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Abstract Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting
Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document
an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to
the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic
atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of
Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low
salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different
observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain
a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example,
Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater
content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal
cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle
interannual variations.

Plain Language Abstract The Beaufort Gyre centered in the Canada Basin of the Arctic Ocean is
the major reservoir of fresh water in the Arctic. The primary focus of this study is on quantifying variability
and trends in liquid (water) and solid (sea ice) freshwater content in this region. The Beaufort Gyre
Exploration Program was initiated in 2003 to synthesize results of historical data analysis, design and
conduct long‐term observations, and to provide information for numerical modeling under the umbrella
of the FAMOS (Forum for Arctic Observing and Modeling Synthesis) project. The data collected from
research cruises, moorings, Ice‐Tethered Profiler observations, and satellite altimetry document an increase
of more than 6,400 km3 of liquid freshwater content from 2003 to 2018, a 40% growth relative to the
climatology of the 1970s. This fresh water volume is comparable to the fresh water volume released to the
sub‐arctic seas during the Great Salinity Anomaly episode of the 1970s. Thus, since the 2000s, the stage has
been set for another possible release of fresh water to lower latitudes with accompanying climate impacts,
including changes to sea ice conditions, ocean circulation, and ecosystems of the Sub‐Arctic similar to the
influence of the Great Salinity Anomaly observed in the 1970s.

1. Introduction

The Arctic Ocean freshwater budget is influenced by changes in the intensity of freshwater sources asso-
ciated with precipitation, including runoff from the land and exchanges with the Pacific and Atlantic
Oceans, and processes governing the redistribution of the fresh water under the influence of winds, sea
ice conditions (drift, concentration, and thickness), and ocean currents, as well as mixing between water
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masses. Many of these physical processes are influenced by changes in the vertical and horizontal distribu-
tion of ocean fresh water, with numerous interrelationships and feedback mechanisms (positive and nega-
tive). An example of the latter involves sea ice melting that forms a freshwater cap at the ocean surface,
strengthening the ocean vertical stratification, and reducing heat fluxes from the ocean to sea ice, which
is favorable for expanding sea ice area and increasing ice thickness (i.e., Aagaard & Carmack, 1989;
Kellogg, 1975; Toole et al., 2010; Zakharov, 1981, 1997). On the other hand, loss of the freshwater cap
(termed a “halocline catastrophe” by Aagaard & Carmack, 1989, and Aagaard, 1990) allowing deep convec-
tion and associated large vertical heat flux could have irreversible consequences for the climate via consider-
able ice melt and uncertain response of the global climate system. Another important feedback is between
the Beaufort Gyre spin‐up, increased eddy activity, and stabilization of halocline properties (e.g., Davis
et al., 2014; Manucharyan & Spall, 2016; Manucharyan et al., 2016; Meneghello et al., 2017; Wang et al.,
2018, 2019; Zhang et al., 2016; Zhao et al., 2016, 2018). Furthermore, ecosystems depend crucially on
Arctic Ocean freshwater content changes (e.g., Carmack et al., 2016).

The total climatological (here defined to be prior to 1989) liquid freshwater content of the Arctic Ocean was
estimated to be around 80,000 km3, relative to a reference salinity of 34.8 (Aagaard & Carmack, 1989).
Serreze et al. (2006) assessed that for the period 1979–2001, the Arctic Ocean liquid freshwater content
was 74,000±7,400 km3, while Haine et al. (2015) found the figure to be around 93,000 km3 for 1980–2000,
increasing to 101,000 km3 in 2000–2010. The solid fresh water stored in sea ice in 1989 was estimated to
be about 17,000 km3 (Aagaard & Carmack, 1989) but only 10,000 km3 16 years later (Serreze et al., 2006),
while Haine et al. (2015) estimated the mean freshwater volume in sea ice as 14,300 km3 in 2000–2010.
These studies indicated that over the period 2000–2010, the Arctic Ocean accumulated about 8,000 km3 of
liquid freshwater compared to earlier decades, while the freshwater content in sea ice fell by about 2,700
km3. This suggests that ~5,300 km3 of fresh water from sources other than ice melt accumulated in the
Arctic Ocean during the first decade of the 21st century. This fresh water volume is comparable to that
released to the sub‐arctic seas during the Great Salinity Anomaly (GSA) episode of the 1970s (e.g., Belkin
et al., 1998; Dickson et al., 1988). Thus, since the 2000s, the stage has been set for another possible release
of fresh water to lower latitudes with accompanying climate impacts, including changes to sea ice condi-
tions, ocean circulation, and ecosystems of the Sub‐Arctic similar to the influence of the GSA observed in
the 1970s (e.g., Dickson et al., 2000; Greene et al., 2013; Zhang & Vallis, 2006). While the estimates of fresh-
water content and its changes cited above provide approximate bounds, the uncertainties in these budgets
are significant due both to a lack of observational data and substantial differences in freshwater content cal-
culation methods (e.g., estimates can differ by region considered, data quality, seasons, reference salinity,
and methods of data interpolation; see Carmack et al., 2016).

The Beaufort Gyre centered in the Canada Basin of the Arctic Ocean is the major reservoir of fresh water in
the Arctic (Figure 1). The primary focus of this study is on quantifying variability and trends in liquid (water)
and solid (sea ice) freshwater content in the Beaufort Gyre region, defined to be between 70 and 81°N, and
130–170°W where water depths exceed 300 m (Figure 1). The Beaufort Gyre Exploration Program (BGEP)
was initiated in 2003 to synthesize results of historical data analysis, design and conduct long‐term observa-
tions in the Beaufort Gyre region, and to provide information to guide numerical modeling activities
(Proshutinsky, Krishfield, & Barber, 2009) under the umbrella of the FAMOS (Forum for Arctic
Observing and Modeling Synthesis) project (Proshutinsky et al., 2019, preface paper in this special issue).
This regional focus and our analysis based on extensive measurements from the Beaufort Gyre
Observational System (BGOS; Figure 1; Krishfield et al., 2014; Proshutinsky, Krishfield, Timmermans, et al.,
2009; Proshutinsky et al., 2015, 2019) to some extent limits the major uncertainties associated with Arctic‐
wide measurements. However, uncertainties remain associated with limitations in measurement methods
and data analysis, which are discussed below.

It is important to add that estimates of Arctic Ocean annual (1995–2010) freshwater content were made by
Giles et al. (2012) based on annual sea surface height (SSH) information derived from satellite altimetry data,
relative to theWorld Geodetic System 1984 (WGS84) ellipsoid and accounting for tidal and atmospheric geo-
physical corrections. They estimated a western Arctic freshwater content increase between 1995 and 2010 of
8,000±2,000 km3, in agreement with changes estimated by McPhee et al. (2009) and Rabe et al. (2011) based
on in situ observations. Morison et al. (2012) analyzed a combination of satellite altimetry and gravimetry
data from the Gravity Recovery And Climate Experiment (GRACE) to infer sources of fresh water in the
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Beaufort Gyre region. They put forward a hypothesis that the major source of freshwater content change in
2005–2008 was Eurasian river runoff diverted toward the Canada Basin by cyclonic winds over the Eurasian
Basin associated with a low Arctic Oscillation (AO) index (Thompson & Wallace, 1998). Armitage et al.
(2016) used Envisat satellite altimetry data for the period 2002–2012 and CryoSat‐2 altimetry data from
2012–2014 to estimate monthly Dynamic Ocean Topography (DOT: SSH measured by satellites relative to
the geoid (e.g., Armitage et al., 2016; Farrell et al., 2012)). They combined the altimetric DOT with
GRACE data and showed that together these datasets are appropriate for quantifying seasonal and interann-
ual SSH changes, barotropic SSH changes, steric height, and freshwater content for the entire Arctic Ocean.
Note that these satellite data are only available from 2003 to 2014. In the Beaufort Gyre region, Armitage
et al.'s (2016) estimates of freshwater content from satellite data are in good agreement with freshwater con-
tent changes reported by Krishfield et al. (2014) based on in situ annual surveys of the Beaufort Gyre region.
Carret et al. (2017) have also investigated Arctic Ocean SSH using satellite altimetry and GRACE, as well as
hydrographic data from the Ocean ReAnalysis Pilot 5 (ORAP5; Zuo et al., 2015). Importantly, Carret et al.
(2017) also provide analyses of Arctic sea level and freshwater content projections based on Coupled
Model Intercomparison Project Phase 5 (CMIP5) simulations.

In this paper, data from the BGOS moorings and Ice‐Tethered Profilers (ITPs; Krishfield et al., 2008; Toole
et al., 2011) are analyzed in context with each other and with freshwater content estimates from annual late
summer‐hydrographic surveys in order to quantify Beaufort Gyre fresh water accumulation and release at
different time scales (amplitudes and mechanisms) and characterize the uncertainties of the different

Figure 1. (a and b) Beaufort Gyre Observing System (BGOS) region with locations of moorings A, B, C, and D and stan-
dard CTD hydrographic survey stations (crosses). The dashed black line shows the boundary of the Beaufort Gyre region.
Colors and contours are freshwater content (relative to a reference salinity of 34.8), and white grid cells indicate no
data, in (a) the 1970s (from gridded climatology of Timokhov and Tanis (1998, summer atlas) at depths 0, 5, 10, 15, 25, 50,
75, 100, 150, 200, 250, 300, 400, and 500m) and (b) from optimal interpolation of 2017 hydrographic data collected from
July through October and averaged every 1‐ to 500‐m depth (see section 2.1); see also Proshutinsky et al. (2019) where
2017 station locations and optimal interpolation errors are shown in supporting information S1. (c and d) Depth‐latitude
sections of salinity along 140 and 150°W (thick dotted lines in panels a and b) in (c) the 1970s and (d) 2017.
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types of measurements analyzed. In addition, satellite altimetry data corrected for ocean barotropic
dynamics are used to infer freshwater content (e.g., Armitage et al., 2016; Giles et al., 2012) to quantify sea-
sonal changes, and investigate the causes and mechanisms of fresh water accumulation and release. Each
data set has its limitations. For example, effectively synoptic, full water column hydrographic surveys pro-
vide the most accurate assessment of freshwater content, however only for conditions during one season.
Mooring data, on the other hand, allow for year‐round freshwater estimate, however only below 65‐m depth
(the shallowest sample depth common to all BGOS moorings). Significant freshwater content changes are
known to occur shallower than this in the upper ocean layer under the influence of sea ice transformations
and Ekman transport convergence (Proshutinsky, Krishfield, Timmermans, et al., 2009). Freshwater content
estimated from ITP data has significant uncertainty for the construction of time series and data averaging for
large areas like the Beaufort Gyre region due to the Lagrangian sampling aspect of the drifting systems, the
fact that ITPs typically only operate in ice covered waters, and their limited areal coverage that depends on
the number of operating ITPs and their drift patterns. In addition, ITPs do not sample the uppermost (fresh-
est) 5‐ to 7‐m ocean layer (an issue only in summer; see Proshutinsky, Krishfield, Timmermans, et al., 2009).
Monthly freshwater content inferred from satellite radar altimetry has inherent uncertainties due to the
empirical nature of the coefficients required to convert changes in SSH to freshwater content. These coeffi-
cients depend on ocean stratification, which differs depending on region and season. In addition, freshwater
content inferred from SSH represents an integrated measure, with no information about the vertical distri-
bution of fresh water in the water column. Finally, SSH change can only infer freshwater content change,
while an estimate of the absolute volume of freshwater content requires knowledge from another data
source (e.g., hydrographic surveys). While each individual data set has its limitations with respect to estimat-
ing freshwater content, the analysis of freshwater content changes combined from all of these data sources,
together with the results of numerical modeling, provides better understanding of the processes and
mechanisms of fresh water accumulation and release in the region.

This paper is organized as follows. First the various data sources are detailed, and the evolution of freshwater
content in the Beaufort Gyre region over 2003–2018 is quantified from these different datasets. In section 3,
the results are discussed in context with the major uncertainties in the freshwater content estimates.
Section 4 includes a discussion of the mechanisms of fresh water accumulation and release, the sources of
fresh water, and its major pathways from those source regions to the Beaufort Gyre region. Section 5 sum-
marizes major results of this study.

2. Data and Methods

In sections below, each data type is described along with the particular method employed for computing
freshwater content. In section 2.5 the regional atmospheric and sea‐ice forcing are described, while
section 2.6 presents basic information about regional Arctic Ocean model that was employed to develop bet-
ter understanding of the fresh water circulation in the region.

2.1. Hydrographic Surveys

Hydrographic surveys represent ship‐based CTD measurements of water temperature (T) and salinity (S).
They have been conducted in the Beaufort Gyre region each year between August and October (hereafter,
annual hydrographic surveys) over about 25 days at standard locations (Figure 1) during BGOS cruises.
These data are available at https://www.whoi.edu/beaufortgyre and NSF's Arctic data center (https://arctic-
data.io/). To this core dataset, other publically available hydrographic data in the region during summer
have been added (e.g., NCEI World Ocean Database, https://www.nodc.noaa.gov/). The freshwater content
at each hydrographic station has been calculated relative to a reference salinity of 34.8 and then optimally
interpolated onto a 55.5‐km grid (see Proshutinsky, Krishfield, Timmermans, et al., 2009, for details of opti-
mal interpolationmethod). The high‐accuracy shipboard salinity measurements result in freshwater content
uncertainties for individual profiles of less than 0.1 m. Interpolation errors for the hydrographic surveys are
estimated to be between 0.1 and 1.5 m depending on the number of observations and the distances between
the grid points and the location of the observation sites (see Proshutinsky, Krishfield, Timmermans, et al.,
2009, for details).
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2.2. Mooring Data

Mooring data were acquired at three Beaufort Gyre locations (denoted A, B, and C in Figures 1, 2, and 6)
during 2003, four locations (A, B, C, D) for the 2004–2008 period, and three sites (A, B, and D) over 2009–
2018. Three types of data from the moorings are utilized here: S profiles measured by McLane Moored
Profilers (MMPs), sea ice draft measured by Upward Looking Sonars (ULSs), and bottom pressure measured
by Bottom Pressure Recorders (BPRs).

Figure 2. Annual freshwater content inferred from satellite data and calculated using Ice‐Tethered Profiler (ITP) and
mooring data. (a) Sea surface height (SSH) grid is shown by dots. Beaufort Gyre region is bounded by the thick dashed
line; mooring locations are indicated by letters A, B, C, and D. The blue contours are 500‐ and 2,000‐m isobaths. (b) Similar
to the left panel but shows locations of ITP data averaged by year in 55.5‐ ×55.5‐km grid cells. Colors depict year of col-
lected data. (c) Annual freshwater content inferred from satellite SSH data (yellow bars), calculated from ITP data (dark
blue bars), and frommooring data (red bars). The black wide bars are number of ITP profiles per year in the region used for
freshwater content calculations. The bars distributed along the top of the figure show the freshwater content uncertainties
for each of the data sets. The black dotted, black dashed, and red dashed lines depict linear freshwater content trends from
ITP (455±232 km3/a), SSH (524±256 km3/a), and mooring data (534±153 km3/a), respectively. Thus, all time series have
similar trends (positive and significantly different from 0), and the 95% confidence intervals overlap. Note that freshwater
content from moorings is calculated from a depth of 65 m to the depth of S=34.8 and it does not include the freshwater
content in the upper 65 m of the water column.
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2.2.1. MMP Data
Freshwater content at the mooring sites was calculated in the layer from 65‐m depth to the depth of the 34.8
isohaline (see Proshutinsky, Krishfield, Timmermans, et al., 2009). Note that the tops of the moorings were
in all cases designed to sit deeper than 25 m to avoid collisions with ice keels, limiting the shallowest depth
achievable by the profilers. Depths of the mooring tops varied on different moorings and different years, but
most MMPs profiled between 65 and 2,000 m. As analyzed in Proshutinsky, Krishfield, Timmermans, et al.
(2009), MMP salinity data are believed to have an uncertainty of less than 0.005, and resultant errors in fresh-
water content estimates (for depth intervals sampled by the MMPs) are less than 0.1 m. Freshwater content
estimates were averaged in time to quantify both annual (Figure 2) and monthly changes from 2003 to
2018 (Figure 3).
2.2.2. ULS Data
Sea ice draft was measured at all moorings using ULSs. The draft data are used to estimate freshwater con-
tent in the sea ice (see Proshutinsky, Krishfield, Timmermans, et al., 2009, and Krishfield et al., 2014). Note
that sea ice draft changes recorded by ULSs include changes due to snow on the sea ice surface (∼0.10 m in
water equivalent during seasonal cycle). It is assumed that the snow contribution to the uncertainty in our
freshwater content estimates is encompassed by the estimated error in sea ice thickness (details are available
in Proshutinsky, Krishfield, Timmermans, et al., 2009).
2.2.3. BPR Data
Mounted on the mooring anchors, the BPRs effectively measure changes in water mass resulting from net
precipitation, river influxes, and convergence/divergence associated with ocean flows. These data are used
to calibrate and validate data derived from GRACE (e.g., Macrander et al., 2010; Rietbroek et al., 2006).
While BPR data cannot be used for analysis of interannual and longer variability because of sensor accuracy
and drift, and small changes in mooring locations each year (and therefore changes in mean bottom pres-
sure), they are an excellent data set for the analysis of seasonal change. The pressure sensor can vary over
time by 1 ppm (0.001%) of its full scale (4,136 dbar) per year. So each year the pressure sensor could vary
by as much as 4 mm from its baseline due to aging of the sensor (or 0.3333 mm/month). In section 2.4,
BPR data are used in conjunction with satellite radar altimetry data to investigate correlations between
satellite‐derived changes in steric SSH and freshwater content in the region. For this analysis, it is assumed
that atmospheric pressure changes are not sensed by the BPR; this sea‐level response is often referred to as
the inverted barometer effect (sea level rise in response to reduced atmospheric pressure, and vice versa).

2.3. Ice‐Tethered Profiler Measurements

ITPs provide additional information on freshwater content evolution. ITPs measure water conductivity (pro-
viding S), T, and pressure from around 7‐ to 750‐m depth, with some variation depending on ice‐drift speed
and other factors (see Krishfield et al., 2008, for full system and data processing details). ITP data are avail-
able at http://www.whoi.edu/itp and at https://data.nodc.noaa.gov/cgi‐bin/iso?id=gov.noaa.nodc:WHOI‐
ITP;view=html). ITP T and S profiles from a total of 43 systems were analyzed here (Figure 2). The fresh-
water content in the upper waters shallower than the top of each ITP profile (typically 7‐ to 8‐m depth)
was calculated assuming that the salinity at the shallowest measured layer extends to the ocean surface
(see Proshutinsky, Krishfield, Timmermans, et al., 2009). Note that ITP profiles that did not extend above
10‐mdepth were excluded from the analysis. In the winter, whenmixed‐layer depths are consistently deeper
than 10 m, this does not introduce any uncertainty. However, this approach potentially underestimates
freshwater content in the upper layer during the melt season. Proshutinsky, Krishfield, Timmermans,
et al. (2009) addressed this by assessment of concurrent shipboard CTD and ITP measurements and con-
cluded that this extrapolation of ITP data during the ice melt season introduces an error in freshwater con-
tent estimates of less than 0.50 m.

2.4. Remote Sensing Data

Gridded DOT (SSH measured by satellites relative to the geoid) data (Figure 2) provided by Armitage et al.
(2016; http://www.cpom.ucl.ac.uk/dynamic_topography/) are used to infer changes in freshwater content.
In contrast to Armitage et al. (2016) who also use GRACE data in their analysis, here both GRACE data
and BGOS mooring bottom pressure measurements are employed. In addition, contributions of both ther-
mosteric and halosteric components of steric sea level changes in the Beaufort Gyre region are estimated
to obtain better correlation between changes in the DOT and freshwater content. The results of our
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calculations are in agreement with previous studies (e.g., Armitage et al., 2016; Morison et al., 2012) showing
that thermosteric corrections for the Beaufort Gyre region (even under the significant warming of the Pacific
summer water layer over the previous decade described by Timmermans et al., 2018) are negligible.

Finally, we infer freshwater content in the region from satellite data using the methods suggested by Giles
et al. (2012) andMorison et al. (2012). They found that the change in freshwater contentΔ (FWC) frommea-
surement to measurement (in our case from month to month) is approximately Δ (FWC) = αΔ (DOTs),
where FWC is freshwater content, α is an empirical coefficient, and DOTs is the steric component of
DOT. In Giles et al. (2012) and Armitage et al. (2016), the α coefficient depends weakly on barotropic mass
change derived from GRACE data and is on average approximately 34.5. Based on BGOS and World Ocean

Figure 3. Monthly freshwater content (FWC) and Ekman vertical velocity (EVV) time series. (a) The solid and dotted
black lines are FWC inferred from satellite data averaged at mooring locations and averaged for the Beaufort Gyre
region (BGR; Figure 1), respectively; the black crosses are FWC from ITP data; the thick blue line with grey shading and
dotted red line are FWC frommooring data below 65m and in the upper 65‐m layer, respectively; the thick red line depicts
FWC from SibCIOM model results; the blue vertical bars show FWC in the BGR from annual hydrographic surveys; the
yellow vertical bars illustrate FWC from CTD casts at mooring sites before mooring deployments. The thick green line
with gray shading demonstrates changes of sea ice (solid) FWC derived from ULS data with estimates of uncertainties
(shading). Data uncertainties are shown as bars at the top of the panel or as shading. (b) Monthly (black line) and annual
(yellow and blue bars) Ekman vertical velocity (EVV, m/month) calculated based on observations of wind, sea ice con-
centration and drift, and ocean currents averaged over the BGR. The thicker red line represents EVV from SibCIOMmodel
results; the green line depicts sea ice concentration. Annual EVV calculated for motionless ocean is shown as blue bars.
The blue dotted line depicts the depth of an isopycnal surface driven up or down by EVV. More precisely, this is a time
integral of the EVV. The black bars depict standard EVV error.
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Data Center data for 2003–2005, Morison et al. (2012) found this coefficient to be 35.5. Our analysis using all
BGOS data (2003–2014) and ITP data shows that this coefficient changes in both time and space and is on
average approximately 33. The uncertainty of this coefficient is ±1.3 imparting an uncertainty of ±3.9%
on our freshwater content calculations.

2.5. Ekman Vertical Velocities and External Forcing

External driving factors accounted for in the present analysis include geostrophic wind stress, sea ice con-
centration and drift, oceanic geostrophic velocities, and derived Ekman vertical velocities, all calculated
using established methods. Specifically, Ekman vertical velocities are determined following the methods
of Meneghello et al. (2017, 2018) and are identical to the approach published by Regan et al. (2019) in
this special issue. The geostrophic wind was calculated from National Center for Atmospheric
Research/National Centers for Environmental Prediction (NCAR/NCEP) (reanalysis 1; Kalnay et al.,
1996) 6‐hourly sea level pressure (SLP) fields. Sea ice motion is taken from the Polar Pathfinder Daily
25‐km EASE‐Grid Sea Ice Motion Vectors, Version 4.1 (Tschudi et al., 2019). Note that errors in sea ice
drift can result in substantial uncertainties in the estimates of Ekman vertical velocities derived from dif-
ferent satellite‐based ice drift products (Sumata et al., 2014, 2015). The ice drift curl calculated from these
products reveals that the ice motion curl in winter differs by 18% on average among the different pro-
ducts. Daily sea ice concentration for 2003 to 2018 is from Nimbus‐7 SMMR and DMSP SSM/I‐SSMIS
Passive Microwave Data Version 1 (Cavalieri et al., 1996). The ocean geostrophic velocity fields are from
Armitage et al. (2017). Meneghello et al. (2017, 2018), Zhong et al. (2018), and Dewey et al. (2018)
reported that after 2003, these currents played a significant role in the dynamics of the Beaufort Gyre sys-
tem. For 2015–2018, we use geostrophic velocities calculated from water T and S relative to a 400‐db level
of no motion from the annual hydrographic surveys.

2.6. Siberian Coupled Ice Ocean Model

Numerical experiments were conducted employing the Siberian Coupled Ice Ocean Model (SibCIOM), pre-
viously known as the Institute of Computational Mathematics and Mathematical Geophysics (ICMMG) 3‐D
hydrostatic ocean model with Lagrangian passive tracers (floats; Golubeva & Platov, 2009). This model was
employed to examine freshwater transport in the Arctic Ocean from 1985 to 2016. The ocean model is based
on the traditional equations of ocean dynamics and thermodynamics in curvilinear orthogonal coordinates
using the hydrostatic and Boussinesq approximations. A rigid‐lid approximation is used at the ocean surface.
After vertical integration of the equations of fluid motion, the integral component of the motion (barotropic
mode) and the deviation from it (baroclinic mode) are distinguished. For the barotropic mode, the equations
of motion reduce to the equation for the integral stream function; a numerical solution is described in more
detail by Golubeva and Platov (2009). Integration of the ocean module is carried out together with the CICE
v3 model of Hunke and Dukowicz (1997).

Heat and humidity fluxes, wind stress, and downward longwave and shortwave radiation fluxes were taken
from NCEP/NCAR reanalysis data (Kalnay et al., 1996). The initial temperature and salinity fields were spe-
cified using the climatic data of the Polar science center Hydrographic Climatology for winter (Steele
et al., 2001).

The model's grid is configured from 20°S in the Atlantic Ocean to 60°N in the Pacific Ocean (Golubeva &
Platov, 2007). The horizontal computational grid is bipolar curvilinear and has an equatorial resolution of
0.5° (minimal spacing is ∼19 km in the study region). In the vertical direction, the grid consists of 38 levels
with a maximum resolution of 5 m in the upper 20‐m layer. The minimum depth on the shelf is 20 m. At the
grid nodes where the bottom depth was less than 20 m, the depth was artificially deepened to 20 m. Some
straits of the Canadian Arctic Archipelago were artificially expanded according to the model resolution.

The model takes into account the inflow from the 52 largest rivers in the domain. Data on the average sea-
sonal runoff of these rivers were obtained from measurements of hydrological stations (Vörösmarty et al.,
1998). The model's particle motion algorithm is provided in the supporting information (S1). This model
has been used effectively in AOMIP and FAMOS model intercomparison studies (e.g., Aksenov et al.,
2016; Dukhovskoy et al., 2016; Timmermans et al., 2014) and has demonstrated good results.
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3. Freshwater Content Variability
3.1. Interannual Changes

Based on the annual hydrographic surveys, the Beaufort Gyre region accumulated approximately 6,400 km3 of
fresh water (relative to 34.8 reference salinity) during 16 years between 2003 and 2018 (Proshutinsky et al.,
2019; this special issue). This represents a 40% increase of fresh water volume in the region relative to the cli-
matology of the 1970s.While the average rate of freshwater accumulationwas 397±116 km3/a, the freshwater
content growth was not uniform due to changes in wind, sea ice conditions, and ocean geostrophic currents.
The ocean circulation played a flywheel role regulating momentum transfer from wind to the ocean (moder-
ated by sea ice conditions), effectively damping disturbances in external forcing and stabilizing freshwater con-
tent (e.g., Dewey et al., 2018; Doddridge et al., 2019; Meneghello et al., 2017, 2018; Zhong et al., 2018).

In 2003–2008, freshwater content measured in August–October increased by 4,900±1.550 km3, from 16,900
±1,400 km3 in 2003 to 21,800±1,700 km3 in 2008. Freshwater content then remained stable at around 22,000
±1,900 km3 for 4 years. In 2013, freshwater content decreased by about 1,600±500 km3 almost to the volume
observed in 2007. In 2014–2016, freshwater content again increased to reach a historic maximum of around
23,200±1,800 km3 in 2016. In 2017 and 2018, the freshwater content changed only modestly to 23,400±1,800
km3 and 23,300±2,000 km3, respectively. As these estimates are based on the annual hydrographic observa-
tions, they do not resolve the seasonal cycle.

Annual mean freshwater content integrated over the Beaufort Gyre region derived from satellite‐based data,
ITPs, and MMPs (Figure 2) is in general agreement with the freshwater content volume in the region calcu-
lated from annual hydrographic survey data and the wind forcing (see also Figure 3). There are high correla-
tions between the annual time series calculated from moorings, satellites, and ITP data (Figure 2). Before
computing the correlations, the time series were detrended and first‐differenced (following usual practice
to remove autocorrelation in the time series, e.g., Emery & Thomson, 2001). For every correlation coefficient
estimate, a statistical t test was completed for the null hypothesis of 0 correlation (if p‐value <0.05, the null
hypothesis is rejected; confidence level is 0.1). All correlations were significant except for the satellite‐based
and ITP data time series, due to the ITP‐based time series being too sparse in time and therefore too short in
duration. The maximum correlation coefficient is 0.77 with confidence intervals [0.419; 0.918] between
mooring and satellite‐based annual freshwater contents, and the minimum is 0.32 [−0.235; 0.712] between
ITP and mooring data time series. It is noteworthy that freshwater content inferred from the moorings and
satellite data are highly correlated even though moorings do not sample the upper 65 m (i.e., the mixed layer
and the top of the Pacific layer water column freshwater content).

The annual trend of freshwater content from the mooring data (534±152 km3/a) agrees within uncertainty
bounds with the trend obtained from the annual hydrographic surveys (422±130 km3/a shown and dis-
cussed in Proshutinsky et al., 2019). The linear trend of freshwater content derived from ITP data (455
±232 km3/a) also agrees within statistical uncertainty to the trends estimated from the mooring data and
hydrographic surveys. The satellite inferred freshwater content trend (524±256 km3/a) is very close to the
trends of fresh water accumulation estimated from the ITP and hydrographic measurements.

Comparison of freshwater content derived from in situ T and S hydrographic measurements with freshwater
content from altimetry for those months that coincide with the hydrographic surveys reveals good correlation
(0.80 [0.612; 0.950]) between these two time series (Figure 3). Note that statistics and time series of steric SSH
are essentially the samewhetherGRACEor BPRdata are used to convert altimetric DOT to steric SSH change.

Based on these results, it is postulated that over the 2003–2018 period mooring‐based estimates of freshwater
content changes accurately characterize the accumulation of fresh water in the region, but we admit that
there is not enough information about freshwater content in the upper 65m and that the ITP regionally aver-
aged data have significant uncertainties discussed above. The second important conclusion from this analy-
sis is that the rate of fresh water accumulation below 65‐m depth is in agreement with the rate of freshwater
content for the entire water column.

3.2. Seasonal Changes

It is important to be aware that the estimates of freshwater content discussed above are for the August–
October season. Satellite‐based data show that the range of monthly freshwater content changes is greater
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than that based solely on the annual hydrographic surveys. Analyzing the monthly freshwater content time
series for 2004–2014 inferred from satellite data (Table 1 and Figure 4), it is found that the maximum
freshwater content occurs in December and the minimum in April, and the maximum interannual trend
(710 km3/a) was observed in January and minimum trend (360 km3/a) in December. The maximum
difference between highest and lowest freshwater content in the region was observed in February (9,140
km3, comparing 2011 and 2004). These results also demonstrate that regional fresh water accumulation
and release has been occurring continuously in response to changes in the wind forcing, sea ice
conditions, and ocean circulation. The observations indicate a lag of approximately 2 months between
stress curl at the ocean surface and freshwater content in the region (based on data shown in Figure 3).

The rate of fresh water accumulation below 65‐m depth is in agreement with the rate of freshwater content
for the entire water column. We speculate that the Pacific water layer in the Beaufort Gyre region receives
fresh water directly from waters entering through Bering Strait, and modified by surface buoyancy forcing
in the Chukchi Sea, that are denser than the surface waters of the Canada Basin. Prevailing winds and ocean
geostrophic flow drive these Pacific waters into the Canada Basin where they ventilate the Beaufort Gyre
region halocline (Timmermans et al., 2014, 2018). This explanation is in agreement with seasonal changes
of freshwater content below 65 m observed in the mooring data where maximum freshwater content was
observed in January–February andminimum in June–July whenwind‐driven downwelling in the southwest
Canada Basin/Chukchi Sea is replaced by upwelling. Zhong et al. (2019, this special issue) investigated
changes in the Pacific winter water located between the Pacific summer and Atlantic water layers and
showed that under the influence of Ekman pumping and lateral advection, the thickness and freshwater
content of this layer increased by approximately 18% over the years 2002–2016.

Analysis of the freshwater content seasonal cycle indicates significant variability in phase and magnitude
from year to year (Figures 3, 4, and 5). Proshutinsky, Krishfield, Timmermans, et al. (2009) analysis of
2003–2008 mooring and ITP data revealed that the seasonal cycle of liquid freshwater content during this
period was not consistent with the conventional understanding of the Arctic Ocean hydrological cycle in
which liquid freshwater content is maximum in August and minimum in April (Steele et al., 2001;
Serreze et al., 2006; Timokhov & Tanis, 1997, 1998). Instead, the observations indicated that over 2003–
2008, there were two seasonal maxima in freshwater content; one in June–July when sea ice thickness
reached its minimum (maximum ice melt) and the second in November–January when Ekman pumping
was strongest and salt input from ice growth had not yet reached its maximum. Furthermore, the timing
and phase of the seasonal cycle were different depending on location (details are available in
Proshutinsky, Krishfield, Timmermans, et al., 2009). Note that in that analysis, the seasonal cycle of fresh-
water contents from the moorings (below 65 m) were extended to the surface using ITP data, with attendant
uncertainties (see Proshutinsky, Krishfield, Timmermans, et al., 2009).

The data inferred from satellites also allows us to estimate how well BGOS observations can manifest fresh-
water changes. Correlating freshwater content changes in each cell of our 55.5‐km grid (see section 2.1.) with

Table 1
Statistics of 2004–2014 FWC Inferred From Satellite Data

Month
Trend ×
103km3/a

Mean
×103 km3

SD
×103 km3

Maximum
×103 km3

Minimum
×103 km3

Change
×103 km3

January 0.71 22.35 2.96 25.46 17.22 8.24
February 0.58 21.80 3.01 25.40 16.26 9.14
March 0.60 20.93 2.46 24.24 17.41 6.83
April 0.65 20.47 2.56 23.00 16.06 6.94
May 0.44 19.97 2.55 23.70 16.41 7.29
June 0.40 22.32 2.27 25.09 18.32 6.77
July 0.58 20.66 2.16 22.78 16.32 6.46
August 0.57 20.52 2.38 23.38 16.74 6.63
September 0.62 21.72 2.73 24.59 16.46 8.13
October 0.40 23.92 2.29 26.37 20.25 6.12
November 0.40 23.90 2.66 27.34 20.58 6.75
December 0.36 23.02 2.57 27.79 18.91 8.88

10.1029/2019JC015281Journal of Geophysical Research: Oceans

PROSHUTINSKY ET AL. 10



changes of regional mean freshwater content reveals that the data from all moorings are representative
(Figure 4) because in the center of the region, correlations are greater than 0.95.

To analyze the seasonal cycle of freshwater content at the mooring sites over 2003–2018, freshwater content
is expressed in terms of meters of water at the point locations instead of thousands of cubic kilometers for the
region as discussed in previous sections. In general, freshwater content below the mixed layer at themooring
sites (deeper than 65 m; Figures 5a and 5b) shows small seasonal change, with the maximum observed in
January–February and minimum in June–July, depending on location. The range of the seasonal change
of freshwater content below 65 m is about 0.5 m on average but can be up to 1.5 m in some years at moorings
B and D (Figures 5a and 5b, thin colored lines).

The seasonal cycle of freshwater content (at the mooring locations) inferred from the satellite data (that
includes contributions from the mixed layer; Figure 5e) reveals a primary maximum in February, a mini-
mum in May, and a secondary well‐pronounced maximum in June. Freshwater content then attains a mini-
mum in July, followed by a gradual increase to February.

Similar freshwater content inferred from satellite data was reported by Armitage et al. (2016) and is also dis-
cussed by Regan et al. (2019, this special issue). While Proshutinsky, Krishfield, Timmermans, et al. (2009)
and Armitage et al. (2016) explain the freshwater content maximum in June as the result of interplay
between Ekman convergence strength and the availability of freshwater from sea ice, Regan et al. (2019)
argue that the distribution and strength of seasonal atmospheric forcing may be responsible for this June
maximum. This explanation is effectively the same as that put forward by Proshutinsky, Krishfield,
Timmermans, et al. (2009) and Armitage et al. (2016) since Ekman convergence strength and sea ice condi-
tions (thickness, drift, and concentration) are regulated by atmospheric winds driven by gradients of the
Beaufort High atmospheric pressure.

It is revealing that freshwater content inferred from mooring data (i.e., only including the contribution dee-
per than 65 m) does not have a maximum in June. Therefore, the June maximummust be a manifestation of

Figure 4. (a) Freshwater content changes in the Beaufort Gyre region inferred from satellite data in 2004–2014 by month.
The thin colored lines show the interannual variations by month, while the annual mean is depicted by the thick red line.
The thick blue line shows the evolution of freshwater content observed in August–September. This is identical to fresh-
water content shown by the thin yellow bars in Figure 3a. The dotted blue line represents August–September freshwater
content inferred from satellite data. (b) Correlation between time series of freshwater content in each grid point and the
mean freshwater content in the Beaufort Gyre region. High correlation at mooring locations indicates that observations at
these locations are representative of estimates of freshwater content in the whole region.
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changes in the upper 65 m of the ocean. To examine this, monthly freshwater content in the upper 65‐m
layer was calculated as the difference between the full water column freshwater content (inferred from
satellite data at mooring locations) and mooring freshwater content below 65 m. The resulting freshwater
content seasonal cycle in the upper 65 m is effectively the same as the seasonal cycle of freshwater
content inferred from the satellite data because the seasonal cycle is confined to the upper 65 m
(Figures 5a and 5b, thick red lines). In June, the central part of the Beaufort Gyre receives between 1.5
and 2 m of fresh water, while the following month in July, the fresh water returns to low pre‐June values.
Note that this distinct seasonal signal in freshwater content is only inferred from satellite data (and not
recorded by ITP data, described next). Further explanation will be provided in the next section.

Freshwater content calculated from ITPs was averaged monthly over the Beaufort Gyre region to investigate
seasonal changes (Figures 2 and 3). While monthly changes in freshwater content calculated from the ITP

Figure 5. Seasonal anomalies of freshwater content (FWC) and external forcing. The thin lines depict individual years;
the thick lines represent the mean annual cycle for the period 2003–2018. (a–d) FWC below 65 m (thin lines and thick
blue lines) and in the upper 65‐m layer (thick red line) at moorings A, B, C, and D. Note that the upper 65‐m layer FWC is
calculated as the difference between FWC inferred from satellite SSH data at the mooring locations and FWC based on
mooring observations below 65 m. (e) FWC inferred from SSH satellite‐based data at mooring locations. (f) Monthly
anomalies of Ekman vertical velocities in the rectangular region (RR) are shown. (g) FWC in sea ice at mooring locations
from ULS dat. (h) FWC derived from ITPs drifting in the RR (see Figure 2b). In panel H, the thinner red and blue lines
depict FWC from ITP data obtained in 2007 for the upper 65‐m water column and for the total water column in the RR,
respectively. The thick red and blue lines show the same as thin lines but for the period 2003–2018. The thick black line
depicts freshwater content from the SibCIOM model output in the RR.
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data can be up to 5 m (Figure 3), these estimates may be influenced by ITP irregularity in the temporal and
spatial sampling within the Beaufort Gyre region (Figure 2). The mean seasonal cycle of freshwater content
derived from ITP data is relatively simple (Figure 5h). It has just one minimum inMay and one maximum in
September. Interestingly, the freshwater content seasonal cycle from ITP data is in excellent agreement
(anticorrelated) with the seasonal cycle of freshwater content in sea ice, which probably reflects the fact
that ITPs rarely sampled ice free waters.

3.3. Some Uncertainties and Complications

It is not possible without additional information to fully explain the June peak in satellite‐derived freshwater
content (Figure 5e), which is not replicated in freshwater content time series inferred from other data
sources (Figure 5). It is possible that the discrepancy is due to problems in the SSH estimates unique to this
month of the year: for instance, resulting from either melt pond formation and/or rapid freshwater injection
from rivers. Armitage et al. (2016) attempted to account for the effect of melt‐pond formation in the summer
on estimated SSH using a seasonally varying correction, but there may be unresolved increases in SSH asso-
ciated with the formation of melt ponds in June. Further, this effect might be expected to be spatially varying
and depend on the type of sea ice present, as it is known the extent and height of melt ponds depends to a
great extent on sea ice deformation. This might also explain the SSH drop in July when the fresh water from
melt ponds drains into the ocean.

Figure 6. 2003–2018 downwelling observed at Beaufort Gyre Observational System (BGOS) moorings A, B, C, and D.
Isopycnals (colored dots) are plotted in depth − time (year + 2000) coordinates to illustrate the rate of observed down-
welling. The thick black line indicates that the depth an isopycnal would have as a result of the cumulative effects of the
Ekman vertical velocity over the Beaufort Gyre region (see also Figure 3b).
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Importantly, fresh water release from melt ponds to the ocean is not measured by GRACE and BPRs, and
indeed, the GRACE analysis reported by Armitage et al. (2016, Figure 5) and Peralta‐Ferriz and Morison
(2010, Figure 2b) show only small peaks in June. Hereafter this will be cited as the A‐P‐F&M effect. BGOS
BPRmeasurements (not shown) indicate a small increase in bottom pressure in June or/and July depending
on the year, which is in general agreement with the A‐P‐F&M result although the BPR peak is smaller in
magnitude. The differences in magnitude and phase in BGOS BPR data and in A‐P‐F&M are probably due
to the different geographic areas investigated with the GRACE and BPR data. Only information for the
Beaufort Gyre region is considered in this study, while A‐P‐F&M analyze data from all Arctic basins.

On the other hand, the barotropic SSH peak in June (Armitage et al., 2016) coincides with a peak in the
GRACE seasonal cycle, which could be due to the rapid thawing and outflow of rivers (Peralta‐Ferriz &
Morison, 2010). This may not be fully accounted for in the steric sea level estimates used to calculate fresh-
water content. Note that in order to infer freshwater content changes from DOT data, all barotropic SSH
changes related to the ocean mass change must be removed. This can be done by removing SSH inferred
from GRACE or BPRs from the DOT data. Without this correction, the calculated freshwater content will
have an error proportional to the barotropic SSH anomaly multiplied by 33 (see section 2.4; α coefficient).
In this sense, an error of 2 to 3 cm in the estimation of barotropic component of SSH will result in 60 to
100 cm of freshwater content bias.

4. Discussion
4.1. Mechanisms of Fresh Water Accumulation and Release

Three major causes of freshwater content change observed in the Beaufort Gyre region at different time-
scales have been suggested (Proshutinsky et al., 2002, Proshutinsky, Krishfield, & Barber, 2009;
Proshutinsky, Krishfield, Timmermans, et al., 2009), namely, (a) wind‐generated Ekman transport conver-
gence and pumping, which drive the mechanical redistribution of fresh water in the region including fresh
water accumulation from outside the study region (such as river runoff and other sources of fresh water dis-
cussed above); (b) seasonal and interannual ice melt and growth accompanied by salt exchange between
ocean and sea ice; and (c) ocean mixing and changes in ocean stratification. Each is discussed in turn below.
4.1.1. Ekman Pumping
Seasonal changes of wind forcing modified by sea ice conditions and ocean circulation are analyzed here in
terms of Ekman vertical velocity anomalies (Figure 5f with negative velocities corresponding to downwelling).
Despite significant wind stress curl at the ice surface from December to May, the downwelling increases only
slowly at this time because internal ice forces reduce ice motion and inhibit momentum transfer fromwind to
the ocean surface. These well‐known effects (Hibler, 1979) are typically taken into account directly in numer-
ical models, and also in bulk estimations of stress curl at the ocean surface using observed sea ice motion (e.g.,
Ma et al., 2017; Yang, 2006, 2009; Zhong et al., 2018). An additional influencing factor on interannual change
inEkman vertical velocity is related to theBeaufortGyreflywheel effect discussed by Proshutinsky et al. (2002)
and is usually included in ice‐ocean modeling studies. The flywheel effect refers to the sustained anticyclonic
ocean flow that at times results in the ocean moving faster than the sea ice (i.e., in winter when the expansive
sea‐ice pack restricts ice drift or when atmospheric forcing shifts to weakly cyclonic circulation in summer).
Several recent studies that have included geostrophic currents in calculations of ice‐ocean stress curl show that
stress curl at the ocean surface can be overestimated when geostrophic currents are not accounted for (Dewey
et al., 2018; Meneghello et al., 2017, 2018; Zhong et al., 2018).

With the seasonal reduction of sea ice concentration beginning in July and lasting until October–November,
sea ice responds more readily to anticyclonic wind forcing, and the upwelling effect associated with the
anticyclonic ocean flow becomes less important. Over this period, the magnitude of stress curl at the ocean
surface increases, leading tomaximum downwelling in October (Figure 5f). This interplay between wind for-
cing, ice motion, oceanic circulation, and eddies (dissipating available potential energy in the gyre) in the
Beaufort Gyre region was recently named “the ice‐ocean governor” (a reference to the regulating effect of
sea‐ice on the wind‐driven spin‐up of the gyre), described and tested via theoretical and idealized modeling
(Doddridge et al., 2019; Meneghello et al., 2018; Wang et al., 2019).

Our calculations of Ekman vertical velocity are substantiated by comparison with observed isopycnal displa-
cements at the mooring locations (Figure 6). Cumulative Ekman‐driven downwelling and deepening of the
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isopycnals at themoorings (Figure 6) are generally in agreement until around 2008–2010. Significant increases
in Ekmanpumpingwere observed in 2007–2008 (Figure 3b), particularlywell pronounced atmooringD. After
2008, some stabilization of isopycnal depths is observed (and even upwelling at moorings A and D) until
around 2014. After 2014, all mooring records again show downwelling in agreement with Ekman pumping.
This isopycnal behavior is in broad agreement with freshwater content variability in 2003–2018 (Figure 3).

The process of fresh water accumulation in 2007–2008 for the Beaufort Gyre region is illustrated by Figure 7
(see also Figure S1 in supporting materials), which shows forcing factors and calculated Ekman horizontal
and vertical velocities. In 2007 and 2008, the Beaufort Gyre region accumulatedmore than 2,000 km3 of fresh
water (30% of the accumulation observed over the 2003 to 2018 period). In August 2007, the Beaufort High

Figure 7a. (a) Monthly freshwater content and forcing factors in the Beaufort Gyre region in August 2007. (A) Sea ice
concentration (colors), ice drift (vectors, cm/s) where ice was present. The black contours show sea level pressure (SLP;
hPa). (B) Ekman velocities. Horizontal Ekman mean velocities are depicted by vectors (cm/s) and Ekman vertical
velocity (cm/day) by colors. The black solid lines represent freshwater content (m) with 2‐m increment. (C) freshwater
content from CTD data is shown in colors and by blue contours (m, 2‐m increment); Vectors show wind stresses at the ice
and ocean surface (g · cm−1 · s−2); (D) August freshwater content (m, colors and contours) inferred from DOT.
Vectors depict geostrophic currents inferred fromDOT and published by Armitage et al. (2017). Note that we intentionally
repeat freshwater content observed in the annual hydrographic survey (panels C in all Figures 7) to better visualize the
rate of fresh water accumulation and accurately compare observed freshwater content in August with freshwater
content inferred from the monthly satellite data. (b) Same as in Figure 7a but for October 2007. (c) Same as in Figure 7a
but for December 2007. (d) Same as in Figure 7a but for February 2008. (e) Same as in Figure 7a but for April 2008. (f)
Same as in Figure 7a but for June 2008. (g) Same as in Figure 7a but for August 2008.
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(atmospheric pressuremaximum in the region)was unusually strong (in contrast to the typical climatological
August low pressure system). The associated strong anticyclonic winds (Figure 7a, panel C) drove sea ice to
drift anticyclonicallymuch faster than usual (Figure 7a, panel A). This resulted in intensive Ekman transport
convergence in the ocean with maximum Ekman pumping (between 5 and 10 cm/day in the central part of
the Beaufort Gyre region). Note that the distributions of freshwater content observed during the August
hydrographic survey and inferred from satellite data are in excellent agreement (Figure 7a, panels C and
D). Further, geostrophic currents (Figure 7a, panel D; Armitage et al., 2017) agree with the wind and ice
forcing, and freshwater content distribution. In September and October (Figures 7b and S1a, respectively),
fresh water accumulation intensified (sea ice concentration continued to decrease, while wind, ice drift,
and geostrophic currents were increasing).

By December 2007 (Figure 7c), due to the increase of sea ice extent and concentration (and resulting
intensification of internal ice forces), the seasonal cycle of fresh water accumulation was completed
and freshwater content and geostrophic circulation reached seasonal maxima, while Ekman pumping
started to decrease (compare Figures 7b–7d, panels B and D). From January (Figure S1c) through April
2008 (7e), despite sustained anticyclonic winds and ice drift, the wind‐driven momentum transfer to
the ocean was moderated by strong internal ice stresses. Ekman transport divergence and upwelling
ensued when the ice drift became comparable to, or smaller than, the geostrophic ocean currents (com-
pare panels A and D in Figures 7d–7f). See also results of Meneghello et al. (2017, 2018), Zhong et al.
(2018), and Dewey et al. (2018) studies. In June–July, the freshwater content in the region slowly
decreased and reached a minimum around July–August (Figures 7f and S1f, panels C and D). From

Figure 7b.
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June to August, due to reduced sea ice cover and a continuation of anticyclonic wind forcing in 2008,
vertical Ekman velocities began increasing and in August the observed (Figures 7g and S1g, panels C)
and inferred freshwater content distribution from satellite data (Figures 7g and S1g, panels D) became
practically identical.

It is important to note that it would not be possible to understand and explain these dynamics of fresh water
accumulation and release by investigating freshwater content changes in the region using only the annual
hydrographic survey data. The freshwater content between August 2007 and August 2008 (Figure 3, vertical
blue bars) increased by 2,000 km3, but the estimatedmagnitude of freshwater content in the seasonal cycle of
2007–2008 reached more than 5,000 km3 (a result well supported by the estimates inferred from the satellite
data and calculated from ITP measurements; Figure 3, top panel, black lines and crosses). We also suspect
that due to significant changes of freshwater content and upper ocean stratification through the seasonal
cycle, the processes of mixing and eddy dynamics also have strong seasonality, but assessment of these pro-
cesses is beyond the scope of this paper.
4.1.2. Fresh Water Availability and Freshwater Content Balances
Proshutinsky et al. (2002), Proshutinsky, Krishfield, Timmermans, et al., 2009) showed that in order for wind
forcing to accumulate fresh water in the Beaufort Gyre, a fresh water anomaly must be available in the sur-
face Ekman layer of the surrounding region. Freshwater sources are well known and include all waters with
salinities less than the mean/reference salinity of the Arctic Ocean (here we use S=34.8). These are river
influxes, Pacific water coming from Bering Strait, precipitation minus evaporation, and sea ice meltwater
(e.g., Aagaard & Carmack, 1989; Carmack et al., 2008). Less understood is when and how fresh waters of

Figure 7c.
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different origin reach the Beaufort Gyre region and are accumulated there. Similarly, it remains an open
question as to when and how the fresh water is released from the Beaufort Gyre region, and the
subsequent pathways of fresh water exiting the Beaufort Gyre region.

To better understand the processes of fresh water accumulation and release, fresh water fluxes (both liquid
and solid) were calculated along the boundaries of a rectangular region (RR) shown in Figures 2 and 7. A
local maximum in freshwater content has been observed in this region every year since 2003. Moreover,
the changes in sea ice and ocean parameters in this particular region are monitored by BGOS moorings,
and the density of hydrographic stations and ITP data coverage in this region is higher than in the rest of
the Beaufort Gyre region shown in Figures 2 and 7.

Assuming that Ekman transport is the major mechanism for accumulation of fresh water, freshwater fluxes
are calculated along the region boundaries as horizontal components of Ekman volume transport in the
upper 20 m normal to the boundaries multiplied by freshwater content in the upper 20 m of the water col-
umn at the boundaries. The Ekman transport is calculated as in section 2.5, and freshwater content at the
boundaries is taken from the annual hydrographic surveys conducted between August and October. For
other months of the year, freshwater content in the upper 20 m is reconstructed using changes in sea ice
thickness measured by the ULSs at the mooring locations (Figure 3b) and ice concentration estimates from
NSIDC data (section 2.5). In this calculation, fresh water is added to the ocean when sea ice melts and is
removed from the upper 20‐m layer when sea ice grows. Changes of Ekman transport and freshwater con-
tent at the boundaries are shown in Figure S2). The seasonal cycle of freshwater content in the upper 20‐

Figure 7d.
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m layer was also reconstructed using ITP data (see also Figure 5h), which is in agreement with freshwater
content changes due to sea ice transformations shown in Figure 5g.

In 2003–2018, the dominant freshwater flux to the region was via the southern boundary—up to 300 km3 of
fresh water per month each summer (Figure 8). Also, a significant volume of fresh water was delivered to the
region via the western boundary (negative flux means into the region). Freshwater fluxes via the northern
and eastern boundaries were small except during 2012–2013, when freshwater flux was directed out of the
region, resulting in the observed freshwater content reduction in these years (Figures 3 and 4). Rapid fresh-
ening of the region observed in 2007–2008 was associated with anomalous freshwater fluxes entering via the
southern and western boundaries (Figure 8) driven by strong anticyclonic winds (Figure 7). The average con-
tributions of Ekman transport and available fresh water (Figure S2) to the freshwater fluxes show that both
contribute via the southern boundary to the increased freshwater content in the region. Despite the greatest
amount of freshwater content being located along the region's eastern boundary, the Ekman transport along
this line was very small.

Solid freshwater fluxes at the boundaries were calculated using monthly satellite‐based estimates of ice
motion, concentration, and thickness (section 2.5). Results of sea ice draft measured at the four BGOSmoor-
ings are sufficiently representative to characterize changes of sea ice thickness in the Beaufort Gyre region
(e.g., Krishfield et al., 2014; Proshutinsky, Krishfield, & Barber, 2009; Proshutinsky, Krishfield,
Timmermans, et al., 2009; Yaremchuk et al., 2019, in this special issue). Sea ice plays a significant role in

Figure 7e.
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fresh water transport to the region via the southern, northern, and eastern boundaries, with fresh water
transport out of the region via the western boundary (Figure 8).

The results of the freshwater fluxes across the boundaries (i.e., the mechanical contribution to the regional
freshwater budget) compared to freshwater content changes due to local sea ice melt/growth in the region
(i.e., the thermodynamical contribution) indicate that fresh water accumulation in the region has been dri-
ven primarily by Ekman transport convergence (Figure 9), while sea ice transformations were mainly
responsible for the significant seasonal changes. There is a good qualitative correlation between our calcula-
tions of freshwater accumulation shown in Figure 9d (red line) and freshwater content anomalies in the rec-
tangular region inferred from satellite data (Figure 9d blue line). The observed seasonal changes are greater
than from our calculations and can be explained by fresh water accumulation in the RR due to fluxes of fresh
water to the region below the Ekman layer, which we have not taken into account.

Fresh water fluxes across the open boundaries of the rectangular region have been primarily responsible for
the overall freshwater content increase in the region by about 5,500 km3 from 2003 to 2018. There is a clear
negative trend in freshwater content in sea ice over the time series. From 2003 to 2018, melting sea ice was
responsible for an increase of approximately 500 km3 of fresh water in the region (Figures 3 and 9). Note that
Ekman transport convergence confined these melt waters in the Beaufort Gyre. Similar conclusions were
recently published by Wang et al. (2019), who employed a global coupled ice‐ocean FESOM model with
~4.5‐km grid resolution in the Arctic Ocean to investigate the role of sea ice decline in the Arctic Ocean
freshwater content change.

Figure 7f.
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There is a 2‐month delay (Figure 9) between the maximum freshwater flux observed at the boundaries and
the freshwater content maximum inferred from satellite data (correlation coefficient is 0.54 [0.345; 0.720]).
This correlation with a 2‐month lag means that it takes about 2 months for the fresh water signal to propa-
gate from the boundary to the center of the region (~300 km) with a speed of approximately 5.5 cm/s. This
speed is a bit greater than the mean Ekman velocities in the upper 20‐m water layer shown in Figures 7
(panel B), but in these calculations we do not take into account freshwater content changes due to other fac-
tors like net precipitation and sea ice melt/growth. Uncertainties in forcing factors and sea ice conditions
have to be taken into account as well.

4.2. Sources, Contributions, and Pathways of Fresh Water

Estimates of fresh water contributions from different sources in the Beaufort Gyre based on geochemical
methods and analyses have been published by Yamamoto‐Kawai et al. (2005, 2008, 2009), Guay et al.
(2009), Alkire et al. (2007, 2015), Alkire et al. (2017), Carmack et al. (2008, 2016), and Prowse et al.
(2015). The most important conclusion from these studies is agreement that the Beaufort Gyre water
column contains fresh water from all possible sources: meteoric, Eurasian and North American rivers,
the Pacific Ocean, and sea ice melt. However, estimates of the fraction of fresh water contributed by
different origins have differed substantially between these studies based on different data sets from
different years.

Figure 7g.
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BGOS assessments based on ULS data quantify the amount of sea ice as a source of fresh water. After 2006–
2007 more sea ice melts than grows (Krishfield et al., 2014). The overall 500‐km3 local contribution of ice
melt water from 2003 to 2018 is less than 8% of the total freshwater content change in the region. Thus,
the vast majority of fresh water that accumulated in the Beaufort Gyre originated beyond the region.

Several numerical modeling studies have simulated fresh water content evolution using tracers to track the
pathways of fresh water parcels released from rivers and sea ice, originating from precipitation, and trans-
ported with waters via ocean straits (e.g., Jahn et al., 2012; Pemberton et al., 2014) although none have ana-
lyzed the changes over the past 20 years. Two papers in this special issue (Hu & Myers, 2019; Kelly et al.,
2019) describe results of model analyses of fresh water pathways from different sources to the Beaufort
Gyre region. We next describe results from our analysis of modeling experiments to understand
freshwater pathways.

Previous studies (Aksenov et al., 2016; Jahn et al., 2012; Maslowski et al., 2000, 2001; McLaughlin et al., 2002;
Proshutinsky et al., 2001; Watanabe et al., 2017) have shown that trajectories of fresh water released from
rivers and from Bering Strait (contributing as a fraction of Pacific water) change significantly in concert with
the wind‐driven circulation. For example, during cyclonic regimes, Siberian river runoff is typically diverted
toward the Laptev and East‐Siberian Seas (e.g., Maslowski et al., 2000, 2001), while during anticyclonic
regimes, these waters do not extend toward the Canada basin. Similar flow path variability characterizes
the Pacific waters originating from the Bering Strait region (i.e., Aksenov et al., 2016; McLaughlin et al.,
2002) with the Pacific water outflow toward Canadian Archipelago Straits decreasing during years of
anticyclonic circulation.

Analyses of chemical tracers collected during the BGOS hydrographic surveys (Guay et al., 2009; Yamamoto‐
Kawai et al., 2005, 2008, 2009) and from North Pole Observatory aerial hydrographic surveys (Alkire et al.,

Figure 8. Monthly liquid freshwater fluxes (red lines; km3/month) calculated based on Ekman transport in the upper
ocean 20‐m layer and freshwater content inferred at the boundaries of the rectangular region (Figure 7). Positive direc-
tions are northward and westward. The blue lines depict solid (ice) freshwater fluxes via boundaries.

10.1029/2019JC015281Journal of Geophysical Research: Oceans

PROSHUTINSKY ET AL. 22



2010); (Alkire et al., 2015) have allowed partitioning of meteoric water and net sea‐ice meltwater
contributions, including estimation of their fractional contributions to the Beaufort Gyre region waters.

However, there are some differences among these analyses related to difficulties in separating fresh water
from sea ice melt and meteoric water and distinguishing between North American and Siberian River run-
off. To address these difficulties, and in recognition that there are significant gaps in the data, numerical
modeling was employed to better understand the redistribution of fresh water originating from different riv-
ers and straits. Three numerical experiments were conducted employing the SibCIOM model. Trajectories
beginning in the year 2000 were initiated at the mouth of the Mackenzie River (experiment 1) and in
Bering Strait (experiment 2). In experiment 3, the floats were released in 1985 in the deltas of the Siberian
Rivers (mouths of the Kolyma, Indigirka, Yana, Lena, Olenek, Ob, and Yenisei rivers). The algorithm for
the float trajectory simulations includes vertical and horizontal diffusion processes given by specified mixing
coefficients. Results corresponding to float releases at each of these locations are described below (see
also Figures 10–12).
4.2.1. Mackenzie River
TheMackenzie River annual runoff is ~300 km3/a (Holmes et al., 2019). Fichot et al. (2013) analyzedMODIS
Aqua ocean color 4‐km resolution satellite data and found that a transition from eastward to northwestward
advection of Mackenzie River runoff occurred between 2002 and 2011 (Figure 10). The Mackenzie River

Figure 9. (a–d) Monthly components of fresh water contributions in the rectangular region (RR; Figures 2 and 7); (a) total
freshwater content (FWC) changes due to liquid fresh water fluxes via boundaries of the RR; (b) solid FWC due to changes
of ice volume associated with ice drift convergence in the RR; (c) FWC changes due to ice melt and growth in the RR; (d)
freshwater accumulation due to dynamical and thermodynamic forcing (sum of FWC changes shown in panels a–c),
where the blue line shows FWC inferred from satellite data for the RR. (e) FWC in the upper 20 m from annual hydro-
graphic surveys corrected for seasonal sea ice transformations (blue line; see section 4.2) and from ITPs (crosses). The
black line shows detrended FWC time series from seasonally corrected hydrographic data, and the red line depicts
monthly fresh water volume entering the RR. The correlation of this time series and the FWC time series is 0.54 [0.345;
0.720] (maximum for a 2‐month lag, see text).

10.1029/2019JC015281Journal of Geophysical Research: Oceans

PROSHUTINSKY ET AL. 23



release simulation is in agreement with those observations (Figure 10). It took slightly more than 1 year for
floats released at the Mackenzie River mouth (not shown) to reach the southern boundaries of our

rectangular region and to influence freshwater content in this area. The
right panel of Figure 10 clearly demonstrates that substantial volumes of
fresh water released from the Mackenzie River propagate through the
Beaufort Gyre region and remain there or return to the region via the
western and northern boundaries under the influence of the wind‐
driven anticyclonic circulation during the period of our study. This is
also in agreement with Figure 8 where fresh water accumulation in the
region is shown to be due to Ekman transport convergence with the
major influx of fresh water along the southern boundary (Figure 8). The
numerical simulations indicate (Figure 11, red line) that over the period
2003–2012, water from the Mackenzie River was one of the major
sources of fresh water that accumulated in the region. Three peaks (red
solid line, Figure 11) were identified: in 2005, 2007, and 2010; these are
in agreement with the observed freshwater content changes in the
region (black solid line in Figure 11). Supporting information S2 with
Figures S3a–S3h show observed water salinity at different depths
confirming that freshwater flux via southern boundary originated from
the Mackenzie River delta.
4.2.2. Bering Strait
The observed increase of Beaufort Gyre region freshwater content may be
associated with fresh water originating at Bering Strait. Haine et al. (2015)
estimated that the annual flux of fresh water to the Arctic Ocean from
Bering Strait is 2,500±100 km3/a. This flux could “fill” the Beaufort

Figure 10. (left) The Mackenzie River origin water outflow observed in 2007 (from Fichot et al., 2013). Colors depict distribution of terrigenous dissolved organic
matter (tDOM) as a surface manifestation of Mackenzie River water westward propagation (yellow is high concentration and blue is low). Moderate Resolution
Imaging Spectroradiometer (MODIS) Aqua ocean color 4‐km resolution satellite data were used for analysis. The Mackenzie River is labeled (4). The contour line
represents the 2,000‐m isobath and outlines the Canada Basin. (right) Distribution of floats released since 2000 at the Mackenzie River mouth and their trajectories
at the end of 2007. Colors of trajectories and legend show percentage of floats at different depths. Results are from the SibCIOM model (see section 2.6 and sup-
porting information S1). The black bounded region is the same as shown in Figures 2 and 7.

Figure 11. Annual freshwater content anomalies from observations and
model results (km3) for the rectangular region (RR). Freshwater content
from sea ice, rivers, and Bering Strait is from tracer analysis. Net precipita-
tion (P‐E) is from NCAR/NCEP reanalysis. Freshwater content contribution
from ice melt in the RR and freshwater flux via boundaries are from the
calculations described in section 4.2.
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Gyre region with the observed freshwater anomaly of 6,400 km3 in 2.6 years; see, for example, the analysis of
Timmermans et al. (2014) demonstrating how Pacific Water is swept into the Beaufort Gyre. Numerical
modeling experiments were conducted to assess how much of the Pacific fresh water can be accumulated
in the Beaufort Gyre under the influence of the 2003–2018 anticyclonic winds? The simulations
(Figures 11 and 12) reveal that in 2003–2007, the freshwater flux anomaly to the rectangular region from
Bering Strait was low due to very strong anticyclonic winds (Figure 7). Note that trajectories of floats
shown in Figure 12 are in excellent agreement with SLPs, sea ice drift, and geostrophic currents
(Figures 7). In 2008 and later, the floats from the Bering Strait region were able to reach the region
mainly via the northern boundary and in some years via the southern and western boundaries. By 2012,
the contribution of fresh water to the region from Bering Strait is very close or even greater than that
from the Mackenzie River (Figure 11).

Figure 12. Trajectories of floats released from Bering Strait since 2000 (left) by the end of 2007 and (right) by the end of
2012 based on SibCIOM model results. The Colored bars show the percentage of floats in different layers. The bounded
region is the same as shown in Figure 7.

Figure 13. Same as in Figure 12 but for floats released from Siberian rivers since 1 January 1985 by the end of 2007 and
2012. The colored bars show the percentage of floats in different water column layers. The bounded region is the same as
shown in Figure 7.
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4.2.3. Siberian Rivers
The total freshwater flux from Siberian rivers is close to 2,000 km3/a (Holmes et al., 2015). Our modeling
results suggest that the Siberian river contributions to fresh water accumulation in the Beaufort Gyre region
in 2003–2018 are negligible relative to the Bering Strait and Mackenzie River contributions (Figures 12 and
11). Note that the results of these simulations do not contradict the results of the geochemical analysis by
Morison et al. (2012), who found fresh water originating from Siberian rivers in the Beaufort Gyre region
(see also Alkire et al., 2015). Instead, it is plausible that the detected waters are remnants of Siberian river
waters that reached the Beaufort Gyre region during the previous cyclonic circulation regime (1989–1996;
Figure 14). After 1996, these waters may have been trapped in the Beaufort Gyre region by sustained antic-
yclonic winds with some additions from surrounding regions due to anticyclonic circulation. After 2005,
more Siberian origin floats were removed from the region than added, and by 2007, the freshwater content
anomaly due to Siberian rivers relative to 2003 was close to zero and then became negative. Based on these
modeling results, we conclude that the contribution from Siberian rivers to the increase in Beaufort Gyre
region fresh water content between 2003 and 2014 is very small. Those Siberian river waters that arrived pre-
viously were trapped in the region, and their “concentration” has not changed or waned after 2007. The con-
finement of fresh water in the Beaufort Gyre by anticyclonic winds in 2005–2010 was also shown in
Timmermans et al. (2011).

Figure 14. Trajectories of floats released from Siberian rivers since 1 January 1985 by the end of 1985,1990,1995,2000,
2005, 2006, 2007, 2008, and 2010 based on SibCIOM model results. During cyclonic circulation regime of 1989–1996
(see Proshutinsky et al., 2015), water floats from Siberian rivers reached the rectangular region (bounded by red line); by
2005 their number reached maximum, and then in 2006–2010 these particles were leaving the RR. RR is the same as
shown in Figures 2 and 7. These distributions of floats illustrate that freshwater content anomaly in 2007 relative to 2000
was close to 0.
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Consequently, we conclude that fresh water accumulation in the Beaufort Gyre region was the product of
persistent anticyclonic atmospheric wind forcing (1997–2018; see Proshutinsky et al., 2015) accompanied
by sea ice melt. The former induced an anomalous wind‐forced redirection of Mackenzie River discharge
from predominantly eastward to westward flow supplying the Beaufort Gyre region with its fresh water.
There was in addition a contribution of waters of Pacific Ocean origin via Bering Strait. The fresh water input
to the Beaufort Gyre region from Siberian rivers during 2003–2018 was negligible. Remnants of Siberian
river waters detected by geochemical analysis presumably penetrated into the region in 1989–1996 during
a cyclonic circulation regime.

Additional validation of these findings was conducted through comparison with results of tracer experi-
ments employing a 0.08° (~4.5‐km horizontal resolution) HYbrid Coordinate Ocean Model (HYCOM)
model. The model details and passive tracer calculations are provided in Dukhovskoy et al. (2019; this spe-
cial issue). Since 1993, site‐specific passive tracers were released continuously at the mouths of the
Mackenzie River, East Eurasian Rivers (Kolyma, Lena, and Khatanga), West Eurasian Rivers (Pyasina,
Enisey, Ob, Pechora, and Sev. Dvina), and in Bering Strait. Tracer concentrations were proportional to the
monthly freshwater fluxes from each source. The distribution of tracers from these sources (Figure 15) is
in agreement with our conclusions. Our results are also supported by simulations of particles released in
the Beaufort Gyre (Kelly et al., 2019; this special issue) and using a backward trajectories method to track
particle origins based on results of the 1/12° NEMO model. It was found that pathways of fresh water from
Mackenzie and Bering Strait depend significantly on the sense and intensity of the atmospheric circulation
regime and that since 2000, the contribution of fresh water from theMackenzie River to the accumulation in
the Beaufort Gyre region was comparable with the freshwater volume transported to the region from Bering
Strait. The role of Siberian rivers decreased substantially after 1990s.

Figure 15. January 2006 fraction of a passive tracer (log10 scale) that was released since 1993 from different sources (noted
in the panel titles) from HYCOM 1/12° model results. The Beaufort Gyre region is depicted by the black box (same as in
Figure 7).
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5. Summary

Here we summarize the key conclusions of this paper. Some conclusions are still unsettled and motivate
future investigation.

5.1. Beaufort Gyre Freshwater Content Time Series (2003–2018) From Different Data Sets Are
Updated, Compared, and Analyzed

The data from BGOS moorings and ITPs were jointly analyzed with freshwater content estimates from
annual hydrographic surveys, and data inferred from remote sensing. This study has demonstrated the rela-
tive strengths and weakness of the different datasets for measuring Beaufort Gyre freshwater content:

1. The most accurate measure of local freshwater content is the August/September/October BGOS CTD
casts, but while they capture interannual variability well over the long‐term, they are only a monthly
snapshot and do not resolve month‐to‐month or seasonal variability, and are limited in their spatial
coverage.

2. The BGEP moorings, on the other hand, offer year‐round measurements over a long period, but they are
only available at three or four locations and only capture freshwater content variability below 65‐m
depth.

3. ITPs offer 6‐ to 750‐mmeasurements almost completely through the fresh water layer but have irregular
spatial and temporal sampling.

4. Freshwater content derived from satellite SSH estimates offers the best spatial and temporal coverage but
rely on relatively uncertain empirical relationships between SSH and freshwater content, and they only
represent an integratedmeasure of freshwater content, with no information about its vertical distribution
in the water column.

Despite significant uncertainties in the different data sets, this study has demonstrated the synergistic value
of having multiple diverse observations to obtain a comprehensive understanding of Beaufort Gyre fresh-
water content variability. BGOS surveys clearly show the interannual increase in freshwater content, but
without satellite or ITP measurements it would not be possible to resolve the seasonal cycle of freshwater
content, which is larger than the year‐to‐year variability.

5.2. Qualitative and Quantitative Estimates of Factors and Mechanisms Driving Freshwater
Content Changes Are Provided

This paper focuses on two major factors influencing rates of freshwater accumulation and release in the
Beaufort Gyre region, namely, wind‐driven Ekman transport convergence and the availability of fresh water
for accumulation. Ekman transport convergence and freshwater content changes due to sea ice seasonal
transformations from growth to melt are analyzed. While these major factors and processes have been
known and discussed in many publications starting from Proshutinsky et al. (2002) and the many subse-
quent works by others cited above, in this paper the role of these factors is evaluated not only qualitatively
but quantitatively and illustrated by observational evidence from different data sources. The major result of
this analysis is that the seasonal changes of Beaufort Gyre region freshwater content are mainly dominated
by sea ice melting and growth, while net annual fresh water accumulation and release are driven by changes
of Ekman transport modified by sea ice conditions and the sense and intensity of the ocean geostrophic cir-
culation. Based on annual hydrographic surveys, the Beaufort Gyre region accumulated approximately 6,400
km3 of fresh water (relative to 34.8 reference salinity) over a 16‐year period. This represents a 40% increase of
fresh water volume in the region relative to the climatology of the 1970s. While the average rate of fresh
water accumulation was 397±116 km3/a, the freshwater content growth was not uniform due to interannual
changes in the wind, sea ice conditions, and ocean geostrophic currents. The ocean circulation played a fly-
wheel role regulating momentum transfer from the wind into the ocean (regulated by sea ice conditions),
effectively damping disturbances in external forcing and stabilizing freshwater content changes.

In 2003–2008, freshwater content measured in August–September increased by 4,900±1.550 km3, from
16,900±1,400 km3 in 2003 to 21,800±1,700km3 in 2008, mainly due to anomalous Ekman pumping under
strong anticyclonic winds and reduced sea ice cover. Freshwater content stabilized around 22,000±1,900
km3 for a 4‐year period under consistent wind forcing and more or less stable sea ice conditions. In 2013,
freshwater content decreased by about 1,600±500 km3 to almost the volume observed in 2007. After 2013,
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the changes of freshwater content were mostly regulated by interplay among strength of Ekman transport
convergence, sea ice conditions, and intensity of geostrophic ocean circulation. In 2014–2016, freshwater
content again increased to reach a record maximum of around 23,200±1,800 km3 in 2016 due to intensifica-
tion of anticyclonic winds and some reduction of sea ice cover. In 2017 and 2018, the freshwater content
changed only modestly to 23,400±1,800km3 and 23,300±2,000 km3, respectively, due to small changes in
prevailing winds, ocean currents, and sea ice cover. While we have not analyzed processes and mechanisms
of freshwater accumulation and release in the region due to eddies and mixing, recent studies suggest that
eddy fluxes can balance wind‐driven momentum flux into the Beaufort Gyre and limit fresh water accumu-
lation (e.g., Manucharyan & Spall, 2016; Meneghello et al., 2017).

5.3. In 2003–2018, the Major Sources of Accumulated Freshwater Were Sea Ice Melt, Mackenzie
River Runoff, and Bering Strait Transport

Observations show that local cumulative melting of sea ice (thermodynamic effect) and the convergence of
melt water from surrounding regions (dynamical effect) contributed some 10% to 20% of fresh water to the
central Beaufort Gyre region over the study period. Our numerical simulations indicate that the fresh water
from the Mackenzie River was one of the major sources (from 15 to 45% depending on year) responsible for
freshwater content increase in the region with peaks observed and simulated in 2005, 2007, and 2010. The
fresh water originated from the Bering Strait region contributed from 5 to 50% depending on year. Over
the 2003 to 2014 period, fresh water contributed by Siberian rivers ranged between 0 and 6% of the observed
Beaufort Gyre freshwater content anomaly.
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