pyrrhotite precipitation.
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introduction

The Rodinia supercontinent is the most salient boundary condition controlling
the evolution of the Earth system at the Mesoproterozoic to Neoproterozoic transition
(�1 Ga) and throughout the Neoproterozoic Era as Rodinia rifted apart. This rifting
then led to many of the spalled cratons reassembling as Gondwana (Hoffman, 1991).
Major questions remain about the intervening paleogeography: Was Rodinia coherent
for only the very beginning of the era, or was it intact into the Cryogenian? Was there
large-scale true polar wander associated with the �800 Ma Bitter Springs carbon
isotope stage as suggested by paleomagnetic data from limestones of Svalbard and
basaltic dikes of South China (Li and others, 2004b; Maloof and others, 2006)? How
did changing paleogeography influence the global carbon cycle, low-latitude glacia-
tion, and the evolution of animals?

Two primary geological observations first led to the reconstruction of a late
Mesoproterozoic to early Neoproterozoic supercontinent: (1) the presence of �1100
Ma (Grenville sensu lato) orogenic belts in Antarctica, Amazonia, Australia, Baltica,
Congo, India, Kalahari and Laurentia (Hoffman, 1991; Moores, 1991; Li and others,
2008) and (2) the fact that Laurentia is surrounded by rifted margins of Neoproterozoic-
Cambrian age (Bond and others, 1984; Hoffman, 1991). Since Laurentia is believed to
be the keystone continent in Rodinia, there has been much discussion of the relative
position between it and other constituents that are hypothesized to have been adjoined
to its margins. A particularly vigorous debate is concerned with the relative positions of
Laurentia and Australia/East Antarctica in the supercontinent.

Building on a connection postulated by Bell and Jefferson (1987), the first
reconstructions of Rodinia connected Grenville-aged orogenic belts such that East
Antarctica flanked southwestern North America (this model is called SWEAT; South-
West North America East AnTarctica; Hoffman, 1991; Moores, 1991; Dalziel, 1991). In
the original SWEAT model, Australia is located adjacent to northwestern Canada; a
relationship that is strengthened by the presence of rift basins of similar age, orienta-
tion and stratigraphy on both continents (the Mackenzie Mountain Fold Belt in
Northwest Canada and the Adelaide Rift Complex in South Australia; Rainbird and
others, 1996; Preiss, 2000). The subsequent alternative reconstruction of AUSWUS
(Australia South West United States) was proposed on the basis of pattern matching of
crustal 87Sr/86Sr isopleths, correlation of lineaments between Australia and Laurentia
and terrane matching between the distinctive Mojavia and Broken Hill provinces
(Brookfield, 1993; Karlstrom and others, 1999, 2001; Burrett and Berry, 2000).
Another variation on this theme of Australia as the conjugate margin to North America
was proposed by Wingate and others (2002) on the basis of a paleomagnetic pole for
the 1070 Ma Bangemall Basin Sills that was interpreted, in conjunction with poles from
the well-constrained North American “Keweenawan Track,” to be incompatible with
either SWEAT or AUSWUS. This reconstruction was termed AUSMEX (Australia-
Mexico) and aligned interpreted Grenville-aged metamorphism in Australia with
southernmost Laurentia. Other reconstructions have argued that other continents
were linked to the western margin of North America such as: Siberia (Kirschvink,
1992b; Sears and Price, 2000), Congo (Maloof and others, 2006), West Africa (Evans,
2009) and South China (Li and others, 2008). The model in which South China was a
conjugate margin of western Laurentia has been termed the “missing-link” model as
China fills a proposed gap between west Laurentia and Australia (Li and others, 1995,
2008).

Paleogeography sets the boundary conditions for many aspects of Earth system
evolution. The latitudinal distribution of the continents and their configuration has
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significant effects on the physics of Earth’s surface through its control on ocean/
atmosphere circulation and global albedo (Barron, 1981). Paleogeography also can
exert powerful controls on the carbon cycle through processes such as silicate
weathering and the land-area carbon cycle feedback during ice ages (Walker and
others, 1981; Marshall and others, 1988), and the enhancement of organic carbon
burial on tropical continental shelves (Schrag and others, 2002; Maloof and others,
2006). Rodinia’s location and the timing/style of its break-up have been hypothesized
to have been a dominant control on the large-scale variations in climate and biogeo-
chemical cycling during the Neoproterozoic Era (for example “snowball Earth” events;
fig. 1; Kirschvink, 1992a; Hoffman and others, 1998; Hoffman, 1999; Schrag and
others, 2002; Lewis and others, 2004; Donnadieu and others, 2004), that themselves
are hypothesized to have played a central role in the evolution of animals (Hoffman
and others, 1998; Narbonne and Gehling, 2003; Canfield and others, 2007). These
strong ties between changing continental positions and other aspects of Earth’s
evolving surface environment have been one of the prime motivators driving contin-
ued research that seeks to test and refine late Proterozoic paleogeographic models.

In order to evaluate hypotheses about the initial configuration and location of the
supercontinent and the timing of its breakup, it is essential to obtain more paleomag-
netic poles from across the Mesoproterozoic-Neoproterozoic transition at increasingly
higher spatial and temporal resolution. The continuity of continental connections that
is predicted by a supercontinent model sets up the testable hypothesis that paleomag-
netic poles from the member continents trace out similar apparent polar wander paths
(APWP). New paleomagnetic data sets from sedimentary lithologies can add to the
paleomagnetic data base and have the additional advantage that they present the
opportunity to directly pair records of paleolatitude and paleogeography to sedimen-
tary records of changing climate and biogeochemical cycling—without the uncertain-
ties that stem from spatial and temporal correlations. Furthermore, stratigraphic
context enables tests of hypotheses that are reliant on high-resolution time series
records of paleomagnetic directions such as rapid true polar wander.

Developing convincing records of primary paleomagnetic remanence in sedimen-
tary rocks may be complicated by the secondary growth of iron oxides and sulfides that
can partially or completely obscure the remanence direction held by primary ferromag-
netic grains. An additional complexity of inclination shallowing can arise in lithologies
where the magnetization is carried by a detrital remanent magnetization and where
there has been significant post-depositional compaction. As a result of these potential
complexities, it is essential to pair high-resolution study of ancient sedimentary
paleomagnetic remanence direction with both field tests and rock magnetic experi-
ments that determine the carriers of the remanence magnetization and constrain the
timing of remanence acquisition. In this contribution, such a multidisciplinary ap-
proach is employed for sediments from the early Neoproterozoic Bitter Springs
Formation of central Australia. Primary remanence directions from the Bitter Springs
Formation would provide important constraints on the positioning of northern
Australia in Rodinia and a direct test of the Maloof and others (2006) hypothesis that
there was large-scale rotation of continental landmasses as a result of true polar wander
associated with the �800 Ma Bitter Springs Stage carbon cycle event. Furthermore, the
interpretation that north and south�west Australia may have undergone late Neopro-
terozoic relative rotation (Li and Evans, 2011) underscores the need to develop more
Neoproterozoic paleomagnetic poles from north Australia to improve the currently
sparse database (fig. 1).

The Neoproterozoic Bitter Springs Stage and the True Polar Wander Hypothesis
Carbonates of Neoproterozoic age (1000 to 542 Ma) typically are enriched in 13C

with �13C values of �5 per mil (Halverson and others, 2005). This high steady-state
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base level is punctuated by down-turns in �13C that usually are associated with
large-scale glacial events. However, prior to the first Neoproterozoic glacial period, and
at a time (�800 Ma) when there is no preserved evidence for ice sheets anywhere on
the globe, there is a salient interval of low �13C that has been identified in the Little Dal
Group (Halverson, 2006; Mackenzie Mountains, Canada), the Akademikerbreen
Group (Halverson and others, 2007; Svalbard), the Eleonore Bay Supergroup (Halver-
son and others, unpublished; Greenland), the 15 Mile Group (Macdonald and others,
2010; Ogilvie mountains, Canada), the Tambien Group (Alene and others, 2006;
Ethiopia) and the Bitter Springs Formation (Hill and others, 2000; Swanson-Hysell and
others, 2010; central Australia). During this interval, known as the Bitter Springs Stage,
the �13C of carbonate rocks shift from a 250 Myr average of �5 per mil to a �10 Myr
excursion of �4 per mil to �1.5 per mil. Due to its global extent, prolonged duration
and the fact that the shift also is recorded in the carbon isotopes of contemporaneous
organic matter, the stage likely reflects a steady-state change in the fraction of carbon
that was being buried as 13C depleted organic matter in the world’s oceans (Swanson-
Hysell and others, 2010).

In the carbonate stratigraphy of the Akademikerbreen Group of Svalbard, the
Bitter Springs Stage is bracketed by transient changes in sea level and shifts in the
directions of paleomagnetic data from the pre–Bitter Springs Stage lower Grusdi-
evbreen Formation to the syn–Bitter Springs Stage upper Grusdievbreen Formation
and back to the post–Bitter Springs Stage upper Svanbergfjellet Formation (Maloof
and others, 2006). Maloof and others (2006) interpreted the paleomagnetic directions
as primary and considered plate tectonics, magnetic excursions, non-geocentric axial-
dipole fields (see also Abrajevitch and Van der Voo, 2010), and true polar wander
(TPW) as possible explanations for the data. They concluded that the most parsimoni-
ous explanation for the coincident changes is that there were rapid shifts in paleogeog-
raphy resulting from a pair of TPW events that also caused transient changes in local
sea level and perturbations to the carbon cycle as tropical sites of organic carbon burial
were shifted to higher latitudes (Maloof and others, 2006).

True polar wander occurs on Earth as a result of the tendency for Earth’s spin axis
to align with the axis of the maximum non-hydrostatic moment of inertia (Imax). As a
result, perturbations to the distribution of mass, on or inside Earth, can drive rotation
of the silicate Earth (crust and the entire mantle) about a single axis (corresponding to
the axis of the minimum moment of inertia; Imin) relative to Earth’s spin axis (that is,
the celestial reference frame). These rotations of continents in unison contrast from
the differential plate motions of plate tectonics in that the same rotation applies to all
continents. Current rates of secular TPW on Earth are �10 cm/year, and largely are
attributed to the redistribution of mass on Earth’s surface associated with the demise of
Northern Hemisphere ice sheets (Mitrovica and others, 2005; Matsuyama and others,
2010). Over the past 300 Myr, there has been near continuous TPW at rates of
0.1–1°/Myr due to advection of mass heterogeneities in the mantle that has comple-
mented, but not overwhelmed, the apparent polar wander (APW) due to plate
tectonics (Steinberger and Torsvik, 2008). The possibility of large-scale TPW, in which
there is significant relative motion between the silicate earth and the spin vector at
rates that could exceed those of normal plate tectonics, has been discussed as a
theoretical possibility for years in the geophysical literature (Gold, 1955; Fisher, 1974;
Steinberger and O’Connell, 1997; Evans, 2003; Raub and others, 2007), although the
rate at which TPW can progress is an issue of some controversy (Steinberger and
O’Connell, 2002; Tsai and Stevenson, 2007). The rate at which true polar wander can
occur is a function of the magnitude of the perturbation to Earth’s moment of inertia
tensor, the timescale on which that perturbation is applied and the timescale for
viscoelastic adjustment of Earth’s rotational bulge (which is itself largely a function of
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mantle viscosity; Tsai and Stevenson, 2007; Steinberger and Torsvik, 2010). The size of
a perturbation could be amplified, and its emplacement timescale shortened, if mass
advection within the mantle resulted in the deflection of density discontinuity surfaces.
The pair of TPW events proposed by Maloof and others (2006) requires �45 degrees
of oscillatory “there-and-back-again” motion. The initial TPW could have been caused
by convectively driven inertia perturbations acting on a prolate nonhydrostatic Earth
figure (Steinberger and O’Connell, 1998). The “back again” motion may have resulted
from TPW-induced elastic stresses in the lithosphere, driving the remnant pre-TPW
bulge back to the equator after the initial TPW inducing load was diminished
(Creveling and others, 2012).

As TPW moves the solid earth with respect to the rotational bulge, water is able to
adjust nearly instantaneously to the newly established gravitational equipotential. In
contrast, the solid earth has a response time on the order of 104 years and the resulting
lag causes a transient relative sea level change (Mound and Mitrovica, 1998). On any
rotating body there is a latitudinal dependence of gravitational potential such that: grot
� g � �2Recos2�, where grot is the gravity on the rotating spheroid, g is the reference
gravity without the effect of rotation, � is the rotational velocity, Re is the mean radius
of the spheroid, and � is latitude. As a result of this relationship and the lag in the
response time of the solid earth, a continent moving toward the equator during
ongoing TPW will experience transient relative sea level rise, while a continent moving
to higher latitudes will record transient relative sea level fall. In the 2 km thick
succession of platformal carbonates of the Akademikerbreen Group in Svalbard there
are only two sequence boundaries that contain evidence for significant relative sea
level change. The first of these (termed “G1”) is an exposure surface with �20 meters
of karstic relief that coincides with the onset of the Bitter Springs Stage and the
observed shift in paleomagnetic directions. The �45° arc distance between the
paleomagnetic poles of the Akademikerbreen group from before and during the Bitter
Springs Stage suggest that Svalbard (along with East Greenland and other parts of
eastern Laurentia) moved across the equator and then poleward across the G1
boundary. This motion away from the equator would lead to a transient regression and
the observed exposure surface. At the end of the Bitter Springs Stage, the proposed
second TPW event would have driven Svalbard equatorward and caused the transient
rise in sea level responsible for the flooding surface associated with the end of the
isotope stage (“S1”). Under the rotation proposed by Maloof and others (2006), east
Svalbard would have crossed the equator but would have remained in the tropics. The
lack of evidence for significant climate-controlled changes to the sedimentary environ-
ment (such as a change in aridity) across G1 and S1 are consistent with this interpreta-
tion. However, the true polar wander hypothesis would require certain continents to
undergo significant latitudinal changes that would have moved depositional centers
into different climatic regimes and resulted in larger transient changes in relative sea
level.

A successful stratigraphic test of the TPW hypothesis for the Bitter Springs Stage
should recognize identical �13C changes that reflect the global carbon cycle, but
different changes in relative sea level and local climatic regime that are consistent with
the change in paleolatitude implied by the paleomagnetic data. In order to test the
TPW hypothesis for the Bitter Springs Stage, we have developed detailed records of the
physical, �13C and paleomagnetic stratigraphy of the Bitter Springs Formation across
the Amadeus Basin of central Australia (fig. 2). As time equivalents to the Akademiker-
breen Group of Svalbard, these carbonates should record the same perturbation in
�13C, but have a different record of sea level change, and paleomagnetic direction if
TPW shifted Australia’s paleoposition with respect to the axis of rotation (Imin).
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The Amadeus Basin and the Bitter Springs Formation
Basin development and nearby orogenesis.—The Amadeus Basin of central Australia is

a cratonic basin bounded by Paleozoic uplifts (fig. 2). Sedimentation in the Amadeus
basin began in early Neoproterozoic time (at �850 Ma) and continued into the Late
Devonian (360 Ma; Lindsay and Korsch, 1989; Lindsay, 2002; Haines and others,
2001). Deposition in the basin was episodic over this period, and was characterized by
various modes of basin development (Lindsay, 2002). Large-scale similarities in the
Neoproterozoic stratigraphy of the Amadeus, Officer, Georgina and Ngalia basins have
led to the hypothesis that these cratonic basins were once part of a single large
subsiding continental platform termed the “Centralian Superbasin” (fig. 2; Walter and
others, 1995). The possibility that later orogenic activity and associated sedimentation
was associated with post-depositional iron oxide growth/alteration (and thus remagne-
tization), necessitates an overview of the subsequent history of the basin. Two major
orogenic events, the Petermann orogeny (early Cambrian) and the Alice Springs
orogeny (Devonian-Carboniferous), led to thick-skinned deformation and the uplift of
the basement inliers that fragmented the Centralian Superbasin into its constituent
parts (Sandiford and Hand, 1998). In addition to redefining the boundaries of
Australian intracratonic basins, these orogenies governed the sediment supply and the
subsidence of the post-Neoproterozoic Amadeus Basin and uplifted the deep crustal
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rocks that border the Amadeus Basin to the north and to the south (the Arunta and
Musgrave blocks respectively; fig. 2).

The Petermann Orogeny resulted in the exhumation of the Musgrave block (fig.
2), a crustal block that currently defines the southern margin of the Amadeus Basin
and is composed of Paleoproterozoic to Mesoproterozoic metamorphic rocks that
record Grenville-age magmatic and metamorphic events (White and others, 1999;
Hand and Sandiford, 1999). The thrusts associated with the orogeny strike east-
west, are predominantly north-vergent, and are constrained by 40Ar/39Ar ages from
micas associated with shear zones to have been active between �550 to �520 Ma
(Maboko and others, 1992; Camacho and others, 1997). This orogenic belt is effec-
tively the dividing line between the North Australian Craton and the South Australian
craton (fig. 2; Myers and others, 1996) and shortening is interpreted to have been
restricted to a relatively narrow belt such that there was little deformation within the
present day Amadeus Basin (Hand and Sandiford, 1999). U-Pb ages on titanite
interpreted to have crystallized during peak upper amphibolite to granulite facies
metamorphism in the core of the orogen are �570 to �540 Ma (Raimondo and others,
2009). Synorogenic sediments (such as those that outcrop in the famous Ayers
Rock–Uluru monolith) were deposited proximal to the mountain belt in the southern
Amadeus Basin, and wide-spread sedimentation began throughout the basin at this
time and continued into the Ordovician. This period of subsidence has been attrib-
uted to thermal subsidence following extension (Korsch and Lindsay, 1989), or due to
active extensional processes at the time (Haines and others, 2001). It also is possible
that the accommodation space was a result of dynamic subsidence (for example Heine
and others, 2008) and/or long-wavelength lithospheric flexure beneath central Austra-
lia (as suggested by gravity data; Aitken and others, 2009).

Synorogenic sedimentation in the Amadeus Basin also records the Devonian-
Carboniferous Alice Springs orogeny, whose age is constrained by 40Ar/39Ar ages on
micas from mylonite zones (410-310 Ma; Dunlap and Teyssier, 1995; Haines and
others, 2001) and U-Pb dates from synorogenic pegmatites and metamorphic zircon,
monazite and titanite (450-310 Ma; Buick and others, 2008 and references therein).
This mountain-building event was, in many ways, a mirror image of the Petermann
Orogen, as it exhumed the Arunta crustal block that forms the northern margin of the
basin along south-vergent faults (fig. 2; Haines and others, 2001). The Alice Springs
orogeny was characterized by thick-skinned deformation in the Arunta block, and also
caused thin-skinned deformation and the development of a foreland fold-thrust belt
within Amadeus Basin sediments. This deformation exposed the basal Neoproterozoic
stratigraphy, particularly along the northern margin of the basin in the MacDonnell
Ranges (Lindsay, 2002), and caused locally-thick foreland basin sedimentation. The
preservation of late Mesoproterozoic 40Ar/39Ar cooling ages in K-feldspar from a
granite boulder in the Areyonga Formation (the early Cryogenian formation that
directly overlies the Bitter Springs Formation; fig. 3) indicates that the Neoproterozoic
stratigraphy could not have been heated above 230 °C for any extended period of time
(McLaren and others, 2009). This result is indicative of the low-metamorphic grade of
the sediments and provides a �6 km upper limit on the thickness of the sedimentary
overburden in the study area.

Neoproterozoic stratigraphy of the Amadeus Basin.—The sedimentary succession in the
Amadeus Basin begins with the transgressive sandstone of the Heavitree Formation
(also known as the Heavitree Quartzite). This formation has a sheet-like geometry and
is interpreted to have been deposited on a high-energy open shelf that was undergoing
regional subsidence (Lindsay, 1999). Conformably overlying the Heavitree Formation
are �1000 m of shallow marine carbonates and evaporites comprising the Bitter
Springs Formation. The age of the basinal sediments are constrained by dikes in the
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Arunta block (the �1070 Ma Stuart dike swarm; Schmidt and others, 2006) and the
Musgrave block (the �1070 Ma Alcurra/Kulgera dike swarm; Schmidt and others,
2006) that do not intrude the basinal sediments and provide a maximum age for the
initiation of sedimentation in the Amadeus Basin. Detrital zircon data from the
Heavitree Formation contain late Mesoproterozoic zircons (Maidment and others,
2007), but do not provide firmer age constraints than the dikes.
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Fig. 3. Representative stratigraphic sections of the Gillen Member from near the Alice Spring’s town
dump (N52), the Love’s Creek Member, Johnny’s Creek Member and Areyonga Formation from the Ellery
Creek area (P8) and the Johnny’s Creek Member, Bitter Springs Volcanics and Areyonga Formation from
the section on Love’s Creek Station (N1132). Carbonate carbon isotope data are shown for the N52 and P8
sections, as well as for other sections that were targeted for paleomagnetic study. The carbon isotope data
from other sections have been scaled to match the P8 carbon isotope record. The stratigraphic range of
paleomagnetic samples, that in some cases is a more restricted range than carbon isotope data from the same
section, is shown with bars to the right of the composite chemostratigraphy. The carbon isotope record for
the Wallara-1 drill-core also is shown as it contextualizes samples used for rock magnetic experiments from
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The Bitter Springs Formation can be divided into three members: Gillen, Love’s
Creek and Johnny’s Creek. The Gillen Member consists of dolostone and limestone
wavy laminite, as well as grainstone, and commonly contains calcite pseudomorphs
after gypsum attesting to arid conditions where evaporation often exceeded precipita-
tion. Massive halite has been encountered in four subsurface cores that penetrate the
unit (Lindsay, 1987). The evaporites within the Gillen Member have caused the
member to be rheologically weak in comparison to the surrounding units. In contrast
to the Heavitree Formation and rest of the Bitter Springs Formation, which are
commonly coherently exposed in thrust sheets along the northern basin-bounding
monocline, the Gillen Member has been exploited as a structural detachment and
often can be seen to be tightly folded and truncated in surface outcrop.

Atop the Gillen Member, the Love’s Creek Member (160-260 m thick) is domi-
nated by stromatolite and microbialite facies that are rarely interrupted by thin
intraclast breccias and wavy laminites (fig. 3). The base of this unit represents a relative
sea level rise (Southgate, 1989). Oolite and intraclast breccia facies mark this transgres-
sion and are followed by the largely subtidal microbialite/stromatolite reef facies of the
Bitter Springs Stage. This transition also could reflect a decrease in local aridity given
the relative paucity of evaporite pseudomorphs in the Love’s Creek Member compared
to the Gillen Member. However, there are anhydrite nodules present in drill core
intersecting the Love’s Creek Member (for example in the Wallara-1 and BR05DD01
drill cores) and it is difficult to deconvolve the role of relative sea level change and
changing local climatic conditions from this change in evaporite abundance.

There is an abrupt change in sedimentary lithology at the top of the Love’s Creek
Member, with the sudden appearance of red siltstones that are interbedded with layers
of stromatolites, grainstones, and dolostones that contain molar tooth structures and
dalmatian (mottled) sedimentary textures of the Johnny’s Creek Member (fig. 3). This
unit has, in some previous publications, been referred to as the upper Love’s Creek
Member (or unit 3 of the Love’s Creek Member; for example, Southgate, 1989; Hill
and others, 2000). We follow the current stratigraphic terminology of the Northern
Territory Geological Survey in referring to the unit as the Johnny’s Creek Member
(Ambrose and others, 2010). In the eastern-most part of the basin, basalt flows are
intercalated with siltstone at the top of the Johnny’s Creek Member (fig. 2).

In many locations within the Amadeus basin, the top of the Bitter Springs
Formation is an unconformity that is overlain by conglomerate, diamictite and
sandstone of the glacigenic Areyonga Formation and followed by siltstone of the
Aralka Formation. The Areyonga glacial deposits have been correlated (Preiss and
others, 1978; Walter and others, 1995) to the �720 to 660 Ma low-latitude Sturtian
glacial event (Macdonald and others, 2010). A Re-Os isochron age of 657.2 	 5.4 Ma
has been obtained from black shales sampled from the Aralka Formation in the
Wallara-1 core (Kendall and others, 2006). The Aralka Formation overlies the Ar-
eyonga Formation and this result provides a tentative minimum age constraint for the
the glacial diamictites, suggesting a pre-Marinoan age while also providing a minimum
age constraint for the Bitter Springs Formation.

Chemostratigraphic correlation with stratigraphic successions with direct age
constraints provides another means to constrain the age of the Bitter Springs Forma-
tion. High-resolution �13C data throughout the Bitter Springs Formation, from the
basal Gillen Member up to the disconformity with the overlying Areyonga Formation,
show values in the Gillen that fluctuate around �3 per mil with small transient negative
spikes (fig. 3; Swanson-Hysell and others, 2010). �13C values then decrease before
rising into a positive �13C spike (maximum of �7‰) at the contact with the Love’s
Creek Member (fig. 3). The �13C stratigraphy then enters the period of sustained
negative values known as the Bitter Springs Stage that persists over 190 to 270 meters of
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stratigraphy, depending on the location within the basin. A gentle rise towards 0 per
mil is followed by a step-wise transition back to mean Neoproterozoic �13C of �5 to �6
per mil marking the end of the Bitter Springs Stage and the onset of Johnny’s Creek
Member sedimentation (fig. 3). This extended departure from positive values is similar
to the Bitter Springs Stage �13C records developed from other stratigraphic successions
including the Akademikerbreen Group of Svalbard and the Fifteen Mile Group of NW
Canada (fig. 1). If correct, the correlation to the 15 Mile Group lends significant
constraints to the age of the Bitter Springs formation, as a volcanic tuff from the
stratigraphy immediately preceding the interpreted Bitter Springs Stage has a U-Pb
zircon age of 811.5 	 0.3 Ma (Macdonald and others, 2010)—consistent with thermal
subsidence modeling of the Svalbard stratigraphic succession (Maloof and others,
2006). On the basis of the correlation of the Bitter Springs Formation carbon isotope
record with the record from the Fifteen Mile Group of NW Canada (Macdonald and
others, 2010) as well as the Ombombo Subgroup of Namibia (Halverson and others,
2005), the Bitter Springs Stage, and correspondingly deposition of the Love’s Creek
Member, is constrained to have been ongoing from �810 Ma to �785 Ma (fig. 1).
Chemostratigraphic correlation and consideration of the physical stratigraphy suggests
that significant time is missing between the top of the Johnny’s Creek Member and the
onset of Sturtian glaciation at �720 Ma and leads to an interpretation of the top of the
Johnny’s Creek Member being �750 million years old as shown in figure 1.

In the context of the true polar wander hypothesis, the rise in local sea level
recorded in the sedimentary succession entering the Bitter Springs Stage at the
Gillen/Love’s Creek contact and the potential evidence for a decrease in aridity is
consistent with rapid motion of Australia from the dry subtropics into the wet tropics
(fig. 3). Subsequent rotation at Love’s Creek/Johnny’s Creek boundary would have
returned Australia to the subtropics, a change that is consistent with the demise of the
microbialite reefal facies that characterizes the Love’s Creek Member, the initial
deposition of the mixed siliciclastic/carbonate sediments of the Johnny’s Creek
Member and the stepwise jump in �13C values indicating a temporal gap in the record
that is consistent with temporary exposure resulting from a transient fall in local
relative sea level. We now seek to use new paleomagnetic data from the Bitter Springs
Formation to test the hypothesis that changes in carbon cycling, in local sea level and
potentially in local climate are the result of large-scale rapid TPW.

methods

Paleomagnetic Methods
Remanent magnetization measurements were made with 2G Enterprises™ DC

SQuID magnetometers at the California Institute of Technology and Yale University.
These magnetometers have a background noise sensitivity of 5 
 10�12 Am2 per axis.
The magnetometers are equipped with online alternating field (AF) demagnetization
coils, an automated pick-and-place vacuum system and a quartz-glass sample holder as
described in Kirschvink and others (2008). Samples and instruments were housed in a
magnetically shielded room with residual fields �100 nT throughout the demagnetiza-
tion process.

After measuring the natural remanent magnetization (NRM), but prior to AF and
thermal demagnetization, samples were cooled in liquid N2 in an additionally magneti-
cally shielded space. This procedure brought the samples through the Verwey transi-
tion of magnetite (120 K), thereby selectively demagnetizing large multidomain grains
whose remanence recovers to a much lesser extent than small single-domain grains
upon warming in zero field (Muxworthy and McClelland, 2000).

AF demagnetization proceeded at steps of 2.5, 5, 7.5, and 10 mT for siliciclastic
and volcanic lithologies and at steps of 2.0, 4.0, 6.0, and 7.0 mT for the carbonates.
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Following these low-field AF demagnetization steps, the samples were thermally
demagnetized in a magnetically shielded ASC Scientific™ oven in an N2 atmosphere.
Temperature progressively increased in 2 °C to 50 °C steps for a total of 24 to 30
thermal steps per specimen (see figs. 4 and 5 for the resolution of these steps).
Thermal demagnetization usually proceeded to 685 °C for the siltstones of the
Johnny’s Creek Member, Gillen Member and basalt flows, and proceeded to 550 °C for
the carbonates of the Love’s Creek and Gillen Members. After each demagnetization
step, three-axis measurements were made in both sample-up and sample-down orienta-
tion, and samples with a circular standard deviation �8° were reanalyzed. Magnetic
components were fit using principal component analysis (Kirschvink, 1980), as imple-
mented in PaleoMag OS X v3.1 (Jones, 2002).

We also discuss paleomagnetic data generated from a locality of the Heavitree
Formation at Heavitree Gap with different methods. These samples were measured at
the Australian National University in 1976 by JLK using a ScT superconducting
magnetometer with background noise sensitivity of �5 
 10�11 Am2. These samples
were thermally demagnetized progressively in air, in magnetic fields held to below �10
nT by feedback-controlled coil systems, and treated in six steps between 180 and
640 °C. Data were recovered recently from old print-outs through optical scanning and
analyzed with modern principal component analysis.

Rock Magnetism Experimental Methods
To characterize the magnetic mineralogy of the Bitter Springs sediments, we

conducted a suite of rock magnetic experiments.
Room-temperature remanence experiments.—The same 2G enterprises SQuID magne-

tometer used for paleomagnetic measurements at Caltech was utilized to conduct
room temperature rock magnetic experiments on 18 end chips of paleomagnetic cores
from the Love’s Creek Member and seven of the Johnny’s Creek Member. For
isothermal remanent magnetization (IRM) acquisition experiments, the field was
increased in a stepwise fashion up to 350 mT (for Love’s Creek carbonates) or 900 mT
(for Johnny’s Creek siltstones) and the samples were subjected to AF demagnetization.
Anhysteretic remanent magnetization (ARM) experiments applied a biasing field from
0 to 1 mT in the presence of a 100 mT alternating field before demagnetization.
Coercivity spectra (also known as “gradient of acquisition plots”) were produced for all
analyzed samples by taking the derivative of the stepwise AF and IRM curves with
respect to the log of the applied field and smoothing them with a running average (as
implemented in Kopp, ms, 2007).

Low-temperature remanence experiments.—A Quantum Design SQuID magnetometer
(MPMS-2) was used to perform low-temperature cycling experiments and remanence
upon warming experiments at the Institute for Rock Magnetism. In the low-
temperature cycling experiments, a 2.5 T isothermal remanent magnetization (IRM)
was imparted at room temperature (300 K). The samples were then cooled to 5 to 10 K
and then warmed back to room temperature, all in a zero field. In the remanence
upon warming experiments, samples were first cooled from 300 K to 10 K in a 2.5 T
field and than the remanent magnetization was measured during warming back to 300
K in a zero field (field cooled). Then the samples were cooled again in zero field,
pulsed with a 2.5 T IRM at 10 K and warmed back to room temperature in a zero field
(zero-field cooled).

These experiments have powerful diagnostic capabilities due to the varying
low-temperature behavior of different magnetic mineralogies. For magnetite (Fe3O4),
at �120 K there is a conversion from the cubic phase to a low-temperature monocline
phase (the Verwey transition; Verwey, 1939). The Verwey transition is expressed upon
cooling through �120 K with significant demagnetization of remanence, some of
which recovers upon warming (depending on grain size). Monoclinic pyrrhotite
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(Fe7S8) has a similar diagnostic magnetic transition at �35 K that results in loss of
remanence (the Besnus transition; Besnus and Meyer, 1964). Some minerals that lack
crystallographic transitions at low temperature nevertheless have characteristic rema-
nence behavior. For example, the remanence of the iron oxyhydroxide goethite
(�FeOOH) is greatly enhanced upon cooling in a zero field (Maher and others, 2004;
Liu and others, 2006).

Hysteresis experiments.—Hysteresis loops were acquired for 30 to 150 mg rock chips
on a Princeton Measurements Corporation alternating gradient magnetometer in
acoustic shielding at the Princeton Measurements Corporation headquarters. The
sensitivity of the instrument is �1 nAm2 with an accuracy of 	2 percent versus the
calibration that was made using the National Institute of Standards and Technology
yttrium iron garnet sphere standard. Loops were acquired from �500 mT to �500 mT
(�1 T to �1 T if necessary) at steps of 1 mT. Values of saturation magnetization (Ms),
saturation remanence (Mr) and coercivity (Hc) were determined from the hysteresis
loops. Remanent moments were measured with increasing magnitude of a demagnetiz-
ing “backfield” following a saturating IRM on the same magnetometer in order to
determine the coercivity of remanence (Hcr).

paleomagnetic results
Given the clarity of recognizable components in the results from the Love’s Creek

Member and Johnny’s Creek Member of the Bitter Springs Formation, we begin by
presenting those results, followed by the results in stratigraphic order from the
Heavitree Formation, the Gillen Member of the Bitter Springs Formation and the
Bitter Springs basalt flows.

Paleomagnetic Results for the Love’s Creek Member
The paleomagnetic components that were determined through principal compo-

nent analysis (Kirschvink, 1980) are illustrated in figure 4, summarized in the text
below and reported in tables 1, 2, and 3.

The magnetization of the stromatolitic carbonates of the Love’s Creek Member
consists of three components:

Component A. This component is removed during low-field AF (0-8 mT) and
low-temperature thermal demagnetization (up to 150 °C). The least-square fits to
component A fail the McElhinny (1964) fold test at 99 percent confidence. A bootstrap
fold test on the fits (Tauxe and Watson, 1994; Tauxe, 2010) indicates that this
component was acquired while the beds were in their current tilted orientation as the
95 percent confidence bounds on the degree of untilting required for maximizing the
principle eigenvalue of the orientation matrix include 0 percent unfolding (with a
range of �2% to 3%; fig. 6). When uncorrected for bedding tilt (in situ coordinates),
the component’s direction corresponds to the direction of the present local field
(PLF) of central Australia (north and up; IAGA-Working-Group and others, 2010).
The mean calculated from all samples (Dec of 000.8, Inc of �51.7, �95 of 1.2) is quite
close both to the axial dipole for the localities (Dec 000, Inc � �41.5) and the current
IGRF2011 modeled field (IAGA-Working-Group and others, 2010; Dec of 004.7, Inc of
�55.7).

Component B. Between 150 °C and 320 °C, a component is removed from the
samples that fails the McElhinny (1964) fold test at 99 percent confidence (fig. 6). A
bootstrap fold test on component B gives the result that maximum concentration of
the data results in the range of 4 to 8 percent unfolding, indicating that the component
was acquired when the beds were very near their current orientation. The in situ mean
of this component is steeply inclined. This steep inclination corresponds to an early
Carboniferous paleolatitude of Australia (fig. 7; table 4) suggesting that the rema-
nence was acquired during the late phases of the Alice Springs orogeny.
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Fig. 4 (continued) respectively, where TC refers to tilt-corrected and IS refers to in situ coordinates. In
these equal area projections, error ellipses represent circular maximum angular deviation (MAD) angles of
the fits, closed circles are vectors intersecting the lower hemisphere and open circles are vectors intersecting
the upper hemisphere. In the vector component diagrams and J/J0 plots, black-filled shapes are natural
remanent magnetization (NRM), blue-filled shapes are the low-temperature (LT) step, brown-filled shapes
are the alternating field (AF) demagnetization steps and red-filled shapes represent thermal demagnetiza-
tion. In the vector component diagrams, squares represent declination while circles represent inclination.
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Component C. Between thermal demagnetization steps of 370 °C and 510 °C, a
component is removed that decays to the origin in vector component diagrams (fig. 4).
This component C passes the McElhinny (1964) fold test at 99 percent confidence (fig.
6), suggesting that it was acquired prior to Devonian-Carboniferous folding. A boot-
strap fold test on the component C least-squares fits gives the result that the principle
eigenvalue of the orientation matrix is maximized between 62 and 70 percent
unfolding thereby indicating that both the in situ and tilt-corrected coordinate systems
are excluded at the 95 percent confidence level. While this result could indicate that
the remanence was acquired during folding, the direction does not overlap with the
Devonian-Carboniferous poles from the time of deformation. Therefore, it is likely
that the maximized concentration of directions between 62 and 70 percent unfolding
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Fig. 6. Equal area plots of the paleomagnetic directions from the syn–Bitter Springs Stage Love’s Creek
Member carbonates. Directions are shown in in situ and tilt-corrected coordinates for the least-square fits to
the low-temperature direction, the mid-temperature direction and the high-temperature direction. Esti-
mates of the concentration parameter are shown for directions in in situ coordinates (k1) and tilt-corrected
coordinates (k2) along with the results from the associated fold tests (McElhinny, 1964) to the side of the
respective equal area plots. The low- and mid-temperature fits have the highest concentration parameters
prior to unfolding suggesting that those magnetizations were acquired after regional-scale folding. The
mean direction, calculated with Fisher statistics (Fisher, 1953), is displayed for the directions as they are in in
situ coordinates for the component removed at low temperatures and at mid-temperatures while the mean
for the high-temperature direction is given in 100% tilt-corrected coordinates. The lowermost plots are the
results of bootstrap fold tests (Tauxe and Watson, 1994; Tauxe, 2010) where �1 is the major eigenvalue of the
orientation matrix shown as a function of unfolding percentage. The red dashed lines are representatives of
the 500 bootstrapped data sets while the green lines are the cumulative density function of the maxima in �1
for all of the bootstraps. The bounds that enclose 95% of the maximum �1 values from the pseudo-sample
sets are shown with the blue dashed lines and written on the plots. Results are reported for each stratigraphic
section in tables 1, 2, and 3.
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is an artifact of structural complications such as vertical axis rotations that are not fully
represented in the simple untilting of the individual dip panels (for example Tauxe
and Watson, 1994). Samples from the A1085 section revealed dual polarities with the
southwest and down directions being significantly shallower in absolute inclination
than the northeast and up inclinations such that the two populations fail the reversal
test of McFadden and McElhinny (1990).

Lightning remagnetization can be a significant concern when working on rocks
that outcrop in central Australia. Despite efforts to collect samples in topographic lows,
some analyzed samples appear to have been remagnetized by lightning. Samples that
we interpret as having undergone lightning remagnetization have single-component
magnetizations, in contrast to the majority of samples, which have three components,
and have higher magnetic moments by up to an order of magnitude. Such remagneti-
zation was not observed in the N453 or A1085 sections. Lightning remagnetized
samples were identified in the N49B, N49 and N451 sections (19%, 8%, and 4% of
analyzed specimens respectively).

Paleomagnetic Results for the Johnny’s Creek Member
The magnetization of the siltstones of the Johnny’s Creek Member consists of two

components (figs. 5 and 8; tables 5 and 6).
Component A. This component is removed during low field AF and initial

thermal demagnetization steps (usually up to 150 °C, but sometimes continuing to be
removed up to 350 °C). This component fails a fold test at 99 percent confidence
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N49_MT

pole from cratonic
Australia

pole from terrane in
Tasman Fold Belt inter-
preted to be representative 
of cratonic Australia

N451_MT
N453_MT

CBL

K78-SD-IS

Fig. 7. Equal area projection of Devonian to Permian paleomagnetic poles from Australia (details in
table 4) with overprint directions from Amadeus Basin sediments. K78-SD-IS is the pole calculated for the in
situ directions of an overprint documented in Ediacaran to Cambrian sedimentary lithologies in the Ross
River area of the Amadeus Basin by Kirschvink (1978). The rest of the overprint poles are from in situ means
of fits to component B of Love’s Creek Member carbonates reported in table 2 and of Heavitree Formation
sandstones reported in table 7.
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(McElhinny, 1964) indicating that it was acquired when the rocks were in their current
orientation (fig. 8). The results of the bootstrap fold test on this component are that
the 95 percent confidence interval on the corrections of the data for the best grouping
are from �5 to 6 percent, encompassing a completely uncorrected in situ value and
indicating that the magnetization was acquired when the rocks were in their present-
day structural orientation (fig. 8). When the data are uncorrected for bedding the
mean direction corresponds to the present local field (PLF) of central Australia (fig. 8;
IAGA-Working-Group and others, 2010). The mean calculated from all samples (Dec
of 359.8, Inc of �47.2, �95 of 2.2) is quite close both to the axial dipole for the localities
(Dec 000, Inc �41.5) and and the current IGRF2011 modeled field (IAGA-Working-
Group and others, 2010; Dec of 004.7, Inc of �55.7).

Component B. After thermal demagnetization of component A some samples
become unstable (�15 of 139 specimens), but in many samples a component is

0

90

180

270

0

90

180

270

0

90

180

270

0

90

180

270

0

90

180

270

in situ

tilt-corrected

in situ

tilt-corrected

in situ

tilt-corrected

k1=4.4
k2=7.2

k2/k1=1.6
positive at 
99% 

n=74
 

tilt-corrected
mean
Dec=114.9
Inc=-41.6
α95=6.6

k1=4.4
k2=7.8

k2/k1=1.8
positive at 
99% 

lines
lines and
arc constraints

/
/

lines
arc constraints

/
/

lines
arc constraints

τ 1 (r
ed

), 
C

D
F 

(g
re

en
)

0.0 0 20 40 80 10060

0.2

0.4

0.6

0.8

1.0

τ 1 (r
ed

), 
C

D
F 

(g
re

en
)

0.0

0.2

0.4

0.6

0.8

1.0

% untilting
0 20 40 80 100 120 14060

% untilting

-5 to 6% unfolding 97 to 138% unfolding
sections

n=128
  

in situ mean
Dec=359.8
Inc=-47.2
α95=2.2
 

IGRF 2007
Dec=004.7
Inc=-55.7
 

axial dipole
Dec=000.0
Inc=-41.7

k1=32.0
k2=4.8

k2/k1=0.15
negative at 
99% 

0

90

180

270

n=116
 

tilt-corrected
mean
Dec=120.0
Inc=-43.7
α95=5.0

τ 1 (r
ed

), 
C

D
F 

(g
re

en
)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 80 100 120 14060
% untilting

95 to 127% unfolding
samples

Component A
removed during initial thermal demagnetization steps

Component B
removed by thermal demagnetization from 660ºC to 685ºC

Fig. 8. Equal area plots of the paleomagnetic directions from the post–Bitter Springs Stage siltstones of
the Johnny’s Creek Member. Directions are shown in in situ and tilt-corrected coordinates. Estimates of the
concentration parameter are shown for directions in in situ coordinates (k1) and tilt-corrected coordinates
(k2) along with the results from the associated fold tests (McElhinny, 1964) to the right side of the respective
equal area plots. Arc constraints in the right-most panel were determined from best-fit demagnetization
planes using the method of McFadden and McElhinny (1988) as implemented in Jones (2002). The mean
direction, calculated with Fisher statistics (Fisher, 1953), is displayed for the directions as they are in in situ
coordinates for the component removed at low temperatures while the mean for the ChRM is the mean in
tilt-corrected coordinates. The lowermost plots are the results of bootstrap fold tests (Tauxe and Watson,
1994; Tauxe, 2010) where �1 is the major eigenvalue of the orientation matrix shown as a function of
unfolding percentage. The red dashed lines are representatives of the 500 bootstrapped data sets while the
green lines are the cumulative density function of the maxima in �1 for all of the bootstraps. The 95% bounds
for the maximum of �1 are shown with the blue dashed lines and written on the plots.
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removed between thermal demagnetization steps of 650 °C and 685 °C that decays to
the origin in vector component diagrams (see fig. 5) and was either fit with lines or
planes during the principal component analysis. Arc constraints were determined
from the best-fit demagnetization planes using the method of McFadden and McEl-
hinny (1988) as implemented in (Jones, 2002). This component passes the McElhinny
(1964) fold test at 99 percent confidence (fig. 8). A bootstrap fold test on line fits to the
component constrains the 95 percent confidence interval of the unfolding to between
95 to 127 percent. Given that this range encompasses the complete structural correc-
tion of 100 percent the data “passes” the bootstrap fold test. A bootstrap fold test on
section means (N � 11) also encompasses 100 percent unfolding providing further
evidence that component B was acquired prior to structural tilting.

Paleomagnetic Results for the Other Amadeus Basin Units
Heavitree Formation.—Samples recently were collected from six stratigraphic sec-

tions of the Heavitree Formation (fig. 2). Within these sections, fine-grained red
sandstones (quartzite) were targeted for collection and 79 such samples were analyzed.
In addition to these sections, one of us (JLK) collected 76 oriented block samples in
1975 that were stratigraphically dispersed through the Heavitree Formation at the type
section at Heavitree Gap, near Alice Springs. Results from these analyses are summa-
rized in figure 9 and table 7. These samples behaved in one of six ways: (1) completely
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Fig. 9. Equal area plots of the least-square fits to paleomagnetic components from fine-grained
Heavitree Formation. These fits are shown in in situ and tilt-corrected coordinates and the mean direction,
calculated with Fisher statistics (Fisher, 1953), is displayed for the directions as they are in in situ coordinates
as both components fail the McElhinny (1964) fold test. The results of bootstrap fold tests (Tauxe and
Watson, 1994; Tauxe, 2010) are shown where �1 is the major eigenvalue of the orientation matrix shown as a
function of unfolding percentage. The red dashed lines are representatives of the 500 bootstrapped data sets
while the green lines are the cumulative density function of the maxima in �1 for all of the bootstraps. The
95% bounds for the maximum of �1 are shown with the blue dashed lines and written on the plot. Results for
each stratigraphic section are reported in table 7.
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unstable from the first demagnetization steps with a NRM that is usually in the vicinity
of the present local field (17% of the recently collected samples); (2) present local
field overprint removed during the first thermal demagnetization steps (up to �200 °C)
followed by instability (23% of the recently collected samples); (3) present local field
overprint that continues to be removed with thermal demagnetization up into the mid
to high 600 °C steps (28% of the recently collected samples); (4) present local field
overprint removed during the first thermal demagnetization steps, followed by a
variably well-defined mid-temperature component removed between 200 °C to 475 °C,
followed either by instability or a high-temperature remanence holding the present
local field direction (28% of the recently collected samples); (5) lightning remagneti-
zation (4% of the recently collected samples); (6) 30 of the 76 samples from the
Heavitree Gap sample set reveal a component that unblocks between 180 °C and
550 °C and after tilt-correction has a shallow, two-polarity NE/SW direction (tilt-
corrected declination, inclination of �224°, 13°), broadly similar to component C
from the Love’s Creek Member described above. This component direction was cited
as evidence (by way of personal communication) for a low-latitude position of Australia
during deposition of the basal Amadeus Basin stratigraphy by Vanyo and Awramik
(1982, 1985).

The mid-temperature component was present in most samples from two sections
to the north of Ross River Tourist camp in the East MacDonnell Ranges that have
significantly contrasting bedding orientation (fig. 9). This component fails the McEl-
hinny (1964) fold test at 99 percent confidence and a bootstrap fold test on the
component gives the result that maximum concentration of the data results in the
range of �2 to 18 percent unfolding, indicating that the component was acquired
when the beds were at or very near their current orientation (fig. 9). The in situ mean
of this component is steeply inclined and corresponds to an early Carboniferous
paleolatitude of Australia (fig. 7), suggesting that the remanence was acquired during
the late phases of the Alice Springs orogeny. With the possible exception of the
previously developed data from Heavitree Gap near Alice Springs, the sections studied
of the Heavitree Formation have not yielded any paleomagnetic component predating
the Alice Springs Orogeny that could help constrain paleogeography at the time of
Heavitree Formation deposition prior to the Bitter Springs Stage. Further study of the
Heavitree Gap section with modern methods is warranted and its remanence suggests
that there may be other localities in the formation not identified in this study that
could yield useful data. At present, the dual polarity component isolated from that
section is intriguing, but given its occurrence in only one locality it is difficult to
constrain the timing of its acquisition and the direction will not be used in the
following discussion of paleogeography.

Gillen Member of the Bitter Springs Formation.—The basal Gillen Member outcrops
atop the Heavitree Formation along the northern basin-bounding monocline of the
Amadeus Basin (fig. 3). The lower 100 to 300 meters of the Gillen Member typically is
preserved in a coherent dip panel with the underlying Heavitree Formation. Above the
basal Gillen Member stratigraphy are chaotic exposure patterns, evaporite-detachment
faulting and dramatic non-cylindrical folding. Due to this structural complexity, the
Gillen Member was not a major target of this study’s paleomagnetic sampling.
However, given the importance of any constraint on pre–Bitter Springs Stage paleogeog-
raphy, paleomagnetic samples were collected and analyzed from: two stratigraphic
sections from the basal carbonate parasequences within coherent dip panels of the
lower Gillen Member directly overlying the Heavitree Formation (N52, N646; fig. 3),
one site within a unit of the member that is dominated by dolostone grainstone with
abundant gypsum pseudomorphs (N623) and includes a tight chevron fold (N623f),
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and one stratigraphic section through red siltstone from within the member (N620).
Results are summarized in figure 10 and table 8.

Component A. The carbonates analyzed from the Gillen Member have a compo-
nent removed during the first steps of thermal demagnetization, homologous to
Component A from the Love’s Creek Member. This component is removed up to
130 °C, sometimes continuing up to 170 °C, and fits to it are grouped much tighter
when uncorrected for bedding tilt failing the McElhinny (1964) fold test at the 99
percent confidence level (fig. 10). In uncorrected in situ coordinates, the mean of fits
to this component (Dec of 001.1, Inc of �51.6, �95 of 3.1) is quite close both to the
axial dipole for the localities (Dec of 000, Inc of �41.5) and and the current IGRF2011
modeled field (IAGA-Working-Group and others, 2010; Dec of 004.7, Inc of �55.7).

Component B. Similarity between the analyzed Gillen Member carbonates and
Love’s Creek Member carbonates continues with the removal of a component between
230 °C and 310 °C homologous to component B from the Love’s Creek Member. A
boot-strap fold test on a small-scale chevron fold in the dolostone grainstone with
gypsum pseudomorph facies (N623f) gives the result that the tightest clustering of fit
directions occurs with 74 to 88 percent unfolding. A regional boot-strap fold-test
between all sections gives the result that 95 percent of the peaks in concentration of
the pseudo-sample sets occur between 27 to 71 percent unfolding. A regional fold-test
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Fig. 10. Equal area plots of the least-square fits to paleomagnetic components from lithologies of the
Gillen Member of the Bitter Springs Formation. These fits are shown in in situ and tilt-corrected coordinates
and the mean direction, calculated with Fisher statistics (Fisher, 1953), is displayed for the directions either
in in situ or tilt-corrected coordinates. Results for each stratigraphic section are reported in table 8. For
reference, the mean of component C of the Love’s Creek Member and the mean of component B of the
Johnny’s Creek Member are shown in the upper left panel.
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between data from the N623 and N646 stratigraphic sections give the result that the 95
percent confidence interval for the degree of unfolding required to produce the
tightest group is �10 to 10 percent—encompassing no unfolding and failing a fold
test. Taken together, these results suggest that the acquisition of this component was
associated with Alice Springs Orogeny deformation and largely formed after regional
folding. The direction of the majority of the component B fits are steeply down to the
SE in in situ coordinates (fig. 10). As with Love’s Creek Member component B, this
steep inclination corresponds to an early Carboniferous paleolatitude of Australia (fig.
7) suggesting that the remanence was acquired during the late phases of the Alice
Springs orogeny.

High-temperature components. The components isolated at high-temperature
from the Gillen Member cannot be described as forming a single population, as would
be expected if all remanences isolated at high temperature were primary (fig. 10).
Samples collected from the basal Gillen Member (sections N52 and N646) reveal high
temperature components that decay towards the origin in two distinct populations,
both removed from 410 °C to 560 °C or up to 595 °C for group 1 and group 2
respectively (fig. 10). Basal Gillen group 1 was isolated primarily from samples of dark
gray dolostone wavy laminite, while basal Gillen group 2 directions were isolated from
gray stromatolitic dolostone and gray to tan dolostone wavy laminites that were
sometimes slightly pink. Since the number of samples from which these components
could confidently be isolated were few, fold tests on each population were inconclu-
sive. Nevertheless, a tighter grouping is achieved for basal Gillen group 1 after
correction for tilting (tilt-corrected mean with Dec of 97.6, Inc of �45.7, �95 of 11.4)
and a tighter grouping is achieved for basal Gillen group 2 prior to untilting (in situ
mean with Dec of 179.3, Inc of 55.3, �95 of 8.1). Of potential significance is the
correspondence of basal Gillen group 2 with the antipode of the present local field.
However, this similarity to the present field could be coincidental and associated with
an overprint at another time. The mean direction of basal Gillen group 1 is similar to
that isolated from some sections of Johnny’s Creek siltstone such that the �95 error
ellipses overlap (figs. 8 and 10).

Between 320 °C and 450 °C, samples from the N623 section of dolostone grain-
stone with gypsum pseudomorphs achieve a quasi-stable endpoint with some move-
ment toward the origin prior to instability. As with the remanence direction isolated at
high-temperature for basal Gillen group 1, the �95 error ellipse for the mean overlaps
with that of component B from the post–Bitter Springs Johnny’s Creek Member.

Between 620 °C and 665 °C in samples from the N620 section of red siltstone, a
component is removed that decays to the origin. This component is directed to the
northeast with a quite shallow inclination and does not correspond to any remanence
direction isolated for other studied units in the Bitter Springs Formation. With only
one stratigraphic section through a unit that rarely is exposed within the heavily
deformed Gillen Member, we do not have additional context with which to evaluate
the age of this remanence.

The similarity in directions from the basal Gillen group 1 directions and the N623
directions may provide additional support for the more robustly constrained direction
of Johnny’s Creek component B. However, given the poor constraints on the high-
temperature remanences, the Gillen Member data do not feature prominently in the
discussion below.

Bitter Springs basalt flows.—Basalt flows occur at the top of the Bitter Springs
Formation in the easternmost Amadeus Basin (fig. 2). Generally, the basalts are deeply
weathered and outcrop poorly, but in rare localities the flows crop out coherently and
can be sampled for paleomagnetic analysis. The presence of vesiculated flow tops and
thin interflow siltstones support the interpretation that the basalts are extrusive lava
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flows (fig. 3). Figure 11 shows results from 7 analyzed flows of the Bitter Springs basalt
that revealed two components of magnetization (table 9):

1. Component A. Between the measurement of natural remanence and the ther-
mal demagnetization step at 200 °C, a component is removed from the basalt
flows that corresponds to the present local field in in situ coordinates (fig. 11).
This component is more tightly clustered when the Fisher mean is calculated
without correction for bedding tilt, and fails a fold test at 99 percent confidence
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Fig. 11. Equal area plots of the paleomagnetic directions from the post–Bitter Springs Stage Amadeus
Basin basalts. Directions are shown as the �95 ellipses of individual flows. The mean directions are marked
with a star and shown with an associated translucent light red �95 ellipse (calculated with Fisher statistics;
Fisher, 1953). The mean direction is displayed in in situ coordinates for the component removed at low
temperatures. For the high temperature components, the high inclination directions marked with a red “x”
were excluded from the calculated mean. The resulting mean from the six low inclination directions is
shown in tilt-corrected coordinates.
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(McElhinny, 1964). The mean calculated from the flow means for this compo-
nent (Dec of 006.2, Inc of �37.3, �95 of 10.7) is quite close both to the axial
dipole for the localities (Dec 000, Inc �41.5) and and the current IGRF2011
modeled field (IAGA-Working-Group and others, 2010; Dec of 004.7, Inc of
�55.7).

2. High-Temperature Components. There is not uniform thermal demagnetiza-
tion behavior between the various sampled flows, and flows behaved in the
following ways during paleomagnetic analysis:
(a) Removal of present local field component up into the highest thermal

demagnetization steps (N720 flow 1; N1122 flow 1).
(b) Removal of a component up to 580 °C, followed by instability or remanence

with present local field direction (N1068 Group 1; N1094; N1122 flow 3).
(c) Removal of remanence up to 580 °C with a prominent “shoulder” in the

demagnetization spectra. This inflection is followed by removal of a similarly
directed component at subsequent thermal demagnetization steps up to
670 °C (N1122 flow 2; N472 flow 2; N1068 group 2).

(d) No resolvable “shoulder” in demagnetization spectra at 580 °C with the
majority of remanence lost during thermal demagnetization steps above
600 °C (N472 flow 1; N720 flow 2).

Of the seven flows that yielded high temperature remanence directions distinct
from the present local field, six are loosely grouped in a single population in
tilt-corrected coordinates (fig. 11). The McElhinny (1964) fold test is inconclusive on
these directions, but a McFadden and McElhinny (1990) fold test is positive at the 95
percent confidence level with kmax at 85 percent unfolding (statistically indistinguish-
able from 100%). This result suggests that these remanence directions were acquired
prior to tilting associated with the Alice Springs Orogeny. The �95 error ellipse of the
tilt-corrected mean (Dec of 255.9, Inc of �1.3, �95 of 23.6) encompasses component C
of the Love’s Creek Member rendering the directions statistically indistinguishable
from one another.

rock magnetic data

Love’s Creek Member Carbonates
Coercivity spectra and IRM/ARM acquisition curves.—The coercivity spectra of Love’s

Creek Member carbonates show a distinct peak centered at �50 to 70 mT (fig. 12).
The coercivity of stochiometric magnetite is strongly controlled by grain shape.
Coercivities start at �15 mT for equidimensional grains where the coercivity is
dominated solely by multiaxial magnetocrystalline anisotropy, and can be as high as
�150 mT for an infinitely long magnetite rod with uniaxial anisotropy (Kopp and
Kirschvink, 2008). A coercivity of �50 mT could arise from a 50 nm long magnetite
particle that is twice as long as it is wide. The main peak of the coercivity spectra is
consistent with a population of magnetite. The width of the coercivity spectra peak is
narrower than that observed from detrital magnetite populations where broad spectra
arise from a range of particle sizes and shapes, is wider than that obtained from
magnetofossil cultures where biogenically precipitated magnetosomes have tightly
controlled size and shape distributions, and is similar to, but slightly wider than, data
obtained for recent carbonate muds on Andros Island on the Great Bahama Bank (fig.
12; Maloof and others, 2007). Fitting the main peak with a log-Gaussian distribution
does not achieve a tight fit at low coercivity, indicating that either the main magnetite
population is skewed to lower coercivities, or that there is another population with a
smaller contribution and a peak near that expected for magnetocrystalline anisotropy.

If this primary coercivity peak was the only coercivity distribution, dfIRM/dB
should return to zero at the high-field end of the displayed spectra (fig. 12). Instead,
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dfIRM/dB begins to rise above applied fields of 250 mT and does not come close to
peaking at saturation before the maximum applied field of 350 mT. This result
demonstrates that there are additional magnetic minerals present in the samples with
coercivities higher than 300 mT.

The crossover values (Cisowski R parameter) for the 18 room-temperature IRM
acquisition and AF demagnetization curves acquired for Love’s Creek Member carbon-
ates are quite close to 0.5 (average of 0.447 with 1� of 0.017) indicating that the
ferromagnetic grains are weakly interacting (Cisowski, 1981). The ARM acquisition
curves of the carbonates have high anhysteretic susceptibility plotting very near the
AMB-1 standard of non-interacting single domain magnetite (fig. 12). Since interpar-
ticle magnetostatic interactions significantly reduce ARM susceptibility, this result
provides further evidence that the magnetic material in the carbonates is well-
separated such that it is non-interacting, or very weakly interacting (Cisowski, 1981).

Mineral identification through low-temperature remanence behavior.—The low-tempera-
ture remanence experiments shown in figure 13 elucidate the magnetic mineralogy of
the Love’s Creek Member carbonates. The outcrop samples show dramatic increases in
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Fig. 12. IRM acquisition, AF demagnetization and ARM acquisition examples of samples of stroma-
tolitic carbonate from the Love’s Creek Member and red siltstones from the Johnny’s Creek Member. The
y-axis of the IRM acquisition plot is normalized to the moment at the peak applied field. The blue dotted line
in the ARM acquisition plots represents a sample of weakly to non-interacting intact AMB-1 magnetotactic
bacteria while the red dotted line is a sample of tightly packed, and highly interacting, chiton teeth
(Cisowski, 1981). The rightmost coercivity spectra show all 18 Love’s Creek Member samples analyzed
overlain on the coercivity spectra for a culture of elongate magnetosomes in chains (MV-1; Kopp and
Kirschvink, 2008), a surface sample of carbonate mud from the Great Bahama Bank and detrital magnetic
particles from the Wilson Creek Formation (Kopp and Kirschvink, 2008), and all 7 Johnny’s Creek Member
samples analyzed. These plots were generated and summary parameters obtained using the routines of Kopp
(ms, 2007).
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remanence upon cooling in the low-temperature cycling experiments that swamp all
other signals. Warming of the low-temperature IRM for these samples leads to a large
drop in remanence with a significant difference between the field cooled and zero-
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field cooled runs with the field cooled protocol leading to a much stronger sample
magnetization. Both the large difference between the ZFC and FC curves and the large
increase of the 30 K remanence upon cooling are diagnostic of the presence of
goethite (�FeOOH) within a sample, as is the tight correspondence between the
cooling and warming curves during low-temperature cycling (Rochette and Fillion,
1989; Dekkers, 1989; Maher and others, 2004; Liu and others, 2006; Berquó and
others, 2007). The presence of goethite in the outcrop samples also can explain the
high coercivity component that is inferred from the IRM acquisition coercivity spectra
(fig. 12). Goethite can not be the only magnetic mineralogy in these carbonates as it
has a Curie point of �120 °C (Özdemir and Dunlop, 1996) and there is significant
remanence beyond those temperatures in these carbonates. However, in outcrop
samples, the presence of the goethite masks the low-temperature behavior of other
contributors to the magnetic mineralogy and no other components can be recognized.

In order to get around the overwhelming influence of goethite on the low-
temperature behavior of the remanence, experiments were run on samples of Love’s
Creek Member carbonates from the Wallara-1 stratigraphic drill core (figs. 2 and 3).
The drill core is not oriented azimuthally and therefore was not targeted for study of
remanence direction. However, these samples of the same lithology give the opportu-
nity to probe the magnetic mineralogy of these carbonates where they have not been
subjected to surface weathering and associated goethite formation. Two significant
transitions are observed in the low-temperature remanence experiments of these drill
core samples (fig. 13): (1) the �120 K Verwey transition is evident both in the
low-temperature cycling experiments and the FC/ZFC warming experiments and
indicates the presence of near stoichiometric magnetite (Fe3O4) and (2) the �35 K
Besnus transition is evident by the significant remanence loss between 39 and 27 K
during low-temperature cycling that is diagnostic of the the iron sulphide pyrrhotite
(Fe7S8; Fillion and Rochette, 1988; Dekkers and others, 1989; Rochette and others,
1990).

“Wasp-waisted” hysteresis loops.—Hysteresis experiments on both outcrop and subsur-
face core specimens demonstrate “wasp-waisted” behavior that occurs when there are
multiple fractions of magnetic minerals with strongly contrasting coercivity (fig. 14;
Tauxe and others, 1996). Much emphasis has been placed on the hysteresis parameters
of carbonates as being diagnostic of primary versus secondary magnetization (for
example Jackson and others, 1992; McCabe and Channell, 1994; Tarduno and Myers,
1994; Channell and McCabe, 1994; Dunlop, 2002b; Weil and Van der Voo, 2002;
Elmore and others, 2006; Jackson and Swanson-Hysell, 2012). Originally proposed on
the basis of the hysteresis behavior of early Paleozoic Appalachian carbonates that are
interpreted to have undergone late Paleozoic remagnetization, high-values for the
ratio of the coercivity of remanence to the coercivity (Hcr/Hc) and “wasp-waisted”
behavior where the hysteresis loops are constricted about their middle have been
interpreted as indicative of remagnetization (Jackson, 1990; McCabe and Channell,
1994). It has been proposed that this behavior in remagnetized carbonates arises from
the presence of both stable single-domain and superparamagnetic magnetite, and that
the presence of magnetite grain populations that span the superparamagnetic to
single-domain size range boundary is a signature of chemical remagnetization (Jack-
son, 1990; Channell and McCabe, 1994; Dunlop, 2002b; Jackson and Swanson-Hysell,
2012). A bimodal coercivity distribution also can arise from multiple magnetic miner-
alogies that produces similar hysteresis behavior such as in Triassic carbonates from
northern Italy that contain both magnetite and pyrrhotite (Muttoni, 1995). Therefore,
the power of hysteresis loop parameters as a unique “fingerprint” for identifying
magnetite spanning the superparamagnetic to single-domain size range boundary is
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reserved for instances where there is a largely mono-mineralic population of magnetic
grains (Jackson and Swanson-Hysell, 2012).

In the case of the Bitter Springs Formation carbonates analyzed from subsurface
stratigraphic drill-core, the wasp-waisted behavior could be a result of the presence of
both pyrrhotite and magnetite in the samples and/or indicative of the presence of
significant superparamagnetic magnetite. The interpretation of multiple mineralogies
with contrasting coercivities (such as magnetite and pyrrhotite) contributing signifi-
cantly to this behavior is supported by non-linear demagnetization during backfield
demagnetization experiments. The large decrease in remanence from 10 to 30 K
during remanence upon warming experiments (fig. 13) indicates the presence of a
significant population of superparamagnetic grains whose remanence is unblocking
upon warming. It could be that these superparamagnetic grains are a significant
contributor to the constriction of the hysteresis loops and the resulting location of the
hysteresis parameters on the Day plot (fig. 14). For outcrop samples, the wasp-waisted
behavior could be a result of the presence of single-domain magnetite, superparamag-
netic magnetite, goethite and pyrrhotite. Some outcrop specimens have quite similar
hysteresis loops to core specimens (see A1085-59.9 in fig. 14), while others have a
distinct wider shape that do not approach saturation until close to 1 T as a result of the
presence of goethite that as a result significantly alters the hysteresis parameters (see
A1085-60.0 in fig. 14).
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Johnny’s Creek Member Siltstones
Coercivity spectra and IRM/ARM acquisition curves.—At the peak applied IRM of 900

mT, saturation of the magnetization of Johnny’s Creek Member siltstones had not
been achieved, indicating the presence of a high-coercivity component. Component
analysis through cumulative log-Gaussian modeling of the IRM acquisition curves
(Kruiver and others, 2001) reveals that the curves cannot be fit simply with one
high-coercivity component with a log-Gaussian distribution. Rather, low residual fits to
the curves are achieved by including a component with a coercivity of �50 mT in
addition to a component with a coercivity of �1 to 2 T. However, this lower coercivity
contribution (likely magnetite) to the overall IRM is quite small—between 1 to 2
percent for the 7 samples modeled. This result shows that the high-coercivity compo-
nent (hematite as revealed through thermal demagnetization) dominates the samples
magnetic mineralogy.

origin of the observed magnetizations

Love’s Creek Member Component A
The component of the Love’s Creek Member that is removed in the first steps of

thermal demagnetization corresponds quite closely to the present local geomagnetic
field in the study region (see the Paleomagnetic Results for the Love’s Creek Member section).
Given that IRM acquisition experiments demonstrate the presence of a high coercivity
component, and that low-temperature remanence experiments of outcrop samples
display the characteristic behavior of goethite, this component most likely is held by
the iron oxyhydroxide mineral goethite. Goethite has coercivities that often are many
hundreds of mT, but it is efficiently removed by thermal demagnetization due to its low
Néel temperature of �120 °C (Dunlop and Özdemir, 1997). Given that goethite forms
through oxidative surface weathering, it follows that this goethite component would
hold a recent magnetization corresponding to the present local field in the study area.
However, in addition to the remanence removed at low-temperatures, there is a
present local field direction that is removed by low-field AF demagnetization steps (0-7
mT). It is likely that the portion of the component that is readily removed by low-field
AF demagnetization is a viscous remanent magnetization of magnetite acquired during
the Brunhes epoch (the last 780 kyr). The interpretation of goethite as the primary
carrier of this remanence can be extended to the remanence removed by 120 °C in the
Gillen Member carbonates.

Love’s Creek Member Component B
The least-square fits to the mid-temperature component of the Love’s Creek

Member carbonates are best clustered at 5 percent unfolding—a statistically indistin-
guishable result from 0 percent unfolding (see the Paleomagnetic Results for the Love’s
Creek Member section). This result indicates that the mid-temperature component was
acquired when the sites were at their current structural attitude. As can be seen in
figure 7, all of these overprint poles (except for those at A1085) are quite similar to
Carboniferous poles for Australia. In particular, many of the overprint poles plot
within error of the Carboniferous (constrained to 350 	 7 by a U-Pb SHRIMP age on a
rhyolitic ignimbrite; Hutton and others, 1999) Connors Volcanics pole from the New
England Fold belt [argued to be representative of cratonic Australia at the time of
eruption by McElhinny and others (2003)]. The poles also plot within error to the
Mount Eclipse sandstone of the Amadeus Basin that was deposited in the latest
Devonian to early Carboniferous, but whose magnetization is interpreted to be a
syn-deformational remanence associated with the Alice Springs orogeny (Li and
others, 1989).
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Given that the rock magnetic experiments have indicated the presence of pyrrho-
tite in the Love’s Creek Member and that this mid-temperature component unblocks
up to temperatures of 300 to 320 °C, the component B direction most likely is held by
pyrrhotite (the Curie temperature for pyrrhotite is 320 °C). The similarity of this
direction to the Carboniferous poles for Australia suggests that it was acquired during
the late stages of the Alice Springs Orogeny. Numerous studies have recognized the
presence of secondary pyrrhotite as a syn- to post-folding magnetization in carbonate
lithologies, and have attributed the pyrrhotite formation to the tectonically-driven
migration of reducing fluids through porous sedimentary rock (Dinarès-Turell and
Dekkers, 1999; Weaver and others, 2002; Otofuji and others, 2003; Zegers and others,
2003). In such a scenario, pyrrhotite can form at the expense of already present
magnetite or pyrite, or can precipitate directly from fluid.

The presence of this post-folding pyrrhotite provides two temporal constraints for
the Alice Springs Orogeny: (1) in the eastern MacDonnell Ranges, structural tilting
effectively was complete by the early Carboniferous and (2) there was significant
tectonic activity in the Early to Late Carboniferous that could have lead to orogenic
fluid flow (or associated thermal activity). The timing of this paleomagnetically
inferred tectonism in the eastern MacDonnell Ranges is consistent with �330 to 310
Ma Ar/Ar ages of white micas from mylonite zones in the Arltunga Nappe Complex
�30 km to the northeast of the Ross River Region (Dunlap and others, 1991, 1995). In
addition to recording active tectonism in the region at the time of the pyrrhotite
formation, the trend of ages within the thrust sheet indicates a migration of tectonic
activity into the hinterland (northward). This result is consistent with the cessation of
structural tilting at the studied paleomagnetic localities prior to the pyrrhotite forma-
tion. The remagnetization associated with Alice Springs Orogeny tectonic activity is
limited to the pyrrhotite component in the carbonates, as it appears that both
magnetite and hematite paleomagnetic directions survived unaltered and record
directions that are distinct from Alice Springs Orogeny overprints.

Love’s Creek Member Component C
Low-temperature remanence experiments indicate the presence of magnetite

within the Love’s Creek carbonates (fig. 13). The high unblocking temperatures of
component C (400 °C to 530 °C) combined with the coercivity spectra and hysteresis
data demonstrate that component C largely resides in a population of single-domain
magnetite.

The regional fold test demonstrates that the data are significantly better grouped
in tilt-corrected coordinates than in situ coordinates, so this population of magnetite
can be constrained to have acquired its remanence prior to the Alice Springs Orogeny.
We are left to evaluate the question: Does component C of the Love’s Creek Member
represent a primary remanence from the time of the deposition of the carbonate, or
was its origin associated with the growth of a population of authigenic magnetite at
some other time prior to the Alice Springs Orogeny? We address this question by
considering the dual polarity directions of component C, the apparent polar wander
path for Australia prior to the Alice Springs Orogeny and the mechanisms through
which a carbonate rock can acquire a magnetization held by magnetite.

Dual polarity directions.—High-resolution sampling from the A1085 section re-
vealed that the high-temperature remanence is of dual polarity (component C of fig.
6); (fig. 15). The presence of reversals is taken as a reliability criteria in the evaluation
of paleomagnetic data (Van der Voo, 1990), so these two populations could, at first
glance, be considered to support an interpretation of the component C remanence as
a primary magnetization. However, there are a number of puzzling features related to
the reversed directions from the A1085 section. A McFadden and McElhinny (1990)
reversal test conducted on the A1085 directions is negative (with an angle between the
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two means of 40.3°) indicating that the null hypothesis of a common mean direction
for the normal and reversed directions is rejected with 95 percent confidence. The
reversed intervals are often quite thin (�0.5 m) in the A1085 section, but do not have a
clear relationship with lithofacies.

The N49B section covers the same stratigraphic range as part of the A1085 section
with multiple reversals, but is of single “normal” polarity. In order to evaluate whether
there is a dependence of polarity on magnetic mineralogy, the high-temperature
demagnetization behavior of specimens from the A1085 section are plotted in figure
15. The temperature at which a population of magnetic minerals unblocks is con-
trolled by changes in both chemical composition and grain size. Given that there is no
expected correlation between chemical composition or grain size of the magnetic
minerals holding the high-temperature remanence with the polarity of the geomag-
netic field, the expectation is that, if both of these polarities are a primary remanence,
there should be no notable difference in their thermal demagnetization spectrum.
However, a distinct spectra of thermal demagnetization is present in the A1085
samples with “reversed” component C magnetization (NE declination and upper
hemisphere inclination) compared to those with a “normal” magnetization (WSW
declination and shallow inclination). In “reversed” specimens, the high-temperature
component is removed at higher temperatures leading to a more “blocky” demagneti-
zation curve where there is a narrower range of temperatures over which the compo-
nent is unblocked. This result suggests that there are two populations of magnetite
with different size distributions/stoichiometry that hold similar directions, but of dual
polarity. At least one of these populations must not be the primary remanence.

Comparison to the APWP.—The reliability of a given paleomagnetic pole is in-
creased if that pole does not fall on younger portions of the apparent polar wander
path (APWP) for that continent (Van der Voo, 1990). This reliability criteria becomes
more difficult to fulfill with older and older poles, as the likelihood increases of an
overlap with younger paleomagnetic poles that is not due to remagnetization. One
prominent example of such of overlap, that is largely accepted as a primary feature of
the record, is the proximity of mid-Neoproterozoic poles of the Laurentian APWP to
300 million year older late-Mesoproterozoic poles forming the so-called “Grenville
Loop.” Nevertheless, pole overlap in general is a cause for skepticism of primary
remanence, particularly if the portion of the APWP that the older remanence overlaps
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Fig. 15. High-temperature thermal demagnetization spectra for Love’s Creek Member carbonates
normalized to the magnetization at the 340 °C demagnetization step (a temperature by which the MT
component is removed). The spectra for samples with a reversed magnetization (NE declination and upper
hemisphere inclination) from A1085 are colored red while the spectra for normal samples from A1085,
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with is a time period associated with orogenesis or burial. In the case of the pole for the
Love’s Creek Member carbonates, the pole falls directly on the pole obtained for the
Hugh River Shale and Jay Creek Limestone (Cambrian sediments from the Amadeus
basin; fig. 16; Mitchell and others, 2010). While the timing of remanence acquisition of
these middle Cambrian sediments are not constrained by a field test, the tight
correspondence between the Love’s Creek pole and the Hugh River/Jay Creek poles
suggests that either the Love’s Creek Member was undergoing remagnetization at the
time of Hugh River/Jay Creek Formation deposition, or that both the Love’s Creek
Member and the Hugh River/Jay Creek were remagnetized in the late Cambrian. The
Hugh River/Jay Creek poles, and correspondingly the Love’s Creek member pole, are
quite close to the late Cambrian Black Hill Norite pole of south Australia (A-BHN) and
Cambrian poles from south Australia sediments such as the Kangaroo Island red beds
(A-Flin-KangI). This correspondence provides further evidence that this pole position
corresponds with the late Cambrian/early Ordovician APWP (fig. 16).

Primary magnetite in carbonates.—Primary magnetite in carbonates could be intro-
duced through a detrital flux or through the biogenic production of magnetite by

Late
Meso-
proterozoic

Tonian

Cryogenian

Ediacaran

Cambrian

An-SD

Asw-BBS

An-WTD

A-GBL

An-lAr

A-Todd

A-uAr

An-ADS

Johnny’s
Creek

Late Mesoproterozoic to Ordovician Australian Poles
(Li and Evans, 2011 rotation applied to S and W poles)

A-BHN

A-HR-JC

Amadeus
Basalt

A-Flin-KI

A-Flin-Bil

A-HR

A-Flin-KangI
A-JCa

South and West Australia poles shown 
without Li and Evans, 2011 rotation 

A

B

Precambrian south+west
Australia poles

Precambrian south+west
Australia poles

Asw-BBS

Asw-NL
Asw-MD

Asw-L1b

Asw-EM
Asw-YF

Asw-Brach

Asw-Bun

An-SD

An-WTD

A-GBL

An-ADS

Johnny’s
Creek

A-BHN

A-HR-JC

Amadeus
Basalt

A-Flin-Bil

A-HR

A-JCa

Asw-NL

Asw-MD

Asw-L1b

Asw-EM

Asw-YF

Asw-Brach

Asw-Bun

Love’s Creek

Love’s Creek

Fig. 16. Mollweide projection of Late Mesoproterozoic to Ordovician paleomagnetic poles from
cratonic Australia. In (A) Proterozoic South and West Australia poles have been rotated with the hypoth-
esized 40° rotation of (Li and Evans, 2011) into North Australia coordinates. The unrotated positions of
those poles are shown in (B). The abbreviations for the paleomagnetic poles are keyed out in tables 4 and 10.
Paleomagnetic poles from this study are accentuated with red lines around their A95 ellipses and labels. The
Johnny’s Creek and Love’s Creek poles displayed are those calculated as the Fisher mean of section (with �6
samples) mean VGPs. The Amadeus Basalt pole is calculated as the Fisher mean of individual flow VGPs.

859Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Australia



magnetotactic bacteria (Blakemore, 1975; Maloof and others, 2007; Kopp and Kirsch-
vink, 2008) and/or extracellular production through microbial Fe reduction (Li and
others, 2004a). However, within the sediment column, there frequently is a tendency
for reductive dissolution of magnetite followed by the production of magnetic iron
sulfides associated with sulfate reduction (Hilgenfeldt, 2000; Housen and Moskowitz,
2006; Maloof and others, 2007). With less sulfate in Proterozoic waters and the
potential for less organic matter without the presence of terrestrial organics (such as
sea grasses and mangrove roots), reductive dissolution of magnetite may have been less
aggressive in Precambrian shallow-water carbonates. More pervasive microbial binding
in the Proterozoic would have led to more facies with early cementation and an
increased potential for primary magnetite preservation. There are numerous examples
of ancient carbonate magnetizations held by magnetite that are of convincingly
primary origin including: the Mesoproterozoic Riphean carbonates of the Uchar-Maya
Region (Pavlov and Gallet, 2010); the Neoproterozoic Svanbergfjellet Member of East
Svalbard (Maloof and others, 2006); and Cretaceous Chalks of southern England
(Montgomery and others, 1998). These considerations and examples demonstrate that
the possibility of the magnetite remanence being primary exists and should not be
rejected without careful consideration.

However, given the peculiar correspondence between magnetic mineralogy and
polarity in the A1085 section, the failure of a reversal test in the A1085 section, the lack
of reproducible reversal stratigraphy across the Love’s Creek Member, and the overlap
with the Cambrian APWP, it appears likely that the Love’s Creek component C is a
remagnetization. Nevertheless, given the potential for spurious APWP overlap and the
positive fold test result, we will briefly consider the implications of a syn-depositional
origin for component C in the discussion.

Authigenic magnetite formation.—Remagnetization of carbonates with remanences
carried by magnetite have been identified in numerous studies, both in fold and thrust
belts and in cratonic interiors (for example Jackson, 1990; McCabe and Channell,
1994; Xu and others, 1998; Elmore and others, 2006). There are two main mechanisms
that have been invoked to explain authigenic magnetite formation in carbonates:

(1) precipitation of authigenic magnetite during the migration of orogenic fluids
(for example Miller and Kent, 1988; McCabe and Elmore, 1989) and (2) the formation
of magnetite associated with the smectite to illite conversion during burial diagenesis
of clay (Katz and others, 1998; Tohver and others, 2008). In either scenario, the
authigenic growth of magnetite could lead to grains too small to stably hold a
remanence (superparamagnetic) as well as grains that grew large enough to be in the
single domain size range where they would be thermally stable and acquire a secondary
remanence. A magnetite population spanning the superparamagnetic to single do-
main size range could explain the rock magnetic behavior of some remagnetized
carbonates such as the hysteresis parameters discussed above. A mix of superparamag-
netic and single-domain magnetite within the Love’s Creek Member carbonates is
consistent with the rock magnetic data, although this size distribution, while character-
istic of remagnetization, is not necessarily indicative of it (see discussion in Jackson and
Swanson-Hysell, 2012).

The orogenic fluid hypothesis arose due to the observation that the origin of
carbonate remagnetization in many instances had close temporal association with
nearby mountain-building. The most well-studied example of such remagnetization is
that of early Paleozoic carbonates in eastern north America that were remagnetized
during the late Paleozoic Alleghanian orogeny (Miller and Kent, 1988; McCabe and
Elmore, 1989). This remagnetization is well-constrained both by APWP comparison
and fold tests on the Alleghanian fold-thrust belt that in some cases indicate a
post-folding acquisition of magnetite remanence, while in other cases suggest that
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magnetite remanence was acquired while folding was active (McCabe and others, 1983;
Elmore and others, 2001). Some authors have critiqued the orogenic fluid hypothesis
for magnetite formation on the basis of the spatial pervasiveness of chemical remanent
magnetizations held by secondary magnetite and, in some cases, the lack of evidence
for geochemical alteration by such fluids (Katz and others, 1998; Elmore and others,
2001).

Regarding the clay alteration burial diagenesis hypothesis, compilations of the
illitization of smectite in shales show that the conversion begins at temperatures of �60
to 70 °C and is effectively complete upon burial to temperatures of 100 to 120 °C
(Srodon and Eberl, 1984). As a result, the transformation of smectite to illite is
effectively complete by depths of �3 to 4 kilometers depending on the local geother-
mal gradient as well as the concentration of potassium (Cuadros, 2006). The hypoth-
esis that smectite alters to illite�magnetite is predicated on the fact that there are
cations in the crystal structure of smectite (Ca, Fe and Mg) that do not become
incorporated into the resulting illite and therefore form other minerals (Chamley,
1989).

There are currently two positive presence-absence tests in the literature for the
hypothesis that illitization can be accompanied by the production of significant
populations of authigenic magnetite. These tests demonstrate the presence of second-
ary magnetite in portions of basins without smectite, but not in portions of the basin
where original smectite clays have gone unaltered (Katz and others, 2000; Woods and
others, 2002). Similarly, a transect of the Devonian Onondaga Limestone across New
York State found a correlation between the degree of illitization and the amount of
magnetite (Jackson and others, 1988; McCabe and Elmore, 1989). 40Ar/39Ar dating of
fine-grained illite fractions from Ediacaran carbonates of the São Francisco Craton and
Devonian carbonates of Iberia have given ages that roughly coincide with the predicted
ages of remagnetization on the basis of pole comparison to the respective APWP
(Tohver and others, 2008; D’Agrella-Filho and others, 2008). This illitization mecha-
nism provides a means for authigenic magnetite formation at relatively low-
temperatures and predicts that the origin of the magnetite’s CRM should date to a
time of increased burial. Interpreting the similarity of Love’s Creek Member compo-
nent C to the Cambrian portion of the APWP for Australia as a result of magnetite
formation from the smectite-to-illite alteration would require significant subsidence
and sediment accumulation at this time in the Amadeus Basin.

In the late Ediacaran, the Love’s Creek Member of the Bitter Springs Formation of
the northern outcrop region where the paleomagnetic data samples were collected
(fig. 2), was shallowly buried under �1.2 km of Cryogenian and Ediacaran sediments.
By the end of the Ordovician (taking the stratigraphy at Ellery Creek as an example),
the Love’s Creek Member was buried under �3.9 km of sediments. For an average
geothermal gradient of 30 °C/km and an average surface temperature of 15 °C, the
Love’s Creek Member would have been outside the illitization window at the Precam-
brian-Cambrian boundary (�51 °C) and would have moved through it during the
early Paleozoic (�99 °C at the Cambrian-Ordovician boundary; �132 °C at the end of
the Ordovician). The timing of the potential remagnetization as inferred by APWP
comparison is consistent with burial diagenesis and authigenic magnetite formation
through transformation of smectite to illite during the late Cambrian.

Johnny’s Creek Member component A.—Component A in the Johnny’s Creek siltstones
corresponds quite closely with the present local geomagnetic field (see the paleomag-
netic results section). The component is predominantly removed at low tempera-
tures (up to 200 °C), but can continue to be removed during thermal demagnetization
steps up to �400 °C. This thermal demagnetization behavior indicates that the
component is not held solely by goethite. Instead, this component in these hematite-
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rich sediments is most likely a viscous overprint of hematite acquired during the
Bruhnes epoch.

Johnny’s Creek Member component B.—The high-temperature component of magneti-
zation of the siltstones of the Johnny’s Creek Member is dominated by hematite
(�Fe2O3). After removal of the present local field overprint very little remanence is lost
until thermal steps above 665 °C (fig. 5). This high unblocking temperature indicates
that the magnetic mineral responsible for the ChRM in these samples is hematite,
which has a Néel temperature of 675 °C (Dunlop and Özdemir, 1997). Given that this
component passes a regional fold test (indicating that the magnetization was acquired
prior to Paleozoic folding), that its pole position can reasonably connect to the other
poles of the Neoproterozoic Australian APWP, and that it does not lie directly on the
APWP prior to the timing of tilting, we interpret this remanence direction as a
primary/early diagenetic magnetization.

Bitter Springs volcanics high-temperature component.—The high-temperature compo-
nents isolated in the Bitter Springs volcanics form a poorly defined cluster in a similar
direction to Love’s Creek Member component C (fig. 11). Like the pole calculated for
that component, the pole for the Amadeus Basalts (calculated as the Fisher mean of
individual flow VGPs) falls on the late Cambrian portion of the Australia APWP path
(fig. 16). This result indicates that the volcanics may have been remagnetized in the
time period associated with the Petermann Orogeny and further subsidence in the
basin. The volcanics are spilitic such that the original plagioclase is now albite (Wells
and others, 1970). It is possible that either burial alteration or metamorphic fluids
resulted in a late Cambrian overprint. The basalts contain significant magnetite (as
evidenced through the expression of the Verwey transition in low-temperature rema-
nence experiments; fig. 13) and often are characterized by a component that unblocks
up to the Curie temperature of magnetite. These results suggest that remagnetization
would involve the growth of secondary magnetite, although thermal viscous overprints
can have anomalously high unblocking temperatures approaching the Curie tempera-
ture of magnetite if the grain assemblage is dominated by multidomain grains (Dunlop
and others, 1997). If the cluster of these directions does represent a primary magneti-
zation, the paleopole would imply oscillatory motion, off of and then back to the
currently defined APWP, subsequent to that inferred in Svalbard for the Bitter Springs
Stage.

paelogeography discussion

The “Grenville Loop” and Quantitatively Constraining Paleogeography with
Paleomagnetic Data

The paleomagnetic database between 1050 and 700 Ma in Australia currently is
quite limited with the 755 Ma pole from the Mundine Well dike swarm serving as the
only robust paleomagnetic pole (fig. 1; table 10). The new paleomagnetic pole from
the Johnny’s Creek Member siltstones dates to �780 to 760 Ma on the basis of the
lithostratigraphic correlation of the Areyonga formation to the Sturtian glaciation and
the correlation of the composite carbon isotope record to the global database (green
bar labeled “An-JC” in fig. 1). These correlations lead to U/Pb age constraints from
NW Canada (811 Ma; Macdonald and others, 2010) and Namibia (760 Ma; Halverson
and others, 2005) that bracket the portion of the stratigraphy from which the Johnny’s
Creek Member data are obtained. With this approximate age of 770 Ma, the Johnny’s
Creek Member pole becomes the only result between the Alcurra dike Swarm pole
(�1065 Ma) and the Walsh Tillite cap (�635 Ma) for north Australia and can be used
to test paleogeographic models.

In contrast to the Australian record, the APWP from North America (Laurentia) is
much better developed and defines a path known as the “Grenville Loop” (McWilliams
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and Dunlop, 1975; Weil and others, 1998; fig. 17). Efforts to quantitatively constrain
early Neoproterozoic paleogeography with paleomagnetic data have been focused on
comparing the poles from other cratons to these Laurentian data. The hypothesis of a
cohesive Rodinia supercontinent leads to the testable hypothesis that the APWP of
other continents should trace out similar loops during this time interval. Similarity of
the paleomagnetic database of Baltica (the so-called “Sveconorwegian loop”) with the
“Grenville Loop” has been presented as evidence for a position of Baltica off of NE
Laurentia throughout the Meso- to Neoproterozoic transition (Morris and Roy, 1977;
Weil and others, 1998; Pisarevsky and others, 2003a)—a connection that is supported
through geological correlation (Cawood and Pisarevsky, 2006). This approach of
comparisons to the Laurentian APWP was applied to all continents in an effort to
develop an all-inclusive and paleomagnetically viable Rodinia reconstruction by Weil
and others (1998), by Li and others (2008), and again by Evans (2009) whose approach
with an updated paleomagnetic database led to a radically revised reconstruction.

Table 10

Proterozoic paleomagnetic poles from Australia

pole  abbr Pole 
(°N) 

Pole 
(°E) 

A95(°) Age (Ma) Reference 

South+West Australia 
Marnda Morn mean  Asw-MM -48 148 15.5 ~1200 Evans (2009) 
Bangemall Basin Sills  Asw-BBS 33.8 95 8.3 1070±6 Wingate and others 

(2002) 
Lancer Browne 
Formation  

Asw-L1b 44.5 141.7 6.8 ~820 Ma Pisarevsky and 
others (2007) 

Mundine Well Dykes  Asw-MD 45.3 135.4 4.1 755±3 Wingate and 
Giddings (2000) 

Yaltipena Formation  Asw-YF 44.2 172.7 8.2 ~640 Sohl and others 
(1999) 

Elatina Formation Mean Asw-EM 49.9 164.4 13.5 ~636 as compiled in Li 
and Evans (2011) 

Nuccaleena Formation  Asw-NL 32.3 170.8 2.9 ~635 Schmidt and others 
(2009) 

Brachina Formation  Asw-
Brach 

33.0 212.0 15.5 ~630 Schmidt and others 
(2009) 

Bunyeroo Formation  Asw-Bun 18.1 196.3 8.8 ~600 Schmidt and 
Williams (1996) 

North Australia   
Lakeview Dolerite  An-LD -9.5 131.1 17.4 1141±6 Tanaka and Idnurm 

(1994) 
Alcurra Dykes and Sills  An-ADS 2.8 80.4 8.8 1066-1087 Schmidt and others 

(2006) 
Stuart Dykes  An-SD -10.0 82.0 10.0 1057-1069 Idnurm and 

Giddings (1988) 
preliminary result 

Bitter Springs 
Formation Johnny's 
Creek Member  

An-JC 15.8 83.0 13.5 780-760 this study 

Walsh Tillite Cap 
Dolomite  

An-WTD 21.5 102.4 13.7 ~635 Li (2000) 

upper Pertatataka Fm 
and lower Arumbera Fm 

An-lAr 44.3 161.9 10.2 ~560-545 Kirschvink (1978) 
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While some of the specifics concerning the direction of pole progression in the
“Grenville Loop” are debated (see summary in Weil and others, 2006), a principal
pattern that emerges from the database is that high quality paleomagnetic poles of late
Mesoproterozoic age (�1070 Ma) and early-mid-Neoproterozoic age (�750 Ma) are of
similar geographic position (fig. 17). This feature of the record sets up a prediction
that any continent that was conjoined to Laurentia during its early Neoproterozoic
wandering should also have tight spatial correspondence between 1070 Ma and 770 Ma
paleomagnetic poles as well as a similar loop away from this position in the intervening
time period (fig. 17); (table 11).

A Tale of Two Australias
In an effort to reconcile coeval, but disparate, paleomagnetic poles of Paleopro-

terozoic, Mesoproterozoic and Neoproterozoic age between northern and
south�western Australia, Li and Evans (2011) proposed a large-scale rotation between
those portions of the continent. The timing of this relative rotation is proposed to
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Fig. 17. The late Mesoproterozoic to early Neoproterozoic “Grenville Loop” apparent polar wander
path of North America and poles of similar age from India and north Australia are shown in equal area
projections. The poles for India and north Australia have been rotated so that they correspond to the
Laurentia path (as was done for the reconstruction in fig. 18) and are shown in Laurentia coordinates for the
purpose of comparison. The abbreviations for the paleomagnetic poles are keyed out in table 11 except for
poles of the Grenville Province from Brown and McEnroe (2012) that are Adirondack fayalite granite
(L-ADK1), Adirondack metamorphic anorthosites (L-ADK2) and Adirondack microcline gneisses (L-
ADK3). The ages of these poles are derived from cooling age calculations (Brown and McEnroe, 2012). The
age assignment for the Keweenawan sedimentary poles is approximate and is detailed in the discussion.
Other poles that have been obtained from the Grenville Province are of similar direction to the L-ADK poles
and, as discussed in the text, the difficulty in obtaining robust age estimates has led to debate as to whether
the “Grenville Loop” is of clockwise or counter-clockwise vorticity. Regardless, the APWP moves to
dramatically different latitude from the sedimentary poles of the Keweenawan Rift (L-NS, L-FS, L-JS and
L-CS) before returning to a similar pole position as those poles at �780 Ma thereby closing the loop. This
proximity between poles of �1080 to 1070 Ma and �770 Ma is a feature of the Australian record (similar
positions between the Asw-BBS, An-ADS and An-SD poles and the new Johnny’s Creek Member pole) and
the Indian record (similar positions of the I-Wj and the I-M poles).
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correspond with the end-Neoproterozoic Petermann orogeny when there was large-
scale shortening in central Australia whose structural geometry, metamorphic fabrics
and inferred kinematic history have been compared to that of the Himalayan orogen
(Raimondo and others, 2010). Relative rotation between N and SW Australia is an
elegant and feasible paleogeographic solution that brings three sets of key paleomag-
netic poles into closer alignment (fig. 16): �1800 Ma Elgee-Pentecost (northern
Australia) to �1800 Ma Frere Formation (western Australia); 1066 to 1087 Ma Alcurra
dike Swarm (An-ADS; northern Australia) to 1070 	 6 Ma Bangemall Basin Sills
(Asw-BBS; western Australia); 755 	 3 Ma Mundine Well dikes (Asw-MD; western
Australia) to �710 to 635 Ma Walsh Tillite cap dolomite (An-WTD; northern Austra-
lia).

However, such a rotation has the effect of putting an additional degree of freedom
into the exercise of generating an Australian APWP to compare to the Laurentian
“Grenville Loop.” While Li and Evans (2011) favor a 40° rotation, slight differences in
the age of the poles as well as the A95 confidence ellipses on the poles themselves mean
that there is a range of rotation values that would fit the hypothesis. This complexity
adds uncertainty to using poles from between the two sub-cratons to develop a single

Table 11

Proterozoic paleomagnetic poles from Laurentia
pole  abbr Pole 

(°N) 
Pole 
(°E) 

A95 

(°) 
Age 
(Ma) 

Reference 

Mackenzie Dykes  L-MD 4 190 5 1267±2 Buchan and Halls (1990) 

Sudbury Dykes  L-SD -3 192 3 1235+7/-3 Palmer and others (1977) 

Abitibi Dykes  L-AD 43 209 14 1141±1 Ernst and Buchan (1993) 

Logan sills  L-LS 49 220 4 1109±3 Buchan and others (2000) 

Osler Volcanics  L-OV 43.7 196.3 7.6 1105±2 Halls (1974) 

North Shore Volcanic 
Group (upper) 

L-NSVG 36.7 182.3 3.6 1098.4±1.9, 
1096.6±1.7 

Tauxe and Kodama (2009) 

Portage Lake 
Volcanics  

L-PL 27.3 178.3 4.8 1095±3 Hnat and others (2006) 

Lake Shore Traps  L-LST 22.2 180.8 5 1087±2 Diehl and Haig (1994) 

Nonesuch Shale  L-NS 7.7 178.2 5.9 <1087 Henry and others (1977) 

Freda Sandstone  L-FS 3.7 179.1 4.8 <L-NS (deposited during 
active rift volcanism) 

Henry and others (1977) 

Jacobsville Sandstone L-JS -9.3 183.6 4.7 < L-FS Roy and Robertson (1978) 

Chequamegon 
Sandstone 

L-CS -12.3 177.7 4.6 < L-FS,~upper L-JS McCabe and Van der Voo 
(1983) 

Haliburton Intrusives  L-HI -32.6 141.9 6.3 1015±15 Warnock and others (2000) 

Nankoweap 
Formation  

L-NF -10 163 4.9 <942 Ma Weil and others (2003) 

Gunbarrel dykes and 
sills 

L-GB 9.2 138.7 9.0 782-776 Harlan and others (2008) 

Uinta Mountain 
Group 

L-UM 0.8 161.3 4.6 780-742 Weil and others (2006) 

Galeros Formation  L-GF -2.1 163 6.0 804±20 Weil and others (2004) 

Kwagunt Formation  L-KF 18.2 166 7.0 older than 742±6 Weil and others (2004) 

Franklin Event Grand 
Mean 

L-FLIP 8.4 163.8 2.8 721-712 Denyszyn and others (2009) 

Long Range Dykes  L-LRD 19.0 355.3 17.4 615±2 Murthy and others (1992) 
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APWP. As a result, we lose some degree of confidence in applying the 755 Ma Asw-MD
pole to constrain the relative position between the northern Australian craton and
Laurentia. Intriguingly, the proposed relative rotation of Li and Evans (2011) has the
effect of bringing the 755 Ma Asw-MD into much better agreement with the �770 Ma
Johnny’s Creek Member pole (An-JC; northern Australia) developed herein from the
Bitter Springs Formation. Without the rotation, the minimum arc distance between
the poles is �50°, while with the rotation the A95 error ellipses slightly overlap (fig. 16).
Thus, this result constitutes a positive test of the relative rotation hypothesis. The
importance of this test is amplified by the realization that the Asw-MD/An-WTD is the
weakest of the pole pairings utilized by Li and Evans (2011) because of the likely
Marinoan age (�635 Ma) of the Walsh Tillite cap carbonate (An-WTD)—as opposed
to Sturtian age (�700 Ma) as has been previously argued (Li, 2000). A Marinoan age
assignment for the Walsh Tillite cap carbonate is supported by a high-degree of
lithological and carbon isotopic similarity between it and other �635 Ma cap dolo-
stones (Corkeron, 2007). The proposed Li and Evans (2011) rotation does bring the
An-WTD pole closer towards agreement with the correlative Nuccaleena Formation
pole from south Australia (Asw-NL; fig. 16). Given that the Asw-MD and An-JC poles
are much closer to time-equivalents, their reconciliation through the proposed rota-
tion from their otherwise disparate positions can be considered a more robust positive
test of the rotation from a set of mid-Neoproterozoic poles.

Implications of the Johnny’s Creek Pole for an Australia–West Laurentia Connection
Comparisons of Neoproterozoic stratigraphy, timing of conjugate rift-drift mar-

gins and proposed alignments of Grenville-aged orogenic belts originally spawned the
proposed late Mesoproterozoic connection between Australia and West Laurentia
(Bond and others, 1984; Hoffman, 1991; Dalziel, 1991; Moores, 1991) at a time when
there were few paleomagnetic data to test the configuration. An important feature of
paleogeographic models in the time of Rodinia and Gondwana is that they maintain a
connection between southern Australia and East Antarctica (Mawsonland). The
connection of Mawsonland to southern Australia gains supporting evidence from the
marked similarities between the Grenville-age orogenic Albany-Fraser belt of southwest
Australia and the Bunger Hills region of East Antarctica (Duebendorfer, 2002), and a
continuous connection between these two continents is thought to have been main-
tained until they rifted apart at �95 Ma (Veevers and Eittreim, 1988). Recently, the
geological basis for a SouthWest North America East Antarctica (SWEAT) style
connection has been argued to be reinforced by the finding that �1.4 Ga rapakivi
granites of East Antarctica have very similar neodymium and hafnium isotopic signa-
tures to coeval granites from southern Laurentia (Goodge and others, 2008). New data
from East Antarctica also have revealed the presence of orthogneiss with a 1.1 Ga
igneous age, which may represent a continuation of the Laurentian Grenville belt
(Goodge and Fanning, 2010). This interpretation resolves the problem of some
SWEAT-style reconstructions that had the Grenville province abruptly terminating at
the SW Laurentia rift margin with no known equivalents in East Antarctica. A discovery
of Grenville-age magmatic rocks on the South Tasman rise were argued by Fioretti and
others (2005) to be a correlative of the Llano uplift granite suite in Texas and thus a
more northerly piercing point for a continuation of the Laurentian Grenville prov-
ince—a connection that would be consistent with the AUSWUS connection that has
Australia (rather than Antarctica) aligned with southwest Laurentia.

Paleomagnetic data from the 1070 	 6 Ma Bangemall Basin sills (Asw-BBS) were
compared to the Laurentia APWP by Wingate and others (2002) and used to argue that
neither SWEAT nor AUSWUS were paleomagnetically feasible in the late Mesoprotero-
zoic. Their favored reconstruction had Australia so that the northernmost margin of
eastern Australia was aligned with the southernmost margin of west Laurentia. How-
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ever, with the position of the Bangemall basin to the south of the Paterson orogeny (a
time-equivalent and probable extension of the Petermann Orogeny; Bagas, 2004), the
Bangemall sill pole becomes part of the S�W Australia block in the Li and Evans
(2011) model and the resulting rotation of the pole allows for a more northerly
position for Australia relative to Laurentia (in present-day coordinates) as in Li and
Evans (2011) and figure 18.

The most striking characteristic of the new �770 Ma Johnny’s Creek pole is its
similarity to the late Mesoproterozoic Alcurra dike swarm (An-ADS) pole (figs. 16, 17,
and 18). This close proximity between a latest Mesoproterozoic pole (An-ADS) and
mid-Neoproterozoic poles (the Johnny’s Creek pole) is quite similar to the Laurentian
APWP (fig. 17). This result thus constitutes a successful test from north Australia of a
continual connection of Australia with Laurentia across the Meso- to Neoproterozoic
transition as it is consistent with the closure of the APWP as predicted by the Grenville
loop (fig. 17).

The Johnny’s Creek pole can be used to constrain the relative position between
north Australia and Laurentia within Rodinia using the now reinforced hypothesis that

Reconstruction 1: Long-lived Antarctica-SW Laurentia connection
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Fig. 18. Paleogeographic reconstruction discussed in section titled Implications of the Johnny’s Creek Pole
for an Australia–West Laurentia Connection that constrains the relative paleolongitude of Australia, Laurentia
and India on the basis of supercontinent coherency and the direct comparison between late Mesoprotero-
zoic (�1070 Ma) and mid Neoproterozoic (�770 Ma) poles (fig. 17). The left equal-area projection displays
poles from Laurentia, northern Australia and south�west Australia. The right equal-area projection displays
poles from Laurentia (including Svalbard), India and south China while the center Mollweide projection
shows the resultant paleogeography resulting from this pole comparison. The abbreviations for the
paleomagnetic poles are keyed out in tables 10, 11, and 12.
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there was a continuous connection between the two continents between 1070 Ma and
770 Ma with minimal relative motion. With that working hypothesis, time-equivalent
paleomagnetic poles from north Australia and Laurentia can be aligned to determine
relative longitudinal as well as latitudinal positioning (fig. 18).

Li and Evans (2011) recently argued that such a connection between Australia and
Laurentia must have been established post-1070 Ma as they considered the An-ADS
pole (along with the rotated Bangemall Sill pole) to be incompatible with Laurentian
APWP path at the time (the “Keweenawan Track”). They argued that the An-ADS pole
would be expected to correspond with a gap between the youngest Keweenawan
volcanics pole (the 1087 Ma Lake Shore Trap pole from lava flows within the Copper
Harbor Conglomerate; Diehl and Haig, 1994) and the poles from Keweenawan
sediments which they assign to be 1050 Ma (an age that was originally assigned to the
units prior to precise geochronological control within the rift; Henry and others,
1977). However, given that the youngest Keweenawan volcanic pole is 1087 Ma, and
that the Keweenawan record of volcanism shows continued rapid equatorward motion
(Davis and Green, 1997; Swanson-Hysell and others, 2009), there is no reason to infer a
35 million year age gap between the eruption of the Lake Shore Traps (1087 	 2 Ma)
and the deposition of early Keweenawan Rift sediments such as Nonesuch Shale
(L-NS) and Freda Sandstone (L-FS). This interpretation of a short temporal gap is
supported by the fact that Nonesuch Shale and Freda Sandstone are conformable with
the Copper Harbor Conglomerate, with the lower Nonesuch Shale interfingering with
the conglomerate representing the more distal facies to time-equivelant alluvial fan
facies (Elmore and others, 1989). Furthermore, the Freda sandstone itself is intruded
by a volcanic plug (“the Bear Lake body”; Nicholson and others, 1997). Although this
intrusion has not been dated, it is unlikely to be significantly (that is 10s of millions of
years) younger than the youngest dated igneous activity in the Keweenawan rift (the
1086.5 � 1.3/�3.0 Ma Michipicoten Island Formation quartz-feldspar porphyry;
Palmer and Davis, 1987). As a result, the Nonesuch Shale and Freda Sandstone poles
likely date to be older than the �1070 Ma An-ADS and Asw-BBS poles in contrast with
the interpretation used by Li and Evans (2011). We instead consider the poles of the
stratigraphically-higher Jacobsville Sandstone (L-JS) and Chequamegon Sandstone
(L-CS), and the gap between these poles and the Freda-Nonesuch poles, to be likely
time-equivalents to the �1070 Ma An-ADS, An-SD and Asw-BBS poles and thus ripe for
comparative analysis.

For this comparative pole analysis (fig. 18), the Johnny’s Creek pole is aligned with
the time-equivalent Uinta Mountain pole to constrain the paleolatitudes of both
Australia and Laurentia. The southwestern Laurentia poles are utilized as opposed to
the pole calculated from 6 VGPs of the contemporaneous Gunbarrel Magmatic event
of northwestern Laurentia as their closeness to the Mesoproterozoic Laurentia poles
forms the tight closure of the Grenville Loop that is paralleled in the Australian data.
Following alignment of the Neoproterozoic poles, the relative longitudinal position of
the two continents is then constrained through rotation until the �1070 Ma Australian
poles are aligned with the Jacobsville/Chequamegon poles. The result of this analysis is
a positioning between Laurentia and Australia in which there is a tight connection
between Mawsonland and southern Laurentia, but a significant gap between Australia
and Laurentia. This relative positioning is quite similar to reconstruction of Laurentia
and Australia in the “missing-link” model of Li and others (2008), but as in Li and
Evans (2011), there is a tighter fit between Mawsonland and SW Laurentia due to the
relative “tale of two Australias” rotation. This relative rotation of S�W Australia works
well with this reconstruction in that there is no overlap between S�W Australia/
Mawsonland and SW Laurentia although there is a tight fit.
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This result allows for a long-lasting, tight-fitting connection between the conti-
nents. In light of the Goodge and others’ (2008) evidence for a Antarctica-Laurentia
connection at �1400 Ma, it is worth discussing whether such a close connection could
have been maintained for a significant period prior to 1070 Ma. The current paleomag-
netic database suggests that continuous connection throughout the Mesoproterozoic
is not tenable as data from a 1212 	 10 Ma dike from the Fraser dike swarm of SW
Australia (Pisarevsky and others, 2003b) indicates a high latitude position for Australia
during a time period where robust coeval data from the “Logan Loop” for Laurentia
indicate a low-latitude position. At present the Fraser direction remains a single virtual
paleomagnetic pole emphasizing the need to reinforce that direction with additional
data. If the high-latitude result stands with future work, it may imply that the 1.4 Ga
granite tie-point has more bearing on reconstructions of Nuna (the supercontinent
preceding Rodinia, see Evans and Mitchell, 2011) than it does on Rodinia. Regardless
of their pre-1100 Ma relative positioning, the 1070 Ma and 760 Ma Australia-Laurentia
pole pairs suggest a continuous connection between Antarctica and Laurentia across
the Meso-Neoproterozoic boundary.

India also has a pairing of a late Mesoproterozoic pole (from the Wajrakarur
kimberlite at �1079 Ma) with a mid-Neoproterozoic pole (from the Malani Igneous
Suite at 771 	 5; table 12). Matching the Wajrakarur pole with Keweenawan sedimen-
tary poles and the Malani pole with the Johnny’s Creek Pole and Uinta Mountain/
Galeros Pole leads to the reconstruction of India relative to Laurentia and Australia as
shown in figure 18. As is the case with the northern Australia poles, the proximity of the
Wajrakarur kimberlite and Malani Igneous Suite poles, despite the 300 million years
that separates them, is consistent with India as a fellow traveler with Laurentia along
the “Grenville Loop” (fig. 17).

The paleogeographic model presented in figure 18 using this approach of
Laurentia and Australia pole comparison leaves open the identity of the craton that
was the conjugate to northwestern Laurentia and was rifting off in the mid Neoprotero-
zoic. As noted in Li and Evans (2011), for south China to have been this craton it would
have to be rotated substantially from the position favored in the originally postulated
“missing link model” into the position shown in figure 18. Another implication of the
“missing-link” model is that if both the SC-Dd and SC-Lfm poles are primary the
reconstruction effectively requires rapid TPW as interpreted by Li and others (2004b)
as the SC-Xd pole is a significant departure from the “Grenville Loop.” Therefore the
“missing-link” model for south China’s position is convolved with the TPW hypothesis.

Table 12

Proterozoic paleomagnetic poles from other cratons used in this study

pole  abbr Pole 
(°N) 

Pole 
(°E) 

A95 

(°) 
Age 
(Ma) 

Reference 

Svalbard       
Lower Grusdievbreen Formation Sv-lGfm 19.6 211.3 3.0 ~815 Maloof and others (2006) 
Upper Grusdievbreen Formation Sv-uGfm 2.6 71.9 2.0 ~800 Maloof and others (2006) 
Svanbergfjellet Member Sv-S4mb 25.9 226.8 5.8 ~780 Maloof and others (2006) 
South China       
Xiaofeng dikes  SC-Xd 14 91 11 802±10 Li and others (2004b) 
Liantuo Formation  SC-Lfm 4 161 13 760-722 Evans and others (2000) 
India       
Wajrakarur kimberlite  I-Wj 45 59 11 ~1079 Miller and Hargraves (1994) 
Malani Igneous Suite  I-M 67.8 72.5 8.8 771±5 Gregory and others (2009) 
Congo       
Luakela Volcanics  C-Lk 40 302 14 765±5 Wingate and others (2010) 
Mbozi Complex  C-Mb 46 325 9 748±6 Meert and others (1995) 
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Turning Australia Upside-down
The other possibility for Australia’s orientation relative to Laurentia at 760 Ma is

the alternate polarity option favored by Evans (2009), wherein Australia is upside down
relative to Laurentia. In this reconstruction, Australia does not have a direct connec-
tion to Laurentia, but is instead positioned significantly off of its eastern margin with
Baltica fitting in the gap. The pairing of the An-ADS poles with Keweenawan rift
sediment poles and the pairing of the Johnny’s Creek pole with Laurentian sediment
poles is consistent with this interpretation as shown in figure 19. This reconstruction
takes the Euler poles of Evans (2009) for all cratons except for Australia. The Li and
Evans (2011) “tale of two Australias” rotation is applied to the Australian continent and
the position of Australia constrained with the late Mesoproterozoic poles and the
Johnny’s Creek pole. The North American COrdillera and BRAsiliano-Pharuside
(COBRA) reconstruction of Plata and West Africa against western Laurentia replaces
Australia as the conjugate continent in this reconstruction (Evans, 2009).

This polarity option has significant implications for the transition between Austra-
lia’s position within Rodinia and its amalgamation into Gondwana. This polarity
option was suggested by Schmidt and Clark (2000) and favored by Anderson and
others (2004a) on the basis of the Silurian-Devonian APWP for Australia. In interpreta-
tions of this portion of the APWP that treat a low precision pole from the Silurian(?)
Mereenie sandstone (Li and others, 1991) as robust and take data from Silurian arc
volcanics of the Lolworth-Ravenswood terrane of eastern Australia’s Thomson Fold
Belt as representative of cratonic Australia, this polarity option reduces an implied

Reconstruction 2: Australia upside-down in a radically revised Rodinia
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Fig. 19. Paleogeographic reconstruction discussed in sub-section Turning Australia Upside-down that
follows the “radically revised Rodinia” of Evans (2009) with minor revisions: the relative “tale of two
Australias” rotation is imposed and poles from Australia are aligned with their Meso- and Neoproterozoic
time equivalents from Laurentia as in figure 18. The left equal-area projection displays select poles from
Laurentia, Svalbard, northern Australia, south�west Australia, Congo, South China and India while the
right Mollweide projection shows the resultant paleogeography. The abbreviations for the paleomagnetic
poles are keyed out in tables 10, 11, and 12.
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122° rotation in �30 Ma to 58°. However, given the likely mobile nature of the
Lolworth-Ravenswood terrane during arc accretion (McElhinny and others, 2003),
and how poorly constrained the result from the Mereenie sandstone [a pole which was
considered contaminated in the original analysis (Li and others, 1991) and is not used
by the workers who developed it in subsequent paleogeographic reconstructions (Li
and Powell, 2001)], this argument is not presently robust. Nevertheless, it should
continue to be recognized that the “exit strategy” of Australia from Rodinia into
Gondwanaland will be an important tool in future efforts to determine whether
Australia was “rightside-up” or “upside-down” in Rodinia.

Viewing the Love’s Creek Member Pole with Rose-colored Glasses and Implications for the True
Polar Wander Hypothesis

The true polar wander (TPW) hypothesis for the Bitter Springs Stage, developed
from the Akademikerbreen Group in Svalbard (Maloof and others, 2006), predicts
that paleomagnetic poles between the Love’s Creek Member (syn–Bitter Springs
Stage) and the Johnny’s Creek Member (post–Bitter Springs Stage) should record a
45° counter-clockwise rotation of Rodinia. As presented above, the Love’s Creek
Member appears to have been remagnetized in the late Cambrian through burial
diagenesis. However, given the potential for coincidental overlap of the Love’s Creek
Member pole with the Cambrian APWP associated with Bitter Springs Stage TPW, we
consider the paleogeographic implications of a primary interpretation for that pole.

The arc distance between the pole calculated from all Johnny’s Creek Member
component B fits and that for Love’s Creek Member component C fits is 59.8° (	21°).
This distance is greater than, but roughly comparable to, the 37.4° arc distance
between the S4fm (post–Bitter Springs Stage) pole and the UGfm (syn–Bitter Springs
Stage) pole from Svalbard and the arc distance of 45.6° between LGfm pole (pre–
Bitter Springs Stage) and the UGfm (syn–Bitter Springs Stage) pole. The similarity
between these arc distances is intriguing given that the TPW hypothesis predicts that
poles from within and outside of the Bitter Springs Stage should span a similar arc
distance as a result of the rotation wherein the total rotation is dependent on when the
sediments where deposited (and magnetization acquired) with respect to the TPW.

A similar approach to a comparative pole analysis under the assumption of a
coherent supercontinent can be used if rotations caused by rapid true polar wander
can be confidently identified. During a TPW event, paleopoles from all continents will
follow great circle paths relative Earth’s spin-axis in a celestial reference frame about a
single rotational axis (which corresponds to Imin of Earth). This rotation is in contrast
to plate tectonics where continents and their paleomagnetically-derived poles move in
small circles about independent poles (Euler poles). If the great circle traced out by
the paleopoles can be identified on two continents, and a pole from each continent
can be taken to be the same age, relative paleolongitude between continents can be
constrained (that is the approach of Kirschvink and others, 1997). Figure 20 is a
reconstruction that is developed assuming that the Love’s Creek pole is primary and
that the difference between it and the Johnny’s Creek pole is a result of the same true
polar wander event interpreted by Maloof and others (2006) to have caused the
separation between the UGfm and S4fm poles. In this reconstruction, a geologically
reasonable rotation of Svalbard is made to Laurentia (similar to that used in Maloof
and others, 2006), the Johnny’s Creek Member pole is aligned to overlap with the A95
ellipses of the pre–Bitter Springs Stage (Sv-lGfm) and post–Bitter Springs Stage
(Sv-S4mb) Svalbard poles and Australia is rotated so that the A95 ellipse of the Love’s
Creek Member pole touches the great circle between the UGfm and S4fm poles. The
result of this reconstruction is that the relative position of Laurentia and Australia are
constrained to a position quite similar to the originally proposed SWEAT relationship
(fig. 20). This approach to reconstructing the relative position between Australia and
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Laurentia is incompatible with the Li and Evans (2011) relative rotation between north
and south�west Australia due to the significant overlap that results between south�west
Australia and Laurentia if the rotation is applied. The choice of polarity for the
paleomagnetic poles used in this analysis are consistent between Svalbard and Australia
with the polarity of the syn–Bitter Springs stage poles being reversed relative to the
post- and (and in the case of Svalbard) pre–Bitter Springs Stage poles. Disparate
paleomagnetic poles from the 802 	 10 Ma Xiaofeng dike and �760–722 Liantuo
Formation of South China have been presented as evidence of large-scale rapid TPW
(table 12; Li and others, 2004b) that is consistent with the rotation inferred from the
Svalbard poles (Maloof and others, 2006). Taking the 802 	 10 Ma Xiaofeng dike pole
to be a syn–Bitter Springs Stage pole and the the Liantuo Formation pole to be
correlative with the Johnny’s Creek pole results in the position of South China shown
in (fig. 20) with significant distance between it and Laurentia and Australia.

conclusions

A test for the Bitter Springs Stage true polar wander hypothesis requires that
highly robust paleomagnetic data with convincingly primary magnetization are devel-
oped from both during and before/after the isotopic stage. High-quality data from the
Love’s Creek Member carbonates revealed two ancient magnetizations: one held by
pyrrhotite and one held by magnetite. The pyrrhotite remanence formed while the
rocks were at their present day structural orientation and corresponds with Carbonifer-

Laurentia

Australia South China

Svalbard

L-NF

L-FLIP

Asw-EM

An-JC

SC-Lfm

SC-Xd

L-GB

SV-uGfm SV-S4mb

An-LC

Asw-MD

An-WTD

SV-lGfm

Reconstruction 3: Love’s Creek Mb as a primary pole with paleogeography constrained by TPW
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Fig. 20. Paleogeographic reconstruction taking the rose-colored glasses approach to the Love’s Creek
Member pole as discussed in section titled Viewing the Love’s Creek Member Pole with Rose-colored Glasses and
Implications for the True Polar Wander Hypothesis. In this reconstruction, the Love’s Creek member pole is
interpreted as primary and the arc distance between it and the Johnny’s Creek Member pole (table 10) is
taken to be a result of a true polar wander event that led to the separation of the Svalbard SV-uGfm and
SV-S4mb poles (table 12). This approach allows for relative paleolongitude to be constrained. Interpreting
the separation of the SC-Xd and SC-Lfm poles as due to the same true polar wander rotation leads to its
position as shown. Since the “tale of two Australias” rotation is not applied, the Australia continent and poles
are shown as a single color.
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ous poles from Australia and the eastern Australia mobile belts. This result indicates
that the majority of deformation in the basinal succession occurred prior to �350 Ma
and that the precipitation of iron-sulfides throughout Bitter Springs Formation
carbonates occurred (likely as a result of fluid flow) at �350 to 310 Ma. This timing of
pyrrhotite formation corresponds to the last stages of deformation of the Alice Springs
Orogeny in the hinterland of the orogeny.

In contrast to the remanence held by pyrrhotite, the magnetite remanence
direction does not fall on the APWP path of Australia at the time of the Alice Springs
Orogeny and was not acquired when the strata were at their present-day structural
orientation. The tightest grouping of the data is achieved between 62 and 70 percent
unfolding and the intermediate result may be due to structural complexity associated
with vertical axis rotations rather than a result of a synfolding acquisition of magnetiza-
tion. With this indication that magnetite formed prior to Alice Springs Orogeny
related deformation, we are left to evaluate whether the magnetite dates to the time of
deposition or formed authigenically at a later date prior to large-scale local deforma-
tion. The high degree of similarity of the magnetite remanence direction to Cambrian
directions from the Amadeus Basin and an unusual correlation between thermal
demagnetization spectra and polarity together suggest that the magnetite formed
during the late Cambrian. This timing of magnetite formation coincides with further
basinal subsidence and the passage of the Love’s Creek Member through depths at
which elevated temperatures could have driven the transformation of smectite to illite.
Given the distance to the active orogenesis within the Petermann Orogeny, we prefer
the smectite to illite magnetite formation mechanism as the driver for the growth of
the magnetite if its origin is indeed authigenic. The possibility that the Love’s Creek
magnetite remanence is primary remains intriguing given the similar arc distance
between its pole and the post–Bitter Springs Stage Johnny’s Creek Member pole with
the syn- and post–Bitter Springs Stage poles from Svalbard using the same choices of
relative polarity. Adding to the intrigue, is the result that a true polar wander
constrained paleogeographic reconstruction yields a snug geologically consistent
SWEAT-style connection between Laurentia and Australia and is internally consistent
with the observed changes in sea level. Such a reconstruction rules out the possibility of
intra-Australian rotation or the “missing-link” South China–Laurentia connection if
Australia was in a “rightside-up” position. However, without confidence that the
magnetite is primary, and with reason to assign its origin to secondary magnetite
formation, we present this result as a tantalizing possibility rather than a positive test of
the true polar wander hypothesis. Further work on paleogeography and stratigraphic
records of climate, carbon cycling and sea level before during and after the Bitter
Springs Stage in more basins is necessary for hypothesis evaluation. Additionally, more
radiometric age constraints that refine the duration and timing of the Bitter Springs
Stage, and thus implied plate motions, can test competing hypotheses from a geody-
namic perspective.

Regardless of the origin of syn–Bitter Springs Stage Love’s Creek Member
magnetization, paleomagnetic data from the Johnny’s Creek Member of the Bitter
Springs Formation yields a high-temperature remanence held by hematite that passes a
tectonic fold test, fits into a reasonable position on the Meso- to Neoproterozoic APWP
and is interpreted here as a primary magnetization. This paleomagnetic pole provides
an important new constraint on the paleogeography of northern Australia in the time
leading up to the first Neoproterozoic glaciation and is consistent with two hypotheses
regarding mid-Neoproterozoic paleogeography: (1) that there was a large-scale rota-
tion between northern and southwest Australia associated with the end-Neoprotero-
zoic Petermann Orogeny and (2) that there was long-lived coherency of Laurentia and
Australia as cotravelers within the supercontinent Rodinia.
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