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Abstract 

 In this thesis, I present a geospatial modeling approach to understand the climatological 

potential for the terrestrial storage of woody biomass via burial under evapotranspiration (ET) 

covers in the Western US. Given the 21st century wildfire crisis, forest managers are 

implementing mechanical thinning to remove low-value woody biomass at unprecedented scales. 

Terrestrial storage of biomass (TSB) in the form of biomass burial represents a potential 

opportunity to durably store this photosynthetically-captured carbon. Soil water balance is 

critical to understand the potential for successful biomass burial. In the first section of this thesis, 

I develop an applied water model to temporally account for when snowfall reaches the water 

column and then use this applied water product with actual evapotranspiration (AET) to 

geospatially quantify water balance for 2001-2020 on a 1 km by 1 km scale. From this water 

balance, we calculate how much water would need to be stored in a monolithic soil cover to 

prevent the percolation of water assuming a potentially infinite water storage reservoir and then 

convert this required water storage to soil cover thickness. This analysis indicates that there are 

regions in the Western US that have soil water balance conditions conducive to woody biomass 

burial from a macroclimate perspective. In the second section of this thesis, I utilize the latest 

CMIP6 climate modeling under two emissions scenarios, SSP2-4.5 an SSP5-8.5, to understand 

how the potential for biomass burial is projected to change throughout the 21st century 

geospatially with a 0.25º by 0.25º resolution. We parameterize and build a geospatial 

implementation of the Penman (1948) potential evapotranspiration (PET) equation to project 

future evaporative demand. We use the ratio between projected precipitation and PET known as 

aridity index to geospatially identify regions where woody biomass burial appears feasible under 

future climate conditions. 
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1. Introduction 

In the Western United States, climate change is already causing warmer temperatures and 

an intensification of the hydrological cycle, resulting in severe drought, extreme precipitation 

events, earlier snowmelt, and increased atmospheric evapotranspirative demand (Martin et al., 

2020; Milly and Dunne, 2020; Overpeck and Udall 2020; Allan and Douville 2023; Simpson et 

al., 2023). These changes are predicted to further intensify over time if greenhouse gas emissions 

are not abated.  

Prolonged drought, climate change, and decades of fire suppression have resulted in 

overstocked forests and larger, more severe, and more destructive wildfires across the Western 

US since the turn of the century (USFS, 2022). Further climate change will likely only worsen 

this problem unless significant forest treatments are implemented (Abatzoglou and Williams, 

2016). After two particularly intense fire years in 2020 and 2021, the US Forest Service released 

a report in 2022 titled “Confronting the Wildfire Crisis” wherein they detail an ambitious plan to 

remove over one billion bone-dry tonnes of woody biomass from high wildfire risk forests in the 

Western US within a decade of publication. Given the current dry, overstocked conditions of 

most forests in the Western US, prescribed burning is not a safe option to treat the land area 

necessary to meet the goals set out by the forest service. Instead, a dramatic increase in 

mechanical thinning will comprise most of the forest treatments. With mechanical thinning, the 

removed biomass is often low value and relatively small. As such, it is generally left to decay on-

site or burned, which releases the carbon contained in the biomass back into the atmosphere as 

carbon dioxide or methane over varying time scales (Fingerman et al., 2023).  

 Given the large amount of low value biomass being removed from Western US forests 

and the need for carbon dioxide removal and storage to mitigate climate change, researchers 
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have begun exploring pathways to durably store the photosynthetically captured carbon in woody 

biomass. In 2021, a team at Lawrence Livermore National Laboratory published a proposal for a 

carbon storage pathway called Biomass Carbon Removal and Storage (BiCRS) that describes the 

potential to utilize biomass, including thinned wood, to store carbon either belowground or in 

other long-term products (Sandalow et al. 2021). A recent paradigm called the Aines Principle 

suggests that at a high enough cost of carbon, it is economically favorable to use biomass for 

carbon storage as opposed to bioenergy (Woodall and McCormick, 2022). With the pressing 

need to reduce greenhouse gases in the atmosphere, biomass may now be more valuable for more 

carbon storage than for energy. 

BiCRS presents several different options for durable storage of biomass including 

gasification, pyrolysis, and torrefaction, and recent research has indicated that these products can 

potentially serve as carbon sinks when properly implemented (Smith, 2016; Fingerman et al., 

2023; Simões et al., 2023). While the products from these processes, such as biochar or biofuels, 

are either more stable or economically valuable, they require significant technology and 

infrastructure. Given the short time scale and large magnitude of the USFS plan, the variable 

spatial distribution of biomass to be removed across the Western US, and the lack of current 

infrastructure to support these technologically- and resource-intensive biomass conversion 

options, there is a need for a low-technology use case with a quick implementation timeline. 

Terrestrial storage of biomass (TSB) via biomass burial has the potential to fill this near-

term need. Carbon storage via biomass burial was first published in scientific literature by Zeng 

(2008), and it has been iterated on since by Zeng and others (Zeng et al., 2013; Zeng and 

Hausmann, 2022; Gooding, 2023). The basic implementation of burial of woody biomass 

involves the excavation of a chamber or vault that biomass is then placed in and covered with 
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soil and potentially other engineered materials. The goal of burial is to create an anaerobic 

environment such that biomass decay does not occur, and thus, the carbon remains held in the 

biomass.  

The cover above the biomass is a critical buffer to prevent the entrance of oxygen or 

moisture from the atmosphere into the burial vault to maintain a low moisture, anaerobic state. 

Extensive ecological literature indicates the controlling role of climate on decay pathways and 

rates dominant driver of decay rates (Meentemeyer, 1978; Gholz et al., 2000; Parton et al., 2007; 

Cusack et al., 2009; Joly et al., 2023).Dry conditions below a relative humidity threshold of 0.60 

can essentially stop decay (Stevenson et al., 2015). Risks of decay include carbon dioxide and 

methane atmospheric emissions as well as carbon loss in leachate. Decay, especially along 

anaerobic pathways that produce methane, can result in a burial implementation being a carbon 

source instead of a carbon sink.  

There are significant scientific gaps with respect to site selection and monitoring, 

reporting, and verifying (MRV) biomass burial implementations. Local climate plays a critical 

role in determining the conditions that a burial vault needs to be designed for, and ultimately, it 

should likely inform what sites are even considered for burial. It is critical to understand the 

amount and timing of any water reaching a cover, and this can be understood by assessing the 

soil water balance. 

There are two main pathways currently used to quantify soil water balance. One pathway 

relies on highly simplified estimations using widely available soil and monthly meteorological 

data and empirical coefficients. This pathway is easy to implement, but the results are broad 

approximations of the water balance instead of useful quantifications, and it is generally used 

solely for a preliminary understanding of site conditions (Albright et al., 2010). The second 
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pathway utilizes Richards’ equation-based fluid flow models. These models, such as HYDRUS 

and UNSAT-H, are the gold standard to understand subsurface fluid flow with atmospheric 

forcing and specific soil conditions, but they require detailed parameterization of the soil and 

atmospheric forcing beyond what is available in geospatial databases or extensive assumptions 

(Fayer, 2000; Simunek et al., 2005). The requisite inputs for these models make it infeasible to 

apply them beyond the site level where detailed field and laboratory measurements can be made. 

This thesis is primarily focuses on developing the necessary water balance and 

climatological models and methodologies relevant to creating a geospatial decision tool for siting 

woody biomass burial in the Western US. While there are many economic, ecologic, social, and 

physical factors that need to be accounted for before implementing woody biomass burial, 

climatological and water balance conditions can restrict whether burial for durable carbon 

storage is even plausible. I address both the recent water balance conditions derived from 

observational datasets as well as projected changes in conditions from future climate modeling.  

In section 2, I develop a daily snow accumulation and melt model to quantify when water 

reaches the soil column and how this varies from the temporal distribution of precipitation. I then 

use this product, termed applied water, in a simplified daily water balance model with a daily 

actual evapotranspiration (AET) product and infinite storage water reservoir to calculate the 

required water storage and minimum required burial depth of a given area in a historical time 

period from 2001 to 2020. In order to understand the potential for durable carbon storage under 

changing climate conditions, in section 3, I quantify the potential change in suitability for 

biomass burial in the Western US using daily historical and projected climate data from 26 

global circulation models (GCMs) under two greenhouse gas emissions scenarios from the most 

recent coupled model intercomparison experiment, CMIP6, by the IPCC. In this section, I first 
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develop a geospatial implementation of a physically-based, potential evapotranspiration (PET) 

model using the Penman (1948) PET equation. I then analyze PET over time in relationship with 

precipitation in a ratio called aridity index to understand how future water balance may change 

from historical conditions.  

 

2. Geospatial Implementation of Water Balance with Historical Data and the Implications 

for Woody Biomass Burial 

2.1 Introduction 

 Within the framework of biomass carbon removal and storage (BiCRS), woody biomass 

burial emerges as a potentially viable near-term option for storing carbon from wood thinnings 

due to its potential to implemented on short-time scales, relative low-cost, and low reliance on 

specialized infrastructure. To prevent decay of the buried biomass, scientists and engineers have 

introduced the idea of using engineered covers that serve to protect the stored biomass from 

changes in moisture or oxygenation that would result in decay of the biomass carbon to methane 

or CO2. Various cover designs have been proposed, modeling the precedent of landfill design 

(Madalinski et al., 2003; Hauser et al., 2005). Broadly, these covers can be categorized into 

monolithic and layered covers. While layered covers contain horizons of different substrates, 

often including plastic textile barriers or rock of different clast size, monolithic covers solely rely 

on the soil column thickness and vegetation to protect the waste from decay (Gross, 2005).  

 Given that woody biomass burial for thinned wood is positioned as a low-cost, near-term 

storage method, the simplicity of monolithic covers is more suitable for woody biomass burial 

than highly engineered covers. Monolithic covers consider the water storage capacity of soil 

along with the evapotranspirative demand of the climate and vegetation to protect the buried 
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material (Albright et al., 2010). These monolithic covers are also termed evapotranspiration (ET) 

covers (Madalinski et al., 2003; Hauser et al., 2005). The goal of an ET cover is to have a 

sufficient layer of soil that can store the required amount of water applied to a given area under 

the climatic conditions of that area to minimize water percolation to the stored waste. Ideally in 

the context of burial for durable carbon storage, monolithic covers would be designed with a soil 

cover thickness such that any water applied to the soil surface will not reach the biomass given 

the local climatologic, pedologic, and hydrologic conditions.  

 Across the Western US, there are different precipitation regimes that correspond to 

various climate phenomena and geophysical forcing. We define the Western US as the 

contiguous US states west of Colorado’s eastern border: Montana, Wyoming, Colorado, New 

Mexico, Arizona, Utah, Idaho, Washington, Oregon, Nevada, and California. California has a 

summer dry season and winter wet season where most of the annual precipitation is received in 

winter, often in extreme precipitation events caused by atmospheric rivers (Dettinger, 2011; Kim 

et al., 2012; Huang et al., 2020). The coastal Pacific Northwest, including northern California, 

western Oregon, and western Washington receives high precipitation year-round, especially in 

the Coast and Cascade mountain ranges where the topography drives higher precipitation (Smith 

2006). These regions are also affected by extreme precipitation events from atmospheric rivers 

(Leung and Qian, 2009; Neiman et al., 2011).  

Prevailing westerly winds drive most of the precipitation in the intermountain region east 

of the Sierra Nevada and Cascade mountain ranges and west of the Rocky Mountains, as well as 

within the Rocky Mountains. Due to stronger midlatitude storms in the winter and spring, much 

of the precipitation in this zone occurs during those seasons (Lauenroth et al., 2014). It is highly 

orographically driven, and high points of elevation receive more precipitation and typically have 
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rain shadows on the leeward side (Smith, 2006; Colle et al., 2012). The Great Plains east of the 

Rocky Mountains predominantly receive summer precipitation due to the summer weakening of 

the prevailing westerly winds, allowing the Atlantic subtropical high to spin warm, wet air off 

the Gulf of Mexico into the central US (Lauenroth and Bradford, 2006; Lauenroth et al., 2014). 

Many regions in the interior Western US receive very little precipitation (< 200 mm annually), 

including the Sonoran and Chihuahuan deserts. In the desert Southwest, the North American 

summer monsoon contributes most of the precipitation in summer storms (Adams and Comrie, 

1997; Higgins et al., 1997). A vast majority of precipitation events in the Western US are small 

(<10 mm) (Lauenroth and Bradford, 2009). 

 In the Western US, snow plays a large role in the hydrological cycle and regional energy 

balance (Trujillo and Molotch, 2014). Snowpack affects the local energy balance by increasing 

the albedo, thereby reducing the amount of energy a region stores from solar radiation, and 

acting as an insulator such that ground temperatures beneath snow remain warmer than air 

temperatures (Milly and Dunne, 2020). In the context of ET covers, understanding snow is 

critically important because it serves to store water from when it was precipitated to a later date 

when it melts and reaches the soil column. The importance of snow is recognized in landfill 

literature, but it’s treatment in modeling is varies from the inclusion of simulated snowpack and 

snowmelt (Khire et al., 1997) to empirical parameterization based on a binary of whether or not a 

region receives snow at any point in the year (Albright et al., 2010).  

 The term applied water is used in waste containment literature to describe any water that 

reaches the waste cover (Bendz et al., 1998). The objective of this section of this thesis is to first 

develop a reasonable geospatial model for applied water that accounts for snowmelt using 

publicly available, meteorological data across the Western US. I then use the applied water 
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product with evapotranspiration products to quantify pixel-by-pixel water balance over time. 

Several iterations of this modeling process are presented, and the final version incorporates a 

solar radiation-driven snowmelt model for applied water and a geospatial product for actual 

evapotranspiration. The second objective is to use the results of the water balance modeling to 

calculate the minimum ET cover thickness required to prevent the percolation of water to stored 

biomass geospatially across the Western US. Three versions of the final required cover thickness 

are presented: versions 1 and 2 represent early versions of a more primitive model while version 

3 represents the most robust calculations. 

2.2 Methods 

2.2.1 Basis of Evapotranspiration Covers 

The basis of the water balance for ET covers is described by Albright et al. (2010) in 

Water Balance Covers for Waste Containment: Principles and Practice. The authors derive the 

equations necessary to determine the approximate monthly required water storage, and thus 

required soil cover thickness, based on soil properties and historic meteorological data. The total 

water storage capacity (𝑆𝑐) of a given soil is the depth-integrated volumetric soil water content at 

field capacity (𝜃𝑐), or the amount of water a layer of soil can hold up to the point of percolation 

to a greater depth (Equation 1). Field capacity water content is measured at 33 kPa suction by 

convention. Depth-integrated total water storage capacity is approximately equal to the field 

capacity water content of a given layer of soil times the depth (𝐿) of that layer (Equation 1). 

𝑆𝑐 =  ∫ 𝜃𝑐𝑑𝑧 ≅ 𝜃𝑐𝐿      (1) 

However, not all of the storage capacity in the soil should be considered for an 

evapotranspiration cover because plants cannot access all water stored within the soil pores. The 
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available storage capacity (𝑆𝑎) is defined as the depth-integrated total storage capacity minus the 

water content that cannot be accessed by plants. This is described by equation 2, 

𝑆𝑎 = ∫(𝜃𝑐 − 𝜃𝑚)𝑑𝑧 ≅  (𝜃𝑐 − 𝜃𝑚)𝐿                 (2) 

where 𝜃𝑚 is the volumetric soil water content at minimum storage, or the water content that 

cannot be removed by plants. Minimum storage water content is described by the wilting point, 

which is conventionally measured at 1500 kPa suction. At suction pressures higher than the 

wilting point, the water content of the soil is low enough that capillary action, and thus root 

water uptake, becomes impossible.  The wilting point for plants in arid and semiarid climates can 

be at pressures as high as 8000 kPa due to plant adaptation to the dry conditions.  

Given the goal of an ET cover to prevent the percolation of water through the soil to the 

biomass, the available storage capacity needs to be greater than or equal to the required water 

storage (𝑆𝑟), as determined by the local climate. Equation 2 can be rearranged and combined 

with this constraint to provide a required depth of an ET cover where the available storage 

capacity is greater than or equal to the required storage (Equation 3). 

𝐿 ≥
𝑆𝑟

(𝜃𝑐−𝜃𝑚)
               (3) 

Albright et al. determine required storage, 𝑆𝑟, using local climatological conditions on an 

annual time scale. They calculate monthly soil water storage (Δ𝑆) requirements using a simple 

mass balance (Equation 4), 

Δ𝑆 = 𝑃 − 𝑅 − 𝐴𝐸𝑇 − 𝐿 − 𝑃𝑟               (4) 

where 𝑃 is precipitation, 𝑅 is runoff, 𝐴𝐸𝑇 is actual evapotranspiration, 𝐿 is internal lateral 

drainage, and 𝑃𝑟 is percolation. All quantities are cumulative for the given month and in units of 

depth (mm). However, given that most of these quantities are either very small or difficult to 

measure without extensive instrumentation on a site, Albright et al. present empirical equations 
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with coefficients derived from Apiwantragoon (2007). The empirical equation is described by 

equation 5, 

Δ𝑆 = 𝑃 −  𝛽𝑃𝐸𝑇 −  Λ      (5) 

where 𝑃 is monthly cumulative precipitation in mm, 𝛽 is a dimensionless coefficient used to 

approximate AET from PET, 𝑃𝐸𝑇 is total monthly potential evapotranspiration in mm, and Λ is a 

loss term coefficient with units of depth (mm) that acts as a conservative estimate of both runoff 

and percolation. These coefficients 𝛽 and Λ are calculated for two seasonal groupings for areas 

that have snow and frozen ground and those that don’t (Table 1). 

 Seasons 𝛽 (-) 𝛬 (mm) 

No snow or frozen 

ground 

Fall-Winter 0.30 27.1 

Spring-Summer 1.00 167.8 

Snow or frozen ground Fall-Winter 0.37 -8.9 

Spring-Summer 1.00 167.8 

 

Table 1: Coefficients for approximating monthly soil water storage requirements using the empirically based 

equation 5. These approximations allow for calculation of monthly soil water storage with data that can be easily 

measured or calculated (precipitation and potential evapotranspiration). Fall-Winter Is defined as September 

through February (inclusive). Spring-Summer is defined as March through August (inclusive). Season thresholds 

should not be changed based on local conditions due to the empirical nature of the coefficients. Adapted from 

Albright et al. (2010).  

 

Required storage on an annual time scale (𝑆𝑟) is calculated by summing the positive 

monthly required storage for each month of a given year (∆𝑆𝑖, for 𝑖 months), as given by 

equation 6: 

𝑆𝑟 = ∑ ∆𝑆𝑖
12
𝑖 = 1  for ∆𝑆 ≥ 0              (6) 

The resulting 𝑆𝑟 from equation 6 can then be substituted into equation 3 to solve for the required 

cover thickness given the local soil characteristics and meteorological conditions of the chosen 

year of data.  

In practice, Albright et al. recommend performing several iterations of the calculations 

with different years of data. The authors recommend starting with historical annual cumulative 
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precipitation data for a range of years, finding the “typical” (average) year and 95th percentile 

year based on annual cumulative precipitation, and then performing the calculations described 

above. This methodology provides two data points for plausible conditions and for what would 

be expected in a more extreme precipitation year. Depending on the goal of the ET cover, 

different percentiles or thresholds could be calculated to determine the approximate cover 

thickness. It is critical to note that different use cases for ET covers have variable thresholds for 

percolation. In many landfill situations such as the book is written for, a small amount of 

percolation may be allowable. In the context of biomass burial, our model is designed to have 

zero percolation. Albright et al. emphasize that this is preliminary modeling and that a more 

robust and detailed water balance model such as HYDRUS-1D or UNSAT-H should be used 

before burying waste with an ET cover (Fayer, 2000; Simunek et al., 2005). However, the 

method still stands as a conservative theoretical framework for the required cover thickness, and 

thus can be adapted to our geospatial approach.  

2.2.2 Introduction to Applied Water and Input Data 

The goal of this work is to build a geospatial tool hosted in ArcGIS to inform regions of 

interest for woody biomass burial. As such, all input data must be geospatial in nature. Given the 

simplified, empirical equation for required storage presented by Albright et al. (Equation 5) and 

the soil data requirements of the required cover thickness (Equation 3), the most basic approach 

requires the following data: volumetric soil water content at field capacity (𝜃𝑐), volumetric soil 

water content at wilting point (𝜃𝑚), total monthly precipitation (𝑃), and total monthly potential 

evapotranspiration (𝑃𝐸𝑇). The soil parameters, volumetric soil water content at field capacity 

and wilting point, are commonly measured in soil sampling. On a geospatial basis, these 

parameters, among many other soil properties, are characterized on a 30 m by 30 m basis for 
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each soil horizon across the United States in the gridded National Soil Survey Geographic 

Database (gNATSGO) from the Natural Resources Conservation Service within the U.S. 

Department of Agriculture (USDA)(Soil Survey Staff, 2023). The gNATSGO database was 

retrieved in February 2024. We assume that the soil types and distributions have not and will not 

change significantly on decadal scales (Jackson and Overpeck, 2000). Additionally, this analysis 

assumes that soil structure and composition are not altered from pre-disturbance conditions, and 

the cover is not engineered. Further discussion of soils is out of scope for this thesis, but soil 

properties and characteristics influence burial potential and should be considered.  

Required storage requires precipitation and PET input data. Equation 5 uses a parameter, 

𝛽, multiplied by PET to approximate the actual evapotranspiration, AET, since PET can be 

calculated from common meteorological data and AET is challenging to measure. However, 

since historical AET data is available from remote sensing and model-based products, and it 

represents a more accurate description of a location’s water balance, we chose to use AET 

instead of the 𝛽-coefficient approximation method. The Operational Simplified Surface Energy 

Balance (SSEBop) model, version 6 (V6) has a global AET output with a 1 km by 1 km 

resolution (Senay and Kagone, 2019). The SSEBop modeling approach combines remote sensing 

data from Landsat and MODIS satellites with a reference ET derived from climatological 

datasets in a model to calculate actual evapotranspiration (Senay et al., 2013, 2022). The monthly 

cumulative AET product was used in versions 1 and 2 of required cover thickness presented 

here, and the temporal range of data availability from 2013 to 2022 initially constrained the years 

we used for historical climate data in monthly applications. At the beginning of 2024, daily 

SSEBop V6 data was published, and daily AET was retrieved for 2000 to 2021 for the daily 

water balance implementation for version 3 of required cover depth. 
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Climatological data was acquired from the Daymet, version 4.1 (V4.1) data product 

which provides daily surface weather records at a 1 km by 1 km spatial resolution from 1980 to 

near-present for North America and U.S. territories (Thornton et al. 2022). Daymet performs 

quality control on weather station data from the Global Historical Climate Network Daily 

database (GHCNd) and spatially interpolates the cleaned data with an algorithm trained for the 

Western US (Thornton et al. 2021). The primary output variables are daily maximum 

temperature (𝑇𝑚𝑎𝑥), minimum temperature (𝑇𝑚𝑖𝑛), and total precipitation (𝑃, denoted 𝑃𝑟𝑐𝑝 in 

Daymet documentation). Additionally, Daymet calculates snow water equivalent (𝑆𝑊𝐸), daily 

average water vapor pressure (𝑉𝑃), daylight average shortwave radiation (𝑆𝑟𝑎𝑑), and daylength 

(𝐷𝑎𝑦𝑙). All Daymet V4.1 data was acquired as multi-dimensional arrays (netCDFs) using the 

Python package, Pydaymet, which allows users to easily acquire several variables in the same 

file and clip the geospatial extent to a shapefile (Chegini et al., 2021).  

While Daymet provides daily precipitation data, precipitation alone does not temporally 

account for when the water in precipitation will reach the soil column if the precipitation falls as 

snow. Much of the Western U.S. receives winter snow, and snow accumulation and ablation 

serve to shift the temporal distribution of when water is delivered to the soil surface by storing 

the moisture aboveground for a period of time (Stewart, 2008; Trujillo and Molotch, 2014). 

Preliminary data analysis suggested that this phenomenon could results in over 100 mm of water 

being stored through the winter and applied in a springtime pulse in some regions, particularly in 

places with high topography. This is not accounted for in the simple equation 5.  

As such, we decided to move to an applied water approach instead of relying on 

precipitation. Applied water describes the water that reaches the atmosphere/soil surface on a 

given day. Water content reaching the soil profile from snowpack is most conservatively 
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estimated by ignoring sublimation, surface liquid evaporation, and wind transport, which cannot 

be geospatially determined due to the highly heterogeneous and variable nature of these factors 

(Svoma, 2016). In its most simple formulation, applied water can be described as the sum of 

rainfall and snowmelt for a given day.   

Two methods of calculating applied water are presented in this thesis. Briefly, an initial 

approach based on the Daymet snow water equivalent (SWE) product is discussed in section 

2.2.3 but found to be faulty due to the lack of mass balance in the underlying SWE model. An 

updated, more sophisticated approach based dependent on temperature and solar radiation is 

discussed in the following sections for the remainder of the versions (Section 2.2.4). All 

calculations were performed in Python with the exception of some calculations in early versions 

noted in ArcGIS Pro. The open-source Xarray package was used extensively to manipulate the 

multi-dimensional arrays (Hoyer and Hamman, 2017). 

All versions are based on an adaptation the ET cover depth estimation methodology from 

Albright et al. (2010) for geospatial application across the Western US. We adapted the required 

storage formula, equation 5, given the available AET data and use of applied water, resulting in 

the following equation for soil water balance, 

Δ𝑆 = 𝐴𝑊 −  𝐴𝐸𝑇      (7) 

where 𝐴𝑊 is applied water and 𝐴𝐸𝑇 is actual evapotranspiration, both in units of mm. For the 

first two versions discussed here, soil water balance is performed on a monthly scale, and thus 

applied water and AET are accumulated into monthly totals. In version 3, daily water balance is 

used. The loss term, Λ, from the original equation 5 is ignored to have a more conservative 

estimate that assumes all water that reaches the surface moves vertically downward. Annual 
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required storage (𝑆𝑟) is calculated as described by equation 6 when equation 7 is implemented on 

a monthly basis.  

2.2.3 Required Cover Thickness, V1: Monthly Applied Water Derived from a Daymet SWE-based 

Snow Model 

 The first iteration of the applied water model used the precipitation and snow water 

equivalent (SWE) products from Daymet to calculate daily rainfall and snowmelt, which were 

summed to calculate daily applied water and then aggregated on a monthly basis. Precipitation in 

Daymet describes the depth of liquid water that falls over the course of a given day (mm d-1), 

regardless of if it fell as rain, snow, or, more rarely, other forms of precipitation such as hail. 

SWE is a cumulative metric that describes the mass of water stored in the snowpack over a given 

area in the units of kg m-2. When precipitation falls as snow, SWE increases. SWE decreases as 

snow melts.  

Daymet utilizes a simple accumulation and melt algorithm to generate SWE from the 

primary Daymet variables, and this method is described across several publications. Snow is 

accumulated if precipitation falls when the daily average temperature is less than 0.0ºC 

(Thornton et al. 2000). The accumulation condition for a given day is as follows: 

𝑆𝐴 = 𝑃 when 
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2.0
< 0.0℃         (8) 

where 𝑆𝐴 is snow accumulation in terms of liquid water depth (mm d-1), 𝑃 is precipitation (mm 

d-1), 𝑇𝑚𝑎𝑥 is maximum daily temperature (ºC), and 𝑇𝑚𝑖𝑛 is the minimum daily temperature (ºC). 

The variables 𝑃, 𝑇𝑚𝑎𝑥, and 𝑇𝑚𝑖𝑛 are all primary variables in Daymet. From this accumulation 

condition, we can infer that for a precipitation event on a given day associated with an increase 

in SWE on a given day, snow accumulation in liquid units can be converted to SWE using the 

density of water, which is reasonably approximated in Daymet as 𝜌𝑤 = 1000 kg m-3: 
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∆𝑆𝑊𝐸+ = 𝑆𝐴 ∗ 𝜌𝑤       (9) 

According to the recently published Daymet V4 documentation (Thornton et al., 2021), 

the methodology for Daymet SWE is based on the Thornton et al. (2000) paper. Thornton et al. 

(2000) describes a water vapor pressure and shortwave radiation joint retrieval developed and 

calibrated in the Austrian Alps. In this paper, snowmelt is calculated on a daily timestep 

according to a calibrated rate when the minimum temperature is greater than a calibrated critical 

temperature threshold, following the methodology presented in Running and Coughlan (1988). 

The calibration of this snowmelt rate and critical threshold for snowmelt is not described in the 

most recent citing literature (Thornton et al., 2021), and the only values presented within all the 

citing literature are calibrated for the three sites in the Austrian Alps as described by Thornton et 

al. (2000). This ambiguity became a major concern and partially drove the decision for 

developing a different applied water model, as described in later sections. Given the published 

information, the snowmelt equation for the Daymet SWE product appears to be as follows 

(Thornton et al., 2000): 

𝑆𝑀 = 𝑟𝑚 ∗
(𝑇𝑚𝑖𝑛+𝑇𝑚𝑎𝑥)

2.0
  when 𝑇𝑚𝑖𝑛 >  𝑇𝑐𝑟𝑖𝑡     (10) 

where 𝑆𝑀 is snowmelt (mm d-1),  𝑟𝑚 is the calibrated melt rate (mm ºC-1 d-1), and 𝑇𝑐𝑟𝑖𝑡 is the 

calibrated critical temperature (ºC). The values cited for the Austrian Alps in Thornton et al. 

(2000) for 𝑟𝑚 and 𝑇𝑐𝑟𝑖𝑡 were 0.420 mm ºC-1 d-1 and -6.0 ºC, respectively. It remains unclear 

whether these calibrated values are used for the North American Daymet domain despite a 

careful literature review and attempts to contact the Daymet technical team. Regardless of the 

specific values, SWE would decrease for a given day by the mass per unit area equivalent of 

snowmelt using the density of water conversion: 

∆𝑆𝑊𝐸− = 𝑆𝑀 ∗ 𝜌𝑤       (11) 
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The Daymet variables precipitation and SWE can be used to develop a simple logic 

model to calculate applied water. For a given day, rainfall is defined as precipitation that falls 

when the average of the minimum and maximum temperature is greater than 0.0ºC, and 

snowmelt is defined as the negative change in SWE converted to the water depth equivalent 

(Figure 1). In the logic model developed here, if precipitation falls on a given day when the 

temperature-based accumulation condition is not met, it is recorded as rainfall (𝑅𝐹) in units of 

mm d-1: 

𝑅𝐹 = 𝑃 when 
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2.0
> 0.0℃           (12) 

 

 

Figure 1: The initial logic model for applied water based on Daymet daily total precipitation and SWE. In the 

snowmelt module, if SWE for a given day is greater than or equal to SWE on the prior day, snowmelt is set to zero. 

If SWE for a given day is less than SWE on the prior day, the change in SWE is converted using density to snowmelt 

in units of mm d-1. In the rainfall module, if SWE for a given day is greater than for the prior day or precipitation is 

equal to zero, rainfall is set to zero. If SWE for a given day is not greater than the prior day and precipitation is not 

equal to zero, the total daily precipitation is recorded as rainfall. Rainfall and snowmelt for a given day are 

summed to calculate applied water for a given day. Once daily applied water is calculated for each day, it is 

summed into a monthly cumulative timestep. 
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Given the ambiguity of the snowmelt algorithm in SWE as described above, snowmelt 

(𝑆𝑀) was defined in the model as the negative change in SWE from the prior day to the current 

day, divided by the density of water with final units of mm d-1 (equation 13). 

𝑆𝑀𝑖 =  
|𝑆𝑊𝐸𝑖−𝑆𝑊𝐸𝑖−1|

∆𝑡∗𝜌𝑤
 when 𝑆𝑊𝐸𝑖 < 𝑆𝑊𝐸𝑖−1                       (13) 

where 𝑖 represents the current day, 𝑖 − 1 represents the day prior, and ∆𝑡 represents the time step 

between 𝑖 and 𝑖 − 1 (assumed to be 1 day). Applied water (𝐴𝑊) for a given day can be described 

simply as the sum of rainfall and snowmelt for that day, all in units of mm d-1. 

𝐴𝑊𝑖 = 𝑅𝐹𝑖 + 𝑆𝑀𝑖       (14) 

 Once daily applied water is calculated for all days within the time period 2013-2022, it is 

summed into a monthly timestep for this time period. This temporal resolution both matches the 

inputs for the required water storage equation 7 from Albright et al. (2010) while retaining 

resolution of seasonal changes with a far smaller amount of data relative to daily resolution.  

Daymet has a monthly total precipitation product available for direct download, and this 

is adequate to describe total precipitation in version 1 since it is a simple sum of daily 

precipitation over a monthly timestep. Daymet also offers an average monthly SWE product, but 

average monthly SWE does not account for the daily fluctuations of snow accumulation and 

snowmelt. In short, snowmelt is path-dependent and cannot be derived from a monthly average 

value. Since snow accumulation and melt calculations require both SWE and preciptitation, both 

daily SWE and daily precipitation must be acquired and processed. Daily snowmelt can then be 

summed for each day. 

 The implementation of this logic model on a geospatial basis with daily precipitation and 

SWE was a significant computational challenge compared to previous modeling that could be 

completed in ArcGIS Pro. This required daily precipitation and SWE rasters for the Western 
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U.S. region for the 10 years of study, 2013-2022. To overcome the barrier of processing this data 

using a visual interface such as ArcGIS Pro, I wrote and implemented a Python script that 

calculated applied water on a daily basis. This daily applied water was then summed monthly for 

monthly cumulative applied water for the entire study region for one year at a time. Once 

monthly cumulative applied water was derived for each year between 2013-2022, it was 

averaged by month (i.e., every January averaged together) to create 12 individual rasters 

representing each month of average applied water over the 2013-2022 time period. Standard 

deviation and coefficient of variation (standard deviation divided by mean for each pixel) for 

each month were also calculated. These applied water rasters were then used with the average 

monthly cumulative AET rasters in equation 7 to calculate monthly required water storage (∆𝑆) 

in ArcGIS Pro. The result of equation 7 for each month was summed according to equation 6 to 

find the required storage (𝑠𝑟), and the required storage along with the soil parameters for each 

pixel were used to calculate the required cover thickness (𝐿) as described by equation 3. The 

resulting geospatial raster is V1 of required cover thickness. 

 However, the approach for calculating applied water from Daymet SWE presented here 

was not used in future versions of the model. Ambiguity within the Daymet snowmelt methods 

was described above, and I identified more concerns when checking the Daymet SWE algorithm 

for mass balance. When checking for mass conservation between the input precipitation and 

output applied water, I found that applied water represented more water mass than the 

precipitation input. The issue was not within the applied water logic model described here, 

however. The issue was identified within Daymet itself. For a majority of years in locations that 

have snow in the winter, there were SWE values on January 1st of a given year with no 

corresponding precipitation event in the given or prior year. Essentially, there was snowpack that 
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appeared without a precipitation event, and SWE was discontinuous interannually. I reached out 

to the Daymet technical team with this concern several times with no response. The latest 

Daymet V4 data description paper states, “We encourage researchers who require a more 

accurate estimate of snowpack dynamics to use the temperature, precipitation, and potentially 

radiation and humidity variables from Daymet v4 to drive a more capable and sophisticated snow 

process model,” and acknowledges its model is “very simple” with the “sole purpose … to 

provide an approximate control on Srad through the multiple reflection mechanism” (Thornton et 

al. 2021). However, this very simple model should, in theory, be sufficient for basic applications 

such as ET covers, and several papers have been published based on Daymet SWE (e.g., 

Broberg, 2021). This disclaimer is not presented on the Oak Ridge National Laboratory 

Distributed Active Archive Center (ORNL DAAC) webpage where the Daymet data is acquired. 

Even if the model is simple, the published data should be algorithmically robust enough to have 

some utility, but it does not appear to be sufficient for any analysis. As such, I developed a new 

simple snow model to calculate applied water on a geospatial scale. 

2.2.4 Required Cover Thickness, V2: Monthly Applied Water Derived from a Restricted Degree-

Day Radiation Snowmelt Model 

 Due to the shortcomings described above, a new snowmelt model was implemented for 

the second version of applied water (Figure 2). The same methodology for determining rainfall 

as precipitation that fell when the average of minimum and maximum daily temperature was 

greater than 0.0ºC (Equation 8), and applied water as the sum of rainfall and snowmelt was 

retained in this version (Equation 14). After reviewing possible snowmelt algorithms and their 

computational intensity, the restricted degree-day radiation (RDDR) balance approach described 
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by Kustas et al. was selected (1994). With the restricted degree-day radiation balance approach, 

snowmelt is calculated as follows: 

𝑆𝑀 =  𝑎𝑟𝑇𝑑 + 𝑚𝑄𝑅𝑛  when 𝑇𝑑 =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
> 0.0℃             (15) 

where 𝑎𝑟 is a restricted degree-day factor (mm ºC-1), 𝑇𝑑 is the degree-day temperature above a 

base temperature (considered to be 0.0ºC for this study), 𝑚𝑄 is a conversion factor from energy 

flux density to snowmelt depth (2.6 mm m2 d-1 W-1), and 𝑅𝑛 is net radiation (W m-2). The 

restricted degree-day factor, 𝑎𝑟, ranges from 2.0 – 2.5 mm ºC-1 with lower values corresponding 

to days with lower wind speeds or lower humidity which reduce sensible heat transfer or increase 

latent heat dissipation respectively (Martinec 1989). Given the relatively small range of possible 

𝑎𝑟 values and widespread of conditions, an average restricted degree-day factor of 2.25 mm ºC-1 

was used. Since snow can be approximated as a blackbody for longwave radiation (Curley et al., 

2014), net radiation (𝑅𝑛) was calculated using daylight average shortwave radiation total 

transmittance (𝑆𝑟𝑎𝑑, units W m-2) from Daymet. Daylength (𝐷𝑎𝑦𝑙, units s) from Daymet was 

used to weight 𝑆𝑟𝑎𝑑 by daylength to calculate daily shortwave radiation total transmittance, and 

average snow albedo (𝛼) was used to calculate net radiation, as shown in equation 16. 

𝑅𝑛 = (
𝐷𝑎𝑦𝑙

86400 𝑠
)(1 − 𝛼)(𝑆𝑟𝑎𝑑)     (16) 

We defined average snow albedo (𝛼) as 0.74, which has been approximated as the average snow 

albedo between fresh snow and nearly ablated snow (Kustas et al., 1994; Khire et al., 1997). 

 To calculate snowmelt, snow must first be accumulated and stored in a reservoir. Snow 

was accumulated from precipitation in Daymet on a daily timestep using the same temperature-

based accumulation condition described in equation 8. Snow water depth (mm) from the 

accumulation condition was converted using the density of water into snow water equivalent 

(SWE, units kg m-2). SWE was constructed as a reservoir in the model where snow accumulation 
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resulted in a flux into the reservoir and snowmelt resulted in a flux out of the reservoir. This 

required a daily iterative approach to account for snow accumulation, changes in snowpack 

storage, and snowmelt. Additionally, SWE storage from the final day of each year was stored 

and used to initialize the following year to ensure continuity in snowpack interannually. As with 

the previous version, daily rainfall and snowmelt were summed for daily applied water (Figure 

2). 

 

Figure 2: The logic model for applied water calculated using the restricted degree-day radiation (RDDR) snowmelt 
model approach. Daily total precipitation and average temperature are used to partition rainfall and snowfall. 
Water in snowfall is stored in a reservoir where the RDDR snowmelt equation is used with inputs of temperature 
and radiation to determine daily snowmelt. The snow storage reservoir is calculated iteratively for every day in the 
time series, where the stored snowpack from prior days is available for snowmelt on a given day, and the amount 
of snow accumulated or melted on a given day informs the initial snow storage reservoir size for the following day. 
 

 

 Computationally, this approach required over twice as much data for inputs as well as 

daily iterative computation over all 1.7 million pixels included in the Daymet swath of the 

Western US. As such, this model was designed for and run on Grace High Performance 
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Computing (HPC) using Python. With the higher computing power, I also ran a full year of data, 

2012, to initialize the snow storage reservoir for the 10-year time series from 2013-2022.  

As described in the first version of applied water, daily applied water was aggregated into 

monthly products. Once monthly cumulative applied water was derived for each year between 

2013-2022, it was averaged by month (i.e., every January averaged together) to create 12 

individual rasters representing each month of average applied water over the 2013-2022 time 

period. Standard deviation and coefficient of variation for each month were also calculated. 

These applied water rasters were then used with the average monthly cumulative AET rasters in 

equation 7 to calculate monthly required water storage (∆𝑆) in Python. The result of equation 7 

for each month was summed according to equation 6 to find the required storage (𝑠𝑟), and the 

required storage along with the soil parameters for each pixel were used to calculate the required 

cover thickness (𝐿) as described by equation 3. The resulting geospatial raster is V2 of required 

cover thickness. 

2.2.5 Required Cover Thickness, V3: Daily Water Balance Modeling using the RDDR Applied 

Water Approach 

 Given the coarse temporal resolution in the monthly water balance approximations 

presented in V1 and V2, with the publication of daily AET data in early 2024, we developed V3 

of the burial tool using a daily water balance for 2001-2020, with 2000 as an initialization year. 

In V1 and V, annual aggregation through monthly averaging dampened the influence of extreme 

precipitation events on the calculated applied water, but understanding maximum storage 

requirements is critical in required depth calculations. Additionally, the probability density 

functions of applied water events and their magnitudes are heavily skewed to the right, so high 

applied water days are few but very impactful. Further, it is critical to understand AET relative to 
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applied water at a final temporal resolution than the accumulated monthly data. A string of cold, 

cloudy wet days when evapotranspiration is low could result in large amounts of water reaching 

the soil column, yet this mismatch between applied water and precipitation may be washed out 

on the monthly scale. Thus, I updated V2 of the model to utilize daily applied water and AET in 

an accumulated required water storage approach to understand the amount of water that the soil 

could have to store on any given day.  

 Applied water was calculated as outlined in the V2 model section (section 2.2.4) using 

the RDDR approach for snowmelt. The only change in methodology was that the data was kept 

at a daily resolution and not aggregated to cumulative monthly totals. The temporal range was 

selected to match the availability of AET data. All annual applied water netCDFs containing 

daily data for all years 2000-2021 were merged into one continuous netCDF to allow for 

continuous iterative calculation of water balance. 

 Daily AET rasters from SSEBop were retrieved from the USGS archive using a batch 

download script in Python. Each daily GeoTIFF raster was reprojected from WGS84 to North 

American Lambert Conformal Conic to match Daymet data using cubic convolution. Each 

reprojected GeoTIFF was then clipped to the geographic extent of the applied water data and 

built into a netCDF using GDAL and Xarray libraries in Python. Cubic convolution was chosen 

for its ability to preserve extrema. All daily netCDFs were compiled into one continuous netCDF 

along the time axis for 2000 to 2021. December 31st on leap years was removed following the 

Daymet convention to match the applied water time indexing. The resulting AET netCDF had 

the same time indexing and geospatial pixel size and dimensions as the applied water netCDF 

which allowed for calculation across the two files. 
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 Instead of a traditional mass balance equation that assessed the change in water stored in 

the column, the daily water balance model was designed to understand the amount of storage 

required, in units of liquid water depth, under the assumption that there was no percolation from 

the soil layer to stored biomass. This daily water balance was calculated using an iterative 

approach with applied water and AET fluxes relative to an unconstrained water storage reservoir. 

Simply, the model assumed that for any given day, water could be added to the storage reservoir 

from applied water or removed by AET. For the first day in the time series, the required storage, 

𝑠𝑟,0, was equal to applied water minus AET (Equation 17; zero index to follow the Python 

convention). If applied water exceeded AET for any given day 𝑖 in the time series, the amount of 

water not evapotranspired would be added to the reservoir. Water within the reservoir is carried 

over each day and only removed if there is an excess of AET greater than applied water on a 

given day. The reservoir can deplete to a minimum of 0, but there is no bound on the upper limit 

of the reservoir. Daily required storage (𝑠𝑟,𝑖) for the first day and all subsequent days is described 

in equations 17 and 18, respectively: 

𝑠𝑟,𝑖 = 𝐴𝑊𝑖 − 𝐴𝐸𝑇𝑖  for 𝑖 = 0           (17) 

𝑠𝑟,𝑖 =  𝑠𝑟,𝑖−1 + 𝐴𝑊𝑖 − 𝐴𝐸𝑇𝑖  for 𝑖 > 0 and 𝑠𝑟,𝑖−1 > 0     (18) 

If 𝑠𝑟,𝑖 for a given day is less than zero, it is recorded as zero since negative water storage is not 

possible but instead is indicative of no required water storage in the soil column. Daily required 

storage was calculated for each pixel on each day of the time series iteratively and stored in a 

new netCDF with the same geospatial and time dimensions as the input data. After the iterative 

daily calculations were complete, the initialization year, 2000, was cut from the dataset. In 

agricultural systems, water that is not precipitation may be applied to fields, thus resulting in a 

higher observed AET from the USGS product which is reliant on remote sensing data. This 
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would result in erroneously low required water storage. Pixels classified as waterbodies, 

wetlands, or agricultural were masked using the National Land Cover Database (NLCD) (Homer 

et al., 2012).  

 For daily required water storage, we calculated several statistics to describe the 

distribution of required storage. Mean and standard deviation were calculated for each pixel 

across all days in the final required storage record. Coefficient of variation was calculated by 

dividing standard deviation by the mean for each pixel to understand the variability relative to 

the mean magnitude. Median, 95th percentile, and maximum required storage were retrieved for 

each pixel. Ninety-fifth percentile required water storage (𝑠𝑟,95) and maximum required storage 

(𝑠𝑟,𝑚𝑎𝑥) were used to calculate required cover thickness following equation 3. Given the 

assumptions in our model, as described below, 95th percentile required storage is likely a more 

reasonable approximation of actual required storage, but we present the results of the maximum 

required water storage as well. The resulting required cover thickness raster is termed V3. 

2.2.6 Model Assumptions 

 In order to build an extensive geospatial model covering variable terrain, we employed 

several assumptions to simplify the model. For each assumption we made, we were careful to 

ensure that the assumption made our model more conservative (i.e., predicting higher required 

water storage resulting in a greater required cover thickness). We assume that all water received 

as precipitation to a given pixel vertically infiltrated the soil column of that pixel. We did not 

exclude precipitation that was intercepted by plant or other aboveground material and evaporated 

back to the atmosphere without reaching the soil column. Runoff was not considered. Snow 

sublimation, snow transport via wind, and mass gain or loss from water vapor interacting with 

snowpack were not modeled.  



 30 

2.2.7 Statistical Analysis 

 Descriptive statistics for input variables were assessed using probability density functions 

(PDFs) to understand the distribution of observations. We calculated basic descriptive statistics, 

mean, standard deviation, and coefficient of variation, for each iteration of the resulting required 

water storage or minimum cover thickness.  

2.3 Results 

 Monthly model V1 produced the results shown in figure 3. Required cover thickness is 

highest along the Pacific Northwest coast in Washington, Oregon, and Northern California, and 

in the mountain ranges including the Cascades, Sierra Nevada, and Rockies and other points of 

high elevation. Required cover thickness is lowest in the Great Plains east of the Rockies, the 

warm deserts of New Mexico and Arizona, and some of the intermountain basins such as the 

Central Valley of California and basins in the Basin and Range region of Nevada and Utah. 

Modeled required cover thickness across the region of interest is as low as 0 m for both the 

model with and without SWE. Minimum required cover thickness with SWE has a mean of 3.4 

m and standard deviation of 10.1 m (Figure 3a). Minimum required cover thickness without 

SWE has a mean of 2.4 m and a standard deviation of 8.7 m (Figure 3b). Required cover 

thickness when calculated with the monthly applied water model V1 is generally 0.25 m or less 

greater than required cover thickness calculated solely with monthly total precipitation without 

accounting for the distribution of SWE (Figure 3c). The modeled burial depth is 3 mm deeper on 

average across all pixels when applied water with SWE is used. There are a few pixels in the 

Sierra Nevada and Rockies where burial depth is up to 3 m deeper when snow is accounted for 

using SWE.  
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Figure 3: The minimum required cover thickness determined using (a) the applied water calculated from the V1 

monthly SWE-based model and (b) monthly total precipitation directly from Daymet. (c) shows the difference 

between the modeled required cover thickness for each pixel.  

 

 

Figure 4: Minimum required cover thickness for model versions 1-3 (a-c). Panel (a) shows the minimum required 

cover thickness derived using monthly Daymet SWE-based applied water model (V1). Panel (b) shows the 

minimum required cover thickness using monthly applied water derived using the RDDR snowmelt model (V2). 

Panel (c) shows the minimum required cover thickness based on the 95th highest day of water required storage 

calculated from the daily accumulated water balance model (V3). Panels and (a) and (b) show the minimum 

required cover thickness using meteorological inputs from 2013-2022. Panel (c) uses meteorological inputs from 

2001-2020. None of these panels are masked with the NLCD mask. 
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 Version 2 of the minimum required cover thickness model based on monthly applied 

water calculated with the RDDR snowmelt approach has a very similar geospatial distribution to 

V1 (Figure 4a, b). The topographic high points and the Northern Pacific coast show higher 

required storage due to higher precipitation. Required cover thickness broadly decreases, with a 

geospatial average of 2.5 m with a standard deviation of 9.8 m.  

 Version 3 of the minimum required cover thickness model is based on the accumulated 

required water storage, as liquid water depth, determined by the water balance model. Mean, 95th 

percentile, and maximum accumulated required water storage are presented in figure 5 a, c-d. 

For all three levels of required water storage, the minimum required water storage is 0 mm, and 

the distribution of required water storage is skewed right. Since the model water storage 

reservoir has no size limit, the modeled maximum required water storage for any given pixel 

over the 2001-2020 period was 95.2 m of water. The geospatial average of mean daily 

accumulated required water storage (�̅�𝑟) was 0.93 m with a standard deviation of 2.8 m of water. 

For 95th percentile required water storage, the mean was 1.8 m with a standard deviation of 5.3 m 

of water. For maximum required water storage, the mean 1.9 m with a standard deviation of 5.7 

m of water. Required water storage is highest in the Cascade mountains, the Sierra Nevada 

mountains, and along the Pacific Northwest coast. Required water storage is the lowest in the 

southern regions of California, Nevada, Arizona, and New Mexico and east of the Rockies in the 

Great Plains, as well as many of the topographic lows throughout the Western US. Coefficient of 

variation, the ratio between standard deviation and mean, is higher in these regions as well. 
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Figure 5: Daily accumulated required water storage for the Western US, 2001-2020, calculated using the RDDR 

snowmelt model applied water approach (V3). Pixels classified as waterbodies, wetlands, or agricultural lands 

using the NLCD are masked white. Panel (a) shows the mean daily accumulated required water storage (�̅�𝑟) for 

each pixel (time averaged over the 2001-2020 time period). Panel (b) shows the coefficient of variation for each 

pixel, where coefficient of variation is equal to the standard deviation of daily accumulated required water storage 

over the time period divided by the mean over that time period, �̅�𝑟 . Panel (c) shows the 95th percentile highest 

daily accumulated required water storage during the 2001-2020 time period (𝑠𝑟,95). Panel (d) displays the 

maximum daily accumulated required water storage during the 2001-2020 time period (𝑠𝑟,95). 
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 The required cover thickness from the modeled accumulated required water storage (V3) 

is presented in figure 6. As implicated by the calculation, maximum required water storage 

results in thicker required covers than 95th percentile required water storage. Compared to V1 

and V2, V3 has a much higher fraction of the Western US with required cover thicknesses 

greater than 5 m. The geospatial average minimum required cover thickness with maximum 

required water storage (𝐿𝑉3,𝑚𝑎𝑥) is 15.9 m with a standard deviation of 53.6 m. The geospatial 

average minimum required cover thickness with 95th percentile required water storage (𝐿𝑉3,95) is 

14.7 m with a standard deviation of 51.0 m.  

 

Figure 6: Minimum required cover thickness calculated from (a) maximum required water storage (𝑠𝑟,𝑚𝑎𝑥) and (b) 

95th percentile required water storage (𝑠𝑟,95) products from model V3 for the Western US, 2001-2020. Panel (c) 

shows the difference in the minimum required cover thickness between (a) and (b). White areas are masked.  

 

2.4 Discussion 

 While V1 and V2 of minimum required cover thickness capture the broad trends in 

required cover thickness described in V3, far more assumptions are used and the coarse timestep 

(monthly) decreases our confidence in the numerical output from those models. In comparison, 
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V3 utilizes a daily water balance approach based on applied water, AET, and water storage 

where the finer temporal resolution captures the variability of applied water and 

evapotranspirative demand relative to each other. Version 3 realistically models snow dynamics 

within daily applied water, and the daily SSEBop product has been verified to provide 

reasonable quantifications of AET (Senay et al., 2022). As such, we have confidence that the 

minimum required cover thickness derived from V3 of the modeling represents the most 

plausible first approximation of what regions may be most suitable to woody biomass burial. 

Given the issues described in the methods section with the Daymet SWE product, we have very 

low confidence in the results quantifying the effect of SWE on required cover thickness in V1. 

Version 3 indicates that V1 and V2 under-predict minimum required cover thickness and as 

such, over-predicts regions that may be suitable to biomass burial.  

 In the Western US, western Nevada, the Sonoran Desert, parts of the Colorado Plateau in 

the Four Corners region, and the Great Plains have the highest potential for woody biomass 

burial as indicated by the lowest required cover thicknesses. Regions of high topography, 

especially in the Pacific Northwest, appear poorly suited to woody biomass burial due to the 

high, and potentially extreme, amounts of required water storage. Geospatially, there are high 

standard deviations for required cover thickness within each product, indicating that there is 

significant variability across sites.  

 The geospatial implementation of simple water balance modeling across a broad region 

was only possible with the use of certain simplifying assumptions regarding runoff, snow 

sublimation, and wind transport of snow. We want to explicitly acknowledge that these 

assumptions may be more accurate for some regions or conditions than others. All modeling 

described here should at the very least be checked using local, site-specific data. Intensive 
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climatologic, hydrologic, geologic, and pedologic modeling or experimentation should be 

undertaken before biomass burial is considered at a given site, for factors both included in our 

modeling and excluded due to the geospatial nature of our approach. Runoff was not included, 

and this assumption is reasonable in relatively flat areas. This assumption is likely less 

reasonable in steeply sloped terrain or terrain with a shallow depth to bedrock, but the constraints 

of biomass burial likely exclude these locations regardless. Runoff is dependent on the soil type 

and structure, presence of a frost line or frozen soil, and the slope, among precipitation factors 

such as precipitation intensity. Snow sublimation can be extensive, with up to 50% of snowpack 

being sublimated in some locations, but it is highly variable and at many sites, only a few percent 

of the snowpack is sublimated (Phillips 2013; Evans et al. 2016). Micro and macro-scale factors 

affecting sublimation have not been adequately parameterized for modeling across complex 

terrain and large spatial scales (Svoma 2015). Air temperature, humidity, wind speed, solar 

radiation, and ground cover can and should be used on a site-level basis to understand the impact 

of snow sublimation, transport via wind, and mass gain or loss from water vapor (Schmidt and 

Gluns 1992; Kampf et al. 2022). All assumptions, to the greatest degree possible, were chosen to 

make the resulting required cover thickness more conservative. 

2.5 Conclusion 

 We successfully used publicly available meteorological data from Daymet and SSEBop 

to make a reasonable geospatial water balance product in V3 of required water storage. The 

results of this water balance were used to calculate minimum required cover thickness across the 

Western US, and these results indicate that there is potential for woody biomass burial from a 

macroclimate perspective. There is still a strong need for site-specific modeling and verification 

of the climatological geospatial products as well many other factors that would affect woody 
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biomass burial, ranging from geological considerations such as the depth to bedrock and 

subsurface hydrology to social, political, and economic concerns such as environmental justice 

and existent infrastructure. 
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3.  Projecting Future Potential for Woody Biomass Burial: Using CMIP6 Data to Model 

Applied Water, Potential Evapotranspiration, and Aridity Index 

3.1 Introduction 

As demonstrated in the previous section, woody biomass burial appears feasible in 

specific regions across the Western US under historical conditions from 2001-2020, but any 

consideration of durable carbon storage needs to take into account potential future climate 

conditions. Actual evapotranspiration (AET) is crucial for the water balance described in the 

prior section, and AET has been shown to correlate well with decomposition (Parton et al., 2007; 

Adair et al., 2008). Critically, AET is an observed value determined by the climatic, hydrologic, 

ecologic, and pedologic conditions at a given point in time. In contrast, potential 

evapotranspiration (PET) can be directly calculated from meteorological data, often with a 

component of vegetation parameterization. Numerous definitions and over 50 methods to 

calculate potential evapotranspiration (PET) exist in published literature (Lu et al., 2005; 

McMahon et al., 2013). Here, we follow the convention of Dingman (1992) where PET is 

defined as “. . . the rate at which evapotranspiration would occur from a large area completely 

and uniformly covered with growing vegetation which has access to an unlimited supply of soil 

water, and without advection or heating.” The selection of PET equation is dictated by the region 

of interest and aims of a given study (Lu et al., 2005). 

Methods have been developed to approximate AET from potential evapotranspiration 

(PET), such as the Budyko-Fu curves or empirical calibration (Milly, 1984; Chowdhury, 1999; 

Peng et al., 2018). However, these methods are generally specific to a relatively homogenous 

region such as a watershed and require accurate parameterization to produce meaningful results 

(Yang et al., 2009; Li et al., 2013; Peng et al., 2018; Ajjur and Al-Ghamdi, 2021; Taheri et al., 



 39 

2022). Additionally, they approximate AET on longer time scales, generally annually, which 

makes it challenging to observe the effects of short but extreme events. Over large, 

heterogeneous regions such as the Western US, the approximation of AET from PET would not 

be precise enough for use in water balance, and the use of PET on a daily timescale is more 

meaningful. 

Estimates of PET can be derived under simulated conditions from global circulation 

model (GCM) datasets using a range of modeled climate variables such as air temperature, solar 

radiation, relative humidity, and surface wind (Kingston et al., 2009; Berg and Sheffield, 2019). 

GCMs have been developed to quantify the geophysical atmosphere, ocean, and climate 

dynamics in future time periods under different emissions scenarios. Emission scenarios are 

determined by the amount and timing of greenhouse gas emissions. The Intergovernmental Panel 

on Climate Change (IPCC) coupled model organizes coupled model intercomparison projects 

(CMIPs) such that many GCMs around the globe are run under the same forcing conditions 

representing the emission scenarios. These model outputs can be analyzed in multi-model 

ensembles to understand the range of predicted trajectories of climatic variables throughout time 

under specified emissions scenarios (Pierce et al., 2009).  

CMIP6, the most recent intercomparison project, was published between 2019 and 2022. 

Emissions scenarios in CMIP6 are termed “shared socio-economic pathways” or SSPs. CMIP6 

presents five SSPs representing very low (SSP1-1.9), low (SSP1-2.6), intermediate (SSP2-4.5), 

high (SSP3-7.0), and very high (SSP5-8.5) greenhouse gas emissions through the 21st century 

(IPCC, 2023). For each emissions scenario, the first number describes a set of socio-economic 

conditions related to population size, gross domestic product, and urbanization that correspond to 

the magnitude of greenhouse gas emissions (Riahi et al., 2017). The number after the dash 
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indicates the amount of radiative forcing caused by greenhouse gas emissions expected by 2100 

under that emissions scenario in units of W m2 (ex., 8.5 W m-2 for SSP5-8.5). Each SSP 

corresponds to a global warming temperature threshold from the historical baseline to 2100. 

SSP1-1.9 limits warming to <1.5ºC with no or limited overshoot, SSP1-2.6 limits warming to 

2.0ºC, SSP2-4.5 limits warming to 3.0ºC, SSP3-.70 limits warming to 4.0ºC, and warming under 

SSP5-8.5 exceeds 4.0ºC (IPCC, 2023). 

The IPCC released climate change synthesis report AR6 in 2023 and utilized CMIP6 data 

in their analysis. Among many global findings, they identified that more extreme precipitation 

events and droughts, decreases in soil moisture, and increases in aridity and fire weather are 

likely to become more common in the Western US with climate change (IPCC, 2023). Further 

literature has predicted intensifying drought in the Western US (Cook et al., 2015). Currently, 

there are no products that model PET at a high resolution with parameterization specific to the 

Western US using CMIP6 data, but PET is important in projecting evaporative demand in the 

future. Improvements in the CMIP6 modeling techniques and the accuracy of the SSPs 

developed over the decade since CMIP5 simulations appear significant enough to warrant 

creating these evapotranspiration products (Li et al., 2021; Martel et al., 2022). Developing an 

understanding of the predicted changes in water balance in the Western US will be critical in 

expanding our understanding of the impact of climate change on soil water content, extreme 

precipitation events, droughts, and fire weather.  

In this section, I develop a geospatial implementation of a PET model based on the 

Penman (1948) PET equation with parameterization specific to the Western US. I run this model, 

with a complete integration of the daily applied water model described in section 2.2.4, with 

input data from 26 GCMs from CMIP6 under two SSPs to project potential changes in PET over 
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the future time period through 2100. Changes in PET relative to changes in precipitation can be 

interpreted to understand how potential for woody biomass burial may change in the Western US 

over the 21st century.  

3.2 Methods 

3.2.1 Input Data 

Since the goal of the burial tool to assist in location selection for possible woody biomass 

burial deployments, we wanted to preserve as fine of spatial resolution as possible while 

maintaining meaningful results. We conducted a review of spatially downscaled data products 

with daily temporal frequencies as well as the HighResMIP experiments from CMIP6 and large 

ensemble simulation models. We selected the NASA Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP-CMIP6) dataset which includes 35 GCMs downscaled to 0.25º by 

0.25º resolution on a common grid (Thrasher et al., 2022). This product was selected for it’s fine 

resolution, inclusion of a large number of GCMs, and universal gridding across GCMs. The 

NASA NEX-GDDP-CMIP6 is downscaled using the bias-correction/spatial disaggregation 

(BCSD) method which is described in detail in Thrasher et al. (2012). The dataset includes 

outputs for the four most common SSPs: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. 

However, not every SSP is available for every GCM or variable. SSP2-4.5 (intermediate 

emissions) and SSP5-8.5 (very high emissions) were most commonly available across models, 

and these SSPs are the most commonly used to describe a range of future outcomes.  

We acquired daily average temperature, minimum temperature, maximum temperature, 

precipitation rate, downwelling shortwave radiation, near-surface wind, and near-surface relative 

humidity (Table 1) for 26 GCMs from the NASA NEX-GDDP-CMIP6 THREDDS server in 

February 2024. Precipitation rate was reacquired in March following the release of version 1.1. 
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This data is hereafter refered to simply as “CMIP6 data” unless otherwise specified. All models 

that contained the requisite data variables for SSP2-4.5 and SSP5-8.5, with one exception, were 

used to maximize the number of models in the ensemble, which accounts for 26 out of the 35 

available models (Table 2). All analysis was originally performed with the GISS-E2-1-G model, 

but the historical simulation data for this model was unrealistic and out of the plausible range of 

variability. As such, we removed the GISS-E2-1-G model from the ensemble. All acquired data 

was clipped within a bounding box from 31 to 49ºN and 102 to 124.75ºW, encompassing all the 

contiguous US west of Colorado’s eastern border. For each variable analysed, we calculated a 

multi-model ensemble by first calculating each variable all the way through for each timestep 

(daily, monthly, seasonally, and annually) for each of the 26 models and then averaging each 

model results across each corresponding timestep. Standard deviation and coefficient of variation 

for each variable was also calculated at each timestep. 

Aside from CMIP6 climatological data, the PET calculations required surface elevation 

data. We used acquired the USGS National Map 3D Elevation Program (3DEP) data with a 100 

meter resolution (USGS, 2019). This data was upscaled in ArcGIS Pro using cubic convolution 

to match the datum, projection, bounding box, and pixel size of the CMIP6 data. The raster data 

was saved as a NetCDF for use in PET calculations. 

CF Variable Name Description Units 

𝒉𝒖𝒓𝒔 Near-surface relative humidity % 

𝒑𝒓 Mean of daily precipitation rate kg m-2 s-1 

𝒓𝒔𝒅𝒔 Surface downwelling shortwave radiation W m-2 

𝒔𝒇𝒄𝑾𝒊𝒏𝒅 Daily mean near-surface wind speed m s-1 

𝒕𝒂𝒔 Daily mean near-surface air temperature K 

𝒕𝒂𝒔𝒎𝒂𝒙 Daily maximum near-surface air temperature K 

𝒕𝒂𝒔𝒎𝒊𝒏 Daily minimum near-surface air temperature K 

 

Table 1: CMIP6 variables used in this analysis. CF variable name refers to the NetCDF Climate and Forecast (CF) 

metadata convention. Near-surface indicates the variable was modeled at a height 2 m above the ground surface 

with exception of 𝑠𝑓𝑐𝑊𝑖𝑛𝑑 which is modeled 10 m above the ground surface. 
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Model In ensemble? Reasoning if excluded, when applicable 

ACCESS-CM2  Y - 

ACCESS-ESM1-5 Y - 

BCC-CSM2-MR N No relative humidity (ℎ𝑢𝑟𝑠) 

CanESM5  Y - 

CESM2 N No minimum/maximum temperature (𝑡𝑎𝑠𝑚𝑖𝑛/𝑡𝑎𝑠𝑚𝑎𝑥) 

CESM2-WACCM N No minimum/maximum temperature (𝑡𝑎𝑠𝑚𝑖𝑛/𝑡𝑎𝑠𝑚𝑎𝑥) 

CMCC-CM2-SR5 Y - 

CMCC-ESM2 Y - 

CNRM-CM6-1 Y - 

CNRM-ESM2-1 Y - 

EC-Earth3 Y - 

EC-Earth3-Veg-LR Y - 

FGOALS-g3 Y - 

GFDL-CM4 (gr1) Y - 

GFDL-CM4 (gr2) N Identical results to GFDL-CM4 (gr1) on different grid 

GFDL-ESM4 Y - 

GISS-E2-1-G N Historical simulation data erroneous 

HadGEM3-GC31-LL Y - 

HadGEM3-GC31-MM N No SSP2-4.5 

IITM-ESM N No minimum/maximum temperature (𝑡𝑎𝑠𝑚𝑖𝑛/𝑡𝑎𝑠𝑚𝑎𝑥) 

INM-CM4-8  Y - 

INM-CM5-0 Y - 

IPSL-CM6A-LR Y - 

KACE-1-0-G Y - 

KIOST-ESM N No relative humidity (ℎ𝑢𝑟𝑠) for 2058, SSP2-4.5 

MIROC-ES2L Y - 

MIROC6 Y - 

MPI-ESM1-2-HR Y - 

MPI-ESM1-2-LR Y - 

MRI-ESM2-0 Y - 

NESM3 N No relative humidity (ℎ𝑢𝑟𝑠) 

NorESM2-LM Y - 

NorESM2-MM Y - 

TaiESM1 Y - 

UKESM1-0-LL Y - 

 

Table 2: CMIP6 models within the NASA NEX-GDDP-CMIP6 downscaled product with designations of if a given 

model was used in this analysis and the reasoning if the model is excluded. ‘Y’ denotes that the model was 

included while ‘N’ with red shading indicates that a model was excluded from the ensemble.  
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3.2.2 Adaptations of Applied Water for CMIP6 Data 

 The foundations for the daily applied water model for CMIP6 data were based on the 

historic applied water model with the restricted degree-day radiation (RDDR) snowmelt model 

described in detail in section 2.2.4. All equations, constants, and the theoretical basis remain the 

same, but several of the variables require unit conversion. Precipitation is provided from CMIP6 

as the mean daily precipitation rate in units of kg m-2 s-1 (𝑝𝑟). To convert to daily total 

precipitation (𝑃), we converted from mass per unit area to depth of water in mm using the 

density of water (𝜌𝑤 = 1000 kg m-3) and multiplying by the length of the day in seconds (86400 

seconds). Daily average temperature (𝑡𝑎𝑠) from CMIP6 was converted from Kelvin to degrees 

Celsius. Surface downwelling shortwave radiation (𝑟𝑠𝑑𝑠) is given as the daily average in units of 

W m-2, so no correction from were necessary, unlike with the daylight-average 𝑠𝑟𝑎𝑑 variable 

from Daymet. The applied water model for CMIP6 data was directly integrated into the PET 

model described in section 3.2.3.  

 Although the NASA NEX-GDDP-CMIP6 data is downscaled and bias-corrected with 

historical data, we wanted to confirm that this output was compatible with historical Daymet 

applied water. The NASA NEX-GDDP-CMIP6 product uses the Global Meteorological Forcing 

Dataset (GMFD) for Land Surface Modeling from the Terrestrial Hydrology Research 

Group at Princeton University for historic climate data (Sheffield et al. 2006). For a historical 

test period of 2000-2014 with 1999 as an initialization year, we calculated the total cumulative 

applied water using both Daymet and NASA NEX-GDDP-CMIP6 historical experiments. The 

Daymet total cumulative applied water for 2000-2014 was upscaled and regridded using cubic 

convolution to match the datum, projection, and resolution of the CMIP6 data. We calculated the 

percent difference between the Daymet and CMIP6 total cumulative applied water, and all pixels 
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were less than 4% different. All but 4 pixels were less than 2% different between the applied 

water from the two products. The highest percentage differences were found at the boundaries of 

the Daymet dataset and likely reflect edge-effects that occurred during upscaling. Overall, we 

interpret this to mean that the historic bias-correction performed by the NASA NEX-GDDP-

CMIP6 team using the GMFD dataset is adequate and similar enough to Daymet historical data 

that we can reasonably compare the two outputs and use them in series.  

3.2.3 Potential Evapotranspiration: Theoretical Basis and Model Implementation 

 In this paper, we present PET calculated using the Penman (1948) approach. Broadly, 

when calculating PET, the choice of PET equation is driven by data availability and the 

conditions of the location being modeled (Tegos et al., 2015). Certain equations, such as 

Hargreaves-Samani, are designed to use minimal input data and often only rely on monthly 

temperature and precipitation (Cob and Tejero-Juste, 2004). However, these temperature-based 

equations miss the evaporation that can be driven by high solar radiation even in cold 

temperature, and radiation-based approaches are preferred. Within radiation-based approaches, 

certain equations, like the Penman-Monteith Equation or Shuttleworth and Wallace, require 

detailed parametrization of the vegetation and its interactions with the atmosphere or major 

assumptions based on a predetermined crop height (Allen et al., 1998). These equations tend to 

be considered as the standard to which other more simple or empirical calculations are compared 

(Xu and Singh, 2002). Other equations, such as the Priestley-Taylor Equation, do not perform 

well in arid regions (Ajjur and Al-Ghamdi, 2021).  

Given the geospatial nature of this project and the need for an accurate equation that 

captured regional dynamics, we reviewed published methodologies for a radiation-based 

approach suitable for arid and non-arid regions primarily forced by physical factors. Selecting an 
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equation that does not explicitly parameterize vegetation allows us to make minimal assumptions 

about the character and uniformity of vegetation or how the distribution of vegetation will 

change with climate change. The Penman (1948) equation, equation 19, is a physically based, 

PET approach that has been shown to perform well in arid environments (Li et al., 2016; Ajjur 

and Al-Ghamdi, 2021). Since the data requirements were also feasible, we determined the 

Penman (1948) equation to be well suited to modeling across the Western US. 

𝑃𝐸𝑇 =
∆

∆+𝛾
(

𝑅𝑛

𝜆
) +

𝛾

∆+𝛾
𝐸𝑎       (19) 

In the Penman (1948) equation, PET (mm d-1) of a saturated surface is a function of the slope of 

the vapor pressure curve (∆; kPa ºC-1), psychrometric constant (𝛾; kPa ºC-1), net radiation (Rn; 

MJ m-2 d-1), latent heat of vaporization (𝜆; MJ kg-1), and Ea, a function of wind speed, vapor 

pressure, and saturation vapor pressure (mm d-1). The methods presented here for calculating 

Penman PET are primarily drawn from McMahon et al. (2013) which presents a detailed 

supplement to support calculations. Equations are from McMahon et al. unless otherwise cited 

(2013). Other major sources for this methodology include Allen et al., (1998), Taheri et al., 

(2022), and Bjarke et al. (2023). PET, along with applied water, is calculated using daily 

meteorological inputs. The PET model written for this geospatial implementation includes four 

modules: vapor pressure, wind, psychrometric constant, and net radiation (Figure 7).  
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Figure 7: Overview of the Penman potential evapotranspiration (PET) model implementation. Four modules, the 

vapor pressure module, wind module, net radiation module, and psychrometric constant model, were used to 

calculate the final PET equation. The daily applied water model is fully integrated so that the presence or absence 

of snowpack on a given day can be used to select albedo.  
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The vapor pressure module includes saturation vapor pressure, vapor pressure deficit, and 

the slope of the vapor pressure curve. Saturation vapor pressure, 𝑒𝑠, is calculated using equation 

20 (Bjarke et al., 2023):  

𝑒𝑠 = 0.6108𝑒(17.27 𝑇)/(237.3+𝑇)    (20) 

where 𝑇 is air temperature in ºC and 𝑒𝑠 is in units of kPa. Daily saturation vapor pressure (𝑒𝑠
∗) is 

calculated from averaging the saturation vapor pressure for where 𝑇 is set to each minimum daily 

temperature 𝑇𝑚𝑖𝑛 and maximum daily temperature 𝑇𝑚𝑎𝑥, which correspond to 𝑡𝑎𝑠𝑚𝑖𝑛 and 

𝑡𝑎𝑠𝑚𝑎𝑥 converted from K to ºC. Daily vapor pressure deficit (𝑉𝑃𝐷) is calculated using equation 

21 (Bjarke et al., 2023), 

𝑉𝑃𝐷 = (1 −
ℎ𝑟

100
) 𝑒𝑠

∗      (21) 

where 𝑒𝑠
∗ is daily saturation vapor pressure (kPa) and ℎ𝑟 is daily relative humidity (%), which is 

provided in CMIP6 data as ℎ𝑢𝑟𝑠. Finally, the slope of the vapor pressure curve, ∆, is calculated 

using the following equation 22 (Bjarke et al., 2023): 

∆=
4098𝑒𝑠

∗

(𝑇𝑎𝑣𝑔+273.3)
2      (22) 

where ∆ is in units of kPa ºC-1, es
* is daily saturation vapor pressure as calculated above (kPa) 

and 𝑇𝑎𝑣𝑔 is daily average temperature (ºC) for which we CMIP6 𝑡𝑎𝑠, converted to ºC. 

 The wind module depends on the results of the vapor pressure module and incorporates 

vegetation parameterization. Daily mean surface wind is modeled in the CMIP6 data at a height 

10 m above the ground surface (𝑠𝑓𝑐𝑊𝑖𝑛𝑑, m s-1). We adjust wind height to 2 m to match the 

requisite input for Penman PET using equation 23, 

𝑢2 = 𝑢𝑧

ln(
2

𝑧0
)

ln(
𝑧

𝑧0
)
       (23) 
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where 𝑢2 is wind speed 2 m above the surface (m s-1), 𝑢𝑧 is wind speed (m s-1) at height 𝑧 above 

the surface (m), and 𝑧0 is roughness length (m). Roughness length is a function of vegetation 

height and can be approximated as 1/10th of the vegetation height (ℎ𝑣): 

𝑧0 ≅
ℎ𝑣

10
       (24) 

Given that preliminary analysis and potential sites for burial indicated that sagebrush or other 

woody vegetation would likely be the ground cover, we selected a vegetation height of 1 m for 

this analysis. Wind speed 2 m above the surface (𝑢2) is used in the wind equation used to 

calculate 𝐸𝑎 (mm d-1), 

𝐸𝑎 = 𝑓(𝑢)(𝑉𝑃𝐷)      (25) 

where 𝑓(𝑢) is a wind equation and 𝑉𝑃𝐷 is vapor pressure deficit (kPa). Several wind equations 

exist to relate the effect of wind to PET, and we chose Penman’s 1956 wind equation based on 

previous studies finding that earlier wind equations were inaccurate (Linacre, 1993; Cohen et al., 

2002). The Penman (1956) wind equation is defined in equation 26. 

𝑓(𝑢) = 1.313 + 1.381𝑢2     (26) 

 The next module is the psychrometric constant module. The psychrometric constant (𝛾; 

kPa ºC-1) is calculated using formula 27 (Allen et al., 1998), 

𝛾 =
𝑐𝑝𝑝

𝜀𝜆
      (27) 

where 𝑐𝑝 is the specific heat of water at constant pressure (1.013 x 10-3 MJ kg-1 ºC-1), 𝑝 is 

atmospheric pressure at the ground surface, 𝜀 is the ratio of the molecular weight of water vapor 

to dry air (0.622), and 𝜆 is the latent heat of vaporization. Atmospheric pressure, 𝑝, is a function 

of elevation and is calculated using the elevation netCDF already discussed using the following 

formula in equation 28 (Allen et al., 1998): 
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𝑝 = 101.3 (
293−0.0065𝜁

293
)

5.26
     (28) 

In this equation, 𝜁 is elevation above sea level in meters. Latent heat of vaporization (𝜆; MJ kg-1) 

was calculated on a daily using daily average temperature (𝑇𝑎𝑣𝑔; ºC) for a given pixel using the 

following equation 29. 

𝜆 = 2.501 − (2.361 × 10−3)𝑇𝑎𝑣𝑔     (29) 

 The most involved module is the net radiation module. Most GCMs include output for 

incoming and outgoing shortwave and longwave radiation as well as sensible and latent heat 

fluxes from surface processes and geothermal heat. These variables allow for net radiation to be 

calculated simply (Bjarke et al., 2023). However, the downscaled CMIP6 data used does not 

included the full set of radiation parameters and only includes surface downwelling shortwave 

radiation (𝑟𝑠𝑑𝑠) and surface downwelling longwave radiation (𝑟𝑙𝑑𝑠). Since geothermal radiation 

and heat fluxes from surface processes are many orders of magnitude smaller than solar 

radiation, they can be effectively ignored in the surface heat flux (Davies and Davies, 2010; 

Kopp & Lean, 2011). As such, we calculate net radiation using equation 30: 

𝑅𝑛 = 𝑟𝑛𝑠 + 𝑟𝑛𝑙      (30) 

where 𝑟𝑛𝑠 is net surface shortwave radiation and 𝑟𝑛𝑙 is net surface longwave radiation. 

Net surface shortwave radiation can be determined with surface downwelling shortwave 

radiation and ground surface albedo. We used a surface albedo of 0.25 which is representative of 

semi-desert (Douglas et al., 2009). We integrated the applied water module into the PET model, 

and as such, we used a surface albedo of 0.74 as discussed in section 2.2.4 when snow was 

modeled to be present. Net surface shortwave radiation was calculated using equation 31. 

𝑟𝑛𝑠 = (1 − 𝛼)𝑟𝑑𝑠      (31) 
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In this equation, 𝑟𝑛𝑠 is net surface shortwave radiation (MJ m-2 d-1), 𝑟𝑑𝑠 is downwelling surface 

shortwave radiation (MJ m-2 d-1), and albedo, as described above, is dimensionless. Note that 

downwelling surface shortwave radiation must be converted from units of W m2 in 𝑟𝑠𝑑𝑠 to units 

of MJ m-2 d-1.  

 Net surface longwave radiation can be calculated as a function that accounts for vapor 

pressure, air temperature, and cloud cover. The overall formula for net surface longwave 

radiation is described in equation 32, 

𝑟𝑛𝑙 = 𝜎 (
𝑇𝑚𝑎𝑥

4 +𝑇𝑚𝑖𝑛
4

2
) (0.34 − 0.14√𝑒𝑎) (1.35

𝑟𝑑𝑠

𝑟𝑠𝑜
− 0.35)   (32) 

where 𝜎 is Stefan-Boltzmann’s constant (5.67 x 10-8 W m-2 K-4), 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are maximum 

and minimum daily air temperature respectively, 𝑒𝑎 is actual vapor pressure (kPa), 𝑟𝑑𝑠 is 

downwelling surface shortwave radiation (MJ m-2 d-1), and 𝑟𝑠𝑜 is clear sky radiation (MJ m-2 d-1) 

(Cleugh et al, 2005; Taheri et al., 2022). Actual vapor pressure (𝑒𝑎) is approximated from 

relative humidity (ℎ𝑟; %) and the average saturation vapor pressure between 𝑇𝑚𝑖𝑛 (𝑒𝑠,𝑚𝑖𝑛) and 

𝑇𝑚𝑎𝑥  (𝑒𝑠,𝑚𝑎𝑥) in equation 33 (Taheri et al., 2022). 

𝑒𝑎 =
ℎ𝑟

100
(

𝑒𝑠,𝑚𝑖𝑛+𝑒𝑥,𝑚𝑎𝑥

2
)     (33) 

 Cloud cover is approximated by the ratio between downwelling surface shortwave 

radiation and clear sky radiation. Clear sky radiation is a function of elevation and extraterrestrial 

radiation as shown in equation 34, where 𝜁 is elevation above sea level (m) and 𝑟𝑎 is 

extraterrestrial radiation (MJ m-2 d-1). 

𝑟𝑠𝑜 = (0.75 + 2 × 10−5 𝜁)𝑟𝑎     (34) 

Extraterrestrial radiation is calculated from solar declination and the sunset angle, which are 

function so of the day of year and pixel latitude (Equation 35).  
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𝑟𝑎 =
1440

𝜋
(𝑆0)(𝑑𝑟

2)[𝜔𝑠(sin 𝜑)(sin 𝛿) + cos 𝜑 (cos 𝛿)(sin 𝜔𝑠)]   (35) 

In this equation, 𝑆0 is the solar constant (0.0820 MJ m-2 min-1; by convention, multiplied by 1440 

in the first term of 𝑟𝑎  to convert to units of MJ m-2 min-1), 𝑑𝑟 is the inverse relative Earth-Sun 

distance (dimensionless), 𝜔𝑠 is the sunset hour angle (rad), 𝜑 is latitude (rad), and 𝛿 is solar 

declination (rad). The latitude of the centroid of each CMIP6 pixel was converted to radians and 

used for latitude (𝜑). The square of the inverse relative Earth-Sun distance is a function of the 

day of year (DoY) (Equation 36). 

𝑑𝑟
2 = 1 + 0.033 cos (

2𝜋

365
 𝐷𝑜𝑌)     (36) 

Solar declination (𝛿) is also a function of DoY (Equation 37). 

𝛿 = 0.409 sin (
2𝜋

365
𝐷𝑜𝑌 − 1.39)     (37) 

Sunset hour angle (𝜔𝑠) is calculated with equation 38. 

𝜔𝑠 = arccos[− tan(𝜑) tan(𝛿)]     (38) 

3.2.4 Aridity Index 

 We calculated aridity index (AI) for all the cumulative time steps (monthly, seasonally, 

annually) by dividing cumulative precipitation by cumulative PET for each time step (Equation 

39), following the convention set by UNEP (1992).  

𝐴𝐼 =
𝑃

𝑃𝐸𝑇
       (39) 

The resulting non-dimensional number was analyzed both numerically and using the 

classification scheme provided by UNEP (1992) and provided in table 4.  
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Classification Aridity Index Threshold 

Hyperarid AI < 0.05 

Arid 0.05 ≤ AI < 0.20 

Semi-arid 0.20 ≤ AI < 0.50 

Dry Subhumid 0.50 ≤ AI < 0.65 

Table 4: Aridity index classifications from UNEP (1992). 

 

3.2.5 Analysis of CMIP6 Products 

 All CMIP6 GCM ensemble products were aggregated into annual, seasonal, and monthly 

time steps. Precipitation, applied water, and PET were aggregated by summing daily data for the 

duration of each time step. Aridity index was calculated from the precipitation and PET products 

already summed to that timestep. Seasonal partitions were created following meteorological 

convention for the Northern Hemisphere: winter is December, January, and February (DJF), 

spring is March, April, and May (MAM), summer is June, July, and August (JJA), and fall is 

September, October, and November (SON). All timesteps (annual, seasonal, and monthly) were 

averaged into 20-year periods to describe conditions from 1991 to 2100. The historical time 

period was defined as 1991-2010. Four future time periods were calculated to each SSP: near-

future (2021-2040), mid-century (2041-2060), late-century (2061-2080), and end-century (2081-

2100). These time averages were performed on the ensemble data. For the historical period, 1990 

was used as an initialization year for the applied water model and removed before temporal 

averaging. For the future time period ranging from 2021 to 2100 for each SSP, 2020 was used as 

the initialization year and removed. The change between each consecutive future time period was 

calculated, as well as the difference between each time period and the historical time period. 

 The primary product used to understand the projected change in conditions relevant for 

biomass burial was the difference between the maximum seasonal aridity index from all years 

and all seasons from 2021-2100 for each SSP compared to the maximum historical aridity index 
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(1991-2010) for a given pixel. Since water balance cannot be calculated without AET, aridity 

index captures the next most relevant information about the magnitudes of precipitation and 

evapotranspiration relative to each other. The seasonal timestep was used because it captures the 

interannual variability and seasonality of precipitation and evapotranspiration on a time scale that 

is simultaneously broad enough to not overstate the precision of the data due to uncertainties of 

climate modeling.      

Figure 8: Average annual total precipitation (row i), total PET (row ii), and aridity index (row iii) for the historical, 

1991-2010, time period (column a), and the change between the historical time period and the end century 

projection, 2081-2100, time period under SSP2-4.5 (column b) and SSP5-8.5 (column c) for each variable. 
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3.3 Results 

3.3.1 Interannual Results of Historical and Future Modeling 

 Mean annual total precipitation and PET are projected to predominantly increase under 

both SSPs from the historical period (1991-2010) to the end-century time period (2081-2100) 

(Figure 8). Increases in both total precipitation and PET are larger under SSP5-8.5 than SSP2-

4.5. West of the Rocky Mountains, annual aridity index broadly increases (more humid) by 0.025 

or less for SSP5-8.5 and 0.015 or less for SSP2-4.5. Annual aridity index is projected to decrease 

(more arid) in the Cascade Mountains by up to 0.08. East of the Rocky Mountains, annual aridity 

index is projected to slightly decrease (more arid) by less than 0.01. 

On the interannual scale, total applied water and precipitation are identical. In the 

historical time period, minimum mean annual total precipitation is 43 mm in the Sonoran Desert, 

and the maximum is 3048 mm in the Coast Range of Washington. Precipitation increases from 

the historical to end-century time period by up to 250 mm under SSP2-4.5 and 316 mm under 

SSP5-8.5. These maximum increases occur in the Pacific Northwest where precipitation is 

already high (> 2500 mm) relative to the rest of the region of interest. Small decreases in 

precipitation are projected in the southeastern corner of Colorado and northeastern corner of 

New Mexico, with the largest decreases being 6 mm and 13 mm for SSP2-4.5 and SSP5-8.5, 

respectively. Increases in precipitation are greatest along mountain ranges and high topography, 

and these increases are relatively uniform, aside from the Cascades and the Pacific Northwest 

coastal ranges, despite differing historical precipitation amounts. Changes in precipitation are 

noticeably smaller (< 25 mm) on the leeward side (Eastern side) of the Cascade Range in 

Washington (Columbia Plateau), Wasatch Range in Utah, and Rocky Mountains in Wyoming 

and Colorado. Across all four time periods for each SSP, there are broadly the same geospatial 
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patterns as described above but there are regions where the trend of precipitation change alters 

direction between time periods (Figures 9 and 10).   

 

Figure 9: Change in mean annual total precipitation across all time periods for SSP2-4.5. 
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Figure 10: Change in mean annual total precipitation across all time periods for SSP5-8.5. 

 

Projected increases in mean annual total PET are highest in areas with high topography 

(Figure 8). In the historical time period, mean annual total PET ranges from 2900 mm per year in 

the high Rocky Mountains and near the Canadian border to as high as nearly 6900 mm in the 

Sonoran Desert in southwestern Arizona and southeastern California. This trend broadly follows 

a latitudinal gradient where PET is inversely related to latitude. Mean annual total PET is 

projected to increase by up to 478 mm and 749 mm for SSP2-4.5 and SSP5-8.5, respectively, 

with highest increases in the Rocky Mountains, Cascade Range, and the Sierra Nevada 

Mountains. The smallest increases in PET occur along the coast of California with minimum 
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PET increases of 68 mm and 71 mm for SSP2-4.5 and SSP5-8.5, respectively. Outside of the 

changes resulting from topography, there is a gradient in the increase in PET from lower 

increases in the southwest along the California coast and greater increases moving northeast. 

Across all time periods for both SSPs, mean annual total PET consistently increases (Figures 11 

and 12). 

 

Figure 11: Change in mean annual total PET across all time periods for SSP2-4.5. 
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Figure 12: Change in mean annual total PET across all time periods for SSP5-8.5. 

 Mean annual aridity index is projected to increase in by the end-century time period in 

the majority of the Western US under both SSPs (Figure 8). The most arid region has its southern 

end in the Sonoran Desert in Arizona and California and stretches northward into Nevada along 

the leeward side of the Sierra Nevadas, and the aridity index for these pixels is less than 0.03. 

High topography is broadly less arid than regions with lower elevation, and low elevation 

regions on the leeward side of high topography are distinctly more arid. The highest aridity index 

values (most humid) are in the Cascade and Coast Ranges in Washington. To the west of the 

Rocky Mountains, aridity index is projected to slightly increase by the end-century time period 
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under both SSPs. The significance of these changes is not well constrained in the current 

analysis. The largest changes in aridity index are projected in Washington with the Coast Range 

increasing by up to 0.1 and the pixels in the Cascades near the Canadian border decreasing by 

~0.05 under SSP5-8.5, with smaller corresponding changes. Both of these regions occur where 

the highest aridity index values are observed in the historical time period. For some regions such 

as in California and Washington, the predicted trend in aridity index reverses direction 

throughout the 21st century (Figures 13 and 14). The trend reversal is more evident in SSP2-4.5 

than SSP5-8.5. 

 

Figure 13: Change in mean annual aridity index across all time periods for SSP2-4.5. 
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Figure 14: Change in mean annual aridity index across all time periods for SSP5-8.5. 

3.3.2 Seasonal Changes from Historical to Future Climate Scenarios 

 Historical precipitation in the Western US is highly seasonally variable for most of the 

region (Figure 15a). Precipitation is consistently high across seasons in Coast Range and 

Cascades in Washington and consistently low in the Sonoran Desert and Columbia Plateau. The 

Great Plains east or the Rocky Mountains and Arizona and New Mexico historically have higher 

precipitation in the summer while the central coast and Central Valley of California on average 

receive no precipitation in June, July, and August. As observed in the mean annual total 
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precipitation trends in Figures 8-10, precipitation is predominantly projected to increase with the 

greatest increases occurring in the Pacific Northwest. Spring precipitation in the southern portion 

of the Western US is projected to decrease and, in the northern portion, it’s projected to increase. 

The magnitude of change under SSP5-8.5 is larger than SSP2-4.5. Summer precipitation is 

projected to increase in an elliptical region covering California, Nevada, most of Oregon, 

southern Idaho, southwestern Wyoming, western Colorado, New Mexico, Utah, and Arizona. 

Outside of this elliptical region, summer precipitation is projected to decrease. Again, the 

magnitudes of the changes are higher under SSP5-8.5 than SSP2-4.5. Winter precipitation is 

projected to increase, predominantly with larger increases corresponding to higher topography 

such as the Sierra Nevadas and Rocky Mountains. 
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Figure 15: Seasonal historical (1991-2010) mean total precipitation (a) and the projected change from historical to 

end-century (2081-2100) seasonal precipitation under SSP2-4.5 (b) and SSP5-8.5 (c). “MAM” represents months 

March, April, and May (spring), “JJA” represents months June, July, and August (summer), “SON” represents 

months September, October, and November (fall), and “DJF” represents months December, January, and February 

(Winter).  
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Seasonal applied water is distinct from seasonal precipitation due to the accumulation and 

melting of snowpack. The seasonal distribution of historic applied water and projected changes 

have the same general trends and geospatial distribution as seasonal precipitation with the 

notable exception of high elevation regions in the Sierra Nevadas, Rocky Mountains, and 

Cascade Range in the fall, winter, and spring seasons (Figure 16). In high elevation regions, 

winter applied water is lower than precipitation and spring applied water is higher than 

precipitation due to the presence of snowpack. For SSP5-8.5, the change in applied water from 

the historical to end-century time period shows a decrease in spring applied water of 

approximately 50 to 200 mm and an increase in winter applied water of similar magnitude. The 

same trend is observed under SSP2-4.5, but the magnitude of change is smaller. Summer 

historical applied water and end-century change in applied water are nearly identical to the 

precipitation equivalents since the influence of snowpack in the summer is very small and affects 

few pixels.  
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Figure 16: Seasonal historical (1991-2010) mean total applied water (a) and the projected change from historical to 

end-century (2081-2100) seasonal applied water under SSP2-4.5 (b) and SSP5-8.5 (c). “MAM” represents months 

March, April, and May (spring), “JJA” represents months June, July, and August (summer), “SON” represents 

months September, October, and November (fall), and “DJF” represents months December, January, and February 

(Winter).  
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Figure 17: Monthly change in applied water for the end-century time period (2081-2100) from the historical time 

period (1991-2010) under (a) SSP2-4.5 and (b) SSP5-8.5. 

 

 Seasonal PET reflects the latitudinal gradient observable in annual data (Figures 8, 18). 

PET is highest in the summer for most regions except for the subtropical deserts at the southern 

borders of California, Arizona, and New Mexico. PET is lowest in the winter. Spring and fall 

PET have similar trends and distributions, but, in the historic simulation, PET at high elevations 

is lower in the spring than the fall. The end-century change in PET is notably highest in these 

high elevation regions in fall, winter, and spring, and the spring changes are the largest with 

projected changes in seasonal total PET up to 450 mm. As seen in the annual total PET (Figure 
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8), seasonal total PET is projected to increase with the exception of parts of California, Nevada, 

and Arizona in the summer under SSP5-8.5. 

 
Figure 18: Seasonal historical (1991-2010) mean total PET (a) and the projected change from historical to end-

century (2081-2100) seasonal PET under SSP2-4.5 (b) and SSP5-8.5 (c). “MAM” represents months March, April, 

and May (spring), “JJA” represents months June, July, and August (summer), “SON” represents months September, 

October, and November (fall), and “DJF” represents months December, January, and February (Winter).  
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Figure 19: Seasonal historical (1991-2010) mean aridity index (a) and the projected change from historical to end-

century (2081-2100) seasonal aridity index under SSP2-4.5 (b) and SSP5-8.5 (c). “MAM” represents months March, 

April, and May (spring), “JJA” represents months June, July, and August (summer), “SON” represents months 

September, October, and November (fall), and “DJF” represents months December, January, and February 

(Winter).  

 

Aridity index, due to the formulation of the index, follows a distribution like that of 

precipitation and PET (Figures 15, 18, 19). The projected change in seasonal aridity index from 
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the historical time period to end-century is minimal in spring, summer, and fall with the 

exception of a small increase in aridity index in Washington in the fall season under both SSPs 

(Figure 19). The largest trend is observable in the winter season, with decreases (becoming more 

arid) in aridity index up to 2 and increases up to 0.5 (becoming more humid). Winter seasonal 

aridity index is projected to increase at similar magnitudes along the Pacific Coast. The Cascade 

Range and the Northern Rockies have the largest projected decrease in aridity index. These 

results are reflected in the monthly time step data, with the largest changes occurring from 

November through March (Figure 20). 

 

Figure 20: Monthly change in aridity index for the end-century time period (2081-2100) from the historical time 

period (1991-2010) under (a) SSP2-4.5 and (b) SSP5-8.5. 
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3.3.3 Implications of Climate Modeling for Minimum Required Cover Thickness 

 On a mean annual basis, the change between aridity index classifications across the 

Western US in the historical and end-century time periods is low (Figure 21). Under both SSPs, 

there is a decrease in area classified as hyperarid in the end century time period, and this 

decrease is greater in SSP5-8.5 than SSP2-4.5. These decreases occur at the hyperarid/arid 

interface, and the most notable decreases occur in the Colorado Plateau near the four corners 

region and in Nevada. Regions classified as semi-arid and above (more humid) do not change in 

distribution. Most of the Western US by land area is classified as arid and is projected to remain 

under this classification in the end-century time period under both SSPs. Areas modeled to have 

potential for woody biomass burial with minimum cover thicknesses less than 5 m fall within the 

hyperarid and arid regions. 

 

Figure 21: Aridity index classifications following UNEP (1992) standard for the (a) mean annual historical (1991-

2010) aridity index, (b) projected mean annual end century (2081-2100) aridity index under SSP2-4.5, and (c) 

projected mean annual end century aridity index under SSP5-8.5. The colors are semi-transparent and overly a 

grayscale of the minimum required cover thickness derived from 95th percentile required water storage (𝐿𝑉3,95) 

ranging from required thickness near 0 m (darkest) to 5 m (lightest). Areas with a minimum required cover 

thickness greater than 5 m are not displayed. 
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Figure 22: Maximum mean seasonal aridity index for the projected time period (2021-2100) (row i), and the 

difference in maximum mean seasonal aridity index from the historical period (1991-2010) to the maximum mean 

seasonal aridity index in the projected time period (row ii) for SSP2-4.5 (column a) and SSP5-8.5 (column b). For all 

plots, the color scheme is described by row and indicates the aridity index variables. The colors are semi-

transparent and overly a grayscale of the minimum required cover thickness derived from 95th percentile required 

water storage (𝐿𝑉3,95) ranging from required thickness near 0 m (darkest) to 5 m (lightest). Areas with a minimum 

required cover thickness greater than 5 m are not displayed. 

 

Maximum seasonal aridity index is the maximum fraction of precipitation divided by 

PET on a seasonal time step. Maximum seasonal aridity index over the entire projected time 

period from 2021-2100, the most humid season within the projected period, indicates that 



 72 

regions in the coastal Pacific Northwest, Sierra Nevada Range, Cascade Range, and Northern 

Rocky Mountains have seasons where total precipitation exceeds PET (Figure 22). Regions in 

the Sonoran Desert have maximum seasonal aridity index values that are still considered 

hyperarid. Approximately 30% of the land area in the Western US is projected to have a 

maximum aridity index of 0.20 or less, indicating that this area is projected to remain arid to 

hyperarid. This classification broadly corresponds to where existing burial potential is indicated 

by minimum required cover thickness depths less than 5 m. 

The difference between the maximum seasonal aridity index in the historical period and 

the projected period (historical maximum minus projected period maximum) indicates how the 

highest ratio of precipitation to PET may change over time. Under SSP2-4.5, much of the land 

area is projected to have up to 0.25 higher (more humid) maximum aridity index values (Figure 

22a, i). Increases in maximum seasonal aridity index greater than 1 are projected in the Pacific 

Northwest and along the southern Arizona border. Maximum seasonal aridity index values in 

central California, central Nevada, southern Utah, Arizona, and parts of Montana, Wyoming, 

Colorado, and New Mexico are projected to moderately decrease (more arid) by up to -0.25. 

Maximum seasonal aridity index is projected to decrease up to -1 in the Sierra Nevada Range. 

Under SSP5-8.5, a majority of the land area of the Western US is projected to have a decrease in 

maximum seasonal aridity index of up to -0.25, with decreases greater in magnitude than 1 

occurring in the Cascade Range, Coast Ranges, and Sierra Nevada Mountains. Maximum 

seasonal aridity index is projected to increase by up to 0.50 in parts of the Olympic Peninsula 

and Eastern Washington, the Sonoran Desert, the plains of southeastern Montana and eastern 

Wyoming, central Colorado, and most of New Mexico. The greatest increases in projected 
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maximum seasonal aridity index for both SSPs occur in the high elevation regions in southern 

Arizona and New Mexico with projected increases over 1. 

3.4 Discussion 

 On an annual scale, precipitation and applied water are projected to increase under both 

climate change scenarios by 20 to 50%. Seasonally, precipitation is projected to decrease in the 

spring months in the southern Western US, in the summer months in the northeastern region of 

the Western US under both climate change scenarios, and in the winter months in southern 

California, Arizona, and New Mexico. Projected precipitation increases are positively correlated 

with elevation, with mountain ranges expected to see the largest increases in precipitation. These 

regions also predominantly have higher precipitation in the historical period, and when looking 

at percent change, the intermountain West between the western slope of the Rocky Mountains 

and eastern slope of the Cascade and Sierra Nevada Ranges shows the greatest percent increase 

in precipitation.  

 When comparing predicted changes in precipitation and applied water, the influence of 

winter snowpack becomes evident. In the historical period, snowpack at high elevations 

evidently stores water from winter precipitation events until it is applied in the spring when the 

snowpack melts. In mountainous regions where historical snowpack is significant, winter applied 

water is projected to increase by ~200-300 mm while spring applied water is projected to 

decrease by a similar magnitude. Looking on a monthly time scale, increases in applied water are 

projected from November through March, but significant decreases are projected in April and 

May with magnitudes of change up to ~200 mm per month. In the historical period, snowmelt 

corresponded with the months of April and May. These results suggest that significantly less 

precipitation will fall as snow or that snow is not stored as snowpack for month-long timescales, 
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which corroborates observational and other model-based studies (Trujillo and Molotch, 2014; 

Huning and AghaKouchak, 2018). These results have significant implications for regional water 

balance including water availability, streamflow, and wildfire implications. However, for woody 

biomass burial, these changes likely aren’t critical because these areas are generally excluded 

from suitable locations for burial to begin with because the pulse of applied water from 

snowpack results in high required burial depths. 

 PET is projected to increase on the annual timestep and on all seasonal timesteps with the 

exception of parts of California, Nevada, and Arizona in the summer season under SSP5-8.5 

where a slight decrease in PET is observed. The implications of this are largely positive for the 

potential of woody biomass burial since an increase in PET would increase the atmospheric 

demand of water from the soil column. In the areas of California, Nevada, and Arizona that show 

a slight decrease in PET in the summer under SSP5-8.5, the impact is likely negligible because 

these regions have high total summer seasonal PET (> 1000 mm) and very low total summer 

precipitation (0-200 mm) in the historical period.  

The largest PET increases occur in the mountain ranges, and this is likely related to the 

reduction in snowpack. Snowpack is explicitly modeled in the applied water framework, and the 

presence or absence of snowpack informs the albedo coefficient for shortwave radiation in the 

net radiation module of the PET model. Shortwave radiation is the largest component of 

incoming energy to the modeled system, so a change in albedo of 0.49 from snowpack albedo of 

0.74 to a bare surface albedo of 0.25 represents a large change in how much energy is reflected 

out of the modeled system. The loss of snowpack earlier in the year with an increase in PET may 

result in drier soil columns in the spring, and this may have implications for wildfire risk with 

earlier melt off and drier conditions. 
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Applied water is critical for accounting for the temporal distribution of water in regions 

where there is snowpack. On large geospatial scales, most of the regions affected by significant 

snow have low burial biomass burial potential, likely due to the pulse of applied water during 

spring melt, but snow should be accounted for in all regions that experience it. Deriving a 

monthly and seasonal index that looks at the timing and magnitude of applied water and PET 

would likely produce more accurate predictions of changes in conditions with climate change 

than the precipitation-based aridity index.  

Mean annual aridity index is projected to increase (more humid) in by the end-century 

time period in the majority of the Western US under both SSPs, but this change is generally 

small (< 0.10). Broadly, the region west of the Rocky Mountains is projected to have an increase 

(more humid) in mean annual aridity index over each time period while the Great Plains region 

east of the Rocky Mountains is projected to have a decrease (more arid) in mean annual aridity 

index. However, the magnitudes of change are small, and when looking at the classification of 

aridity index using UNEP (1992) guidelines, only the hyperarid classification experiences a 

small decrease in area. The change in maximum seasonal aridity index from the historical period 

to the projected period has very different geospatial distributions under SSP2-4.5 and SSP5-8.5, 

as discussed in the results. Broadly, when interpreting the projected maximum seasonal aridity 

index with the historical minimum required cover thickness, it is evident that most of the regions 

with required cover thicknesses less than 5 m fall in regions that have both historically been and 

are projected to be within arid or hyperarid aridity classifications. This is supportive of the 

possibility for woody biomass burial in these areas through the end of the 21st century despite a 

slight annual trend towards more humid conditions.  
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The timing of precipitation and applied water relative to PET are critical to understand 

regional water balance. For example, the Great Plains east of the Rocky Mountains show high 

woody biomass burial potential with low required cover thickness despite having higher mean 

annual precipitation than many of the regions in the desert Southwest. This is because 

precipitation in the Great Plains is highly seasonal with a significant summer peak that 

corresponds to the peak in PET (Lauenroth and Bradford, 2006). Warm temperature, small 

precipitation events, and plant transpiration prevent water from reaching deeper storage in the 

soil column. Summer precipitation in the Great Plains is driven by the weakening of the 

prevailing Westerly winds allowing the warm, wet air to move up from the Gulf of Mexico as 

part of the circulation around the permanent subtropical high-pressure system in the Atlantic 

Ocean. The future climate modeling indicates that this driving mechanism will likely remain into 

the 21st century, supporting potential for burial in the Great Plains in the future, especially given 

the projected decrease in aridity index. However, given that there isn’t significant woody 

biomass in the Great Plains, the transportation distance from forests thinned for high wildfire risk 

to sites suitable for burial may be significant, and this would need to be accounted for in the life 

cycle analysis to show carbon storage. This example also illustrates how factors beyond the 

climatological ones described here need to be critically analyzed and taken into account if woody 

biomass burial is going to result in net carbon storage. 

Within the climatological modeling presented here, there are key assumptions that affect 

the interpretation of the resulting model outputs. First, the interpretation of the aridity index is 

limited by the choice of equation and parameterization of PET (Federer et al., 1996; Kingston et 

al., 2009; Song et al., 2022). Previous research, including trials run during this research but not 

described in text, has demonstrated that various PET equations and parameterizations can change 
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the resulting PET estimates by several hundred millimeters on annual time scales (Federer et al., 

1996). While care was taken to select and parameterize the Penman PET methodology presented 

here, it is critical to note the dependence of aridity index on PET and the dependence of PET on 

the methodology of calculation. An early study with CMIP3 data found that while all six PET 

methods tested indicated an increase in PET, the selection of equation and parameterization of 

PET was a determinant in the direction of aridity index changes in future time periods (Kingston 

et al., 2009). Modeling work in the Great Plains found that more physically based approaches for 

calculating PET tended to show weaker drying trends (Yuan and Quiring, 2014). PET is sensitive 

to changes in temperature, but this sensitivity also varies by PET equation, with the Penman 

approach being considered as moderately sensitive to temperature (Sutapa et al., 2020). It 

therefore appears likely that the question is not whether PET will increase, but how the pace of 

this increase relates to the increase in precipitation predicted in climate models. This has critical 

implications for woody biomass burial given that there is a possible range of PET outcomes from 

the same projected climatological inputs depending on methods of calculation. A sensitivity 

analysis on the methodology and parameterization presented here should be considered before 

using the aridity index to make decisions about potential for woody biomass burial under future 

climates.  

Numerous assumptions are necessary to build a geospatial implementation of PET across 

a large, diverse landscape. In this model, we use a vegetation height of 1 m to generate a 

roughness height of 0.1 m. This 1 m assumption is based on the approximate height of shrubby 

vegetation found in the regions that appeared plausible for woody biomass burial in Section 2. 

Roughness height informs the scaling of wind speed from a 10 m height as it is modeled within 

GCMs to a 2 m height as is used in PET equations using natural log transforms. If the modelled 
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vegetation height is shorter than the actual vegetation height, surface wind speed will be 

overestimated, leading to higher PET values. The reverse is true if the modelled vegetation 

height is taller than the actual vegetation height: surface wind speed will be underestimated 

resulting in lower PET values.  

Since albedo controls how much of the incoming energy stays within the system, it can 

have large impacts on the results of PET, as touched on briefly in the context of snowpack 

earlier. When regions were not covered in snowpack, we assumed a global albedo of 0.25 which 

was found to be representative of semi-desert ecosystems (Douglas et al., 2009). By land area, 

semi-desert or arid regions make up the majority of the Western US, but the use of global albedo 

decoupled from vegetation type at each pixel likely results in over and under estimation of PET 

in regions with different land cover types. Bare ground in deserts has a higher albedo, estimated 

around 0.30, so PET in deserts is likely underestimated in this model (McVicar et al., 2007). In 

contrast, coniferous forests can have albedo values near 0.10, so PET in these regions is likely 

overestimated by this model (Douglas et al., 2009). If future climate predictions for woody 

biomass burial are being seriously analyzed in regions outside of arid or semi-arid environments, 

a sensitivity analysis should be performed on the effect of albedo in the PET model, and the user 

should consider using albedo values specific to the land cover type of interest or varying the 

albedo spatially. Additionally, land cover type will likely change with climate change, and this 

change over time would need to be accounted for if spatially explicit albedo is used within the 

PET model.  

 Beyond the formulation and parameterization of the PET model, there are limitations and 

uncertainties within the climate models themselves that inform the input data for the PET model. 

GCMs produce more frequent precipitation events than observed (Stephens et al., 2010). Warmer 
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air temperatures are expected to result in more water being held in the atmosphere following the 

Clausius-Clapeyron relationship between temperature and saturation vapor pressure, and this 

relationship is quantified in GCMs. However, the observed humidity trends within arid and 

semiarid regions, both globally and in the Western US, are significantly lower in magnitude than 

the Clausius-Clapeyron relationship would suggest and thus don’t match the climate model 

projections over the time period where climate modeling and observational data overlap 

(Simpson et al., 2023). This suggests that in arid and semiarid areas, there isn’t enough water to 

meet the atmospheric demand, but this isn’t captured in climate modeling. Recent research 

suggests that conditions in arid regions will likely be even more arid in future time periods 

(Allan and Douville, 2023). This work calls into question the direction and magnitude of the 

projected change in aridity index throughout the 21st century presented here. The results 

presented here likely represent the more humid limit of possible outcomes, and as such, they 

likely conservatively model locations suited for woody biomass burial in the future. While more 

arid conditions in the future support the possibility for successful woody biomass burial, it is 

critical to understand that climate models do not currently capture key components of the 

hydrological forcing of arid and semiarid regions. This reinforces the need for any biomass 

burial to have active management and careful monitoring of climatic and burial conditions into 

the future.   

3.5 Conclusion 

 We modeled PET using CMIP6 meteorological projections for a 26 multi-model 

ensemble, returning reasonable calculations using the Penman (1948) model parameterized for 

semi-arid environments in the Western US. Given the limitations of climate modeling and the 

complexity of parameterizing a heterogeneous landscape such as the Western US, we did not 
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utilize existing published methods to approximate AET from PET. Instead, aridity index, the 

ratio between accumulated precipitation and PET, was used to understand the relative 

magnitudes of water applied to regions and the corresponding atmospheric demand. 

The applied water, water balance, and PET models developed herein produce reasonable 

estimates of the quantities they seek to capture. Changes in applied water indicate that snowpack 

will likely either diminish entirely or spring snowmelt will move forward by the end-century 

time period under both SSPs. Both precipitation and PET are projected to increase on an annual 

time step from the historical baseline, and when looking at aridity index, a majority of the 

Western US is projected to become slightly more humid on an annual timestep. These trends are 

stronger under SSP5-8.5 than SSP2-4.5. The aridity index trend is small and previous studies 

have identified ways in which PET results from climate modeling can produce aridity index 

trends in opposing directions depending on the PET methodology used. As such, we have low 

confidence in the overall indication of a slightly wetter condition in the Western US under 

climate change scenarios. Even still, under the most humid seasonal conditions, there are still 

regions that are projected to become more arid which is indicative of the climatological potential 

for woody biomass burial. 

4. Overall Conclusions and Future Work 

From the geospatial modeling presented here, there appears to be an opportunity for 

woody biomass burial from a macroclimate perspective, based on both historical and future 

climate scenarios. While this work provides a broad overview of burial potential, more detailed 

climate modeling and site-specific modeling will be critical. The analysis presented here does not 

quantify drought or precipitation extremes, and these topics are critical next steps to understand 

future moisture conditions in the Western US. The datasets derived here can be used to describe 
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far more about the possible future conditions of the Western US, far beyond what is described in 

this thesis. Beyond the climatological perspective focused on in this thesis, many other 

considerations need to be accounted for before implementing woody biomass burial. These 

considerations range from other geophysical factors like microclimate, precipitation runoff, wind 

transfer of moisture, subsurface groundwater, and depth of bedrock to ecological considerations 

of ecosystem disturbance to social, economic, and practical considerations such as land 

ownership, environmental justice, and existing infrastructure. Detailed life cycle analyses should 

be created before implementation to account for greenhouse gas emissions from soil disturbance, 

biomass transportation, and machinery among other factors. If biomass burial is implemented, 

monitoring, reporting, and verification (MRV) over time will be critical to ensure that decay and 

carbon emissions are carefully monitored and minimized. Woody biomass burial in the Western 

US represents an opportunity to durably store carbon from wood thinned from high wildfire risk 

forests. This thesis indicates that there are regions across the Western US that are 

climatologically suited to woody biomass burial due to their aridity both now and under 

projected climates through 2100. 
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	In the Western United States, climate change is already causing warmer temperatures and an intensification of the hydrological cycle, resulting in severe drought, extreme precipitation events, earlier snowmelt, and increased atmospheric evapotranspira...
	Prolonged drought, climate change, and decades of fire suppression have resulted in overstocked forests and larger, more severe, and more destructive wildfires across the Western US since the turn of the century (USFS, 2022). Further climate change wi...
	Given the large amount of low value biomass being removed from Western US forests and the need for carbon dioxide removal and storage to mitigate climate change, researchers have begun exploring pathways to durably store the photosynthetically captur...
	BiCRS presents several different options for durable storage of biomass including gasification, pyrolysis, and torrefaction, and recent research has indicated that these products can potentially serve as carbon sinks when properly implemented (Smith, ...
	Terrestrial storage of biomass (TSB) via biomass burial has the potential to fill this near-term need. Carbon storage via biomass burial was first published in scientific literature by Zeng (2008), and it has been iterated on since by Zeng and others ...
	The cover above the biomass is a critical buffer to prevent the entrance of oxygen or moisture from the atmosphere into the burial vault to maintain a low moisture, anaerobic state. Extensive ecological literature indicates the controlling role of cli...
	There are significant scientific gaps with respect to site selection and monitoring, reporting, and verifying (MRV) biomass burial implementations. Local climate plays a critical role in determining the conditions that a burial vault needs to be desig...
	There are two main pathways currently used to quantify soil water balance. One pathway relies on highly simplified estimations using widely available soil and monthly meteorological data and empirical coefficients. This pathway is easy to implement, b...
	This thesis is primarily focuses on developing the necessary water balance and climatological models and methodologies relevant to creating a geospatial decision tool for siting woody biomass burial in the Western US. While there are many economic, ec...
	In section 2, I develop a daily snow accumulation and melt model to quantify when water reaches the soil column and how this varies from the temporal distribution of precipitation. I then use this product, termed applied water, in a simplified daily w...
	2. Geospatial Implementation of Water Balance with Historical Data and the Implications for Woody Biomass Burial
	2.1 Introduction
	Within the framework of biomass carbon removal and storage (BiCRS), woody biomass burial emerges as a potentially viable near-term option for storing carbon from wood thinnings due to its potential to implemented on short-time scales, relative low-co...
	Given that woody biomass burial for thinned wood is positioned as a low-cost, near-term storage method, the simplicity of monolithic covers is more suitable for woody biomass burial than highly engineered covers. Monolithic covers consider the water ...
	Across the Western US, there are different precipitation regimes that correspond to various climate phenomena and geophysical forcing. We define the Western US as the contiguous US states west of Colorado’s eastern border: Montana, Wyoming, Colorado,...
	Prevailing westerly winds drive most of the precipitation in the intermountain region east of the Sierra Nevada and Cascade mountain ranges and west of the Rocky Mountains, as well as within the Rocky Mountains. Due to stronger midlatitude storms in t...
	In the Western US, snow plays a large role in the hydrological cycle and regional energy balance (Trujillo and Molotch, 2014). Snowpack affects the local energy balance by increasing the albedo, thereby reducing the amount of energy a region stores f...
	The term applied water is used in waste containment literature to describe any water that reaches the waste cover (Bendz et al., 1998). The objective of this section of this thesis is to first develop a reasonable geospatial model for applied water t...
	2.2 Methods
	2.2.1 Basis of Evapotranspiration Covers
	The basis of the water balance for ET covers is described by Albright et al. (2010) in Water Balance Covers for Waste Containment: Principles and Practice. The authors derive the equations necessary to determine the approximate monthly required water ...
	,𝑆-𝑐.= ,,𝜃-𝑐.𝑑𝑧 ≅,𝜃-𝑐.𝐿.      (1)
	However, not all of the storage capacity in the soil should be considered for an evapotranspiration cover because plants cannot access all water stored within the soil pores. The available storage capacity (,𝑆-𝑎.) is defined as the depth-integrated ...
	,𝑆-𝑎.=,,,𝜃-𝑐.−,𝜃-𝑚..𝑑𝑧 ≅ ,,𝜃-𝑐.−,𝜃-𝑚..𝐿 .                (2)
	where ,𝜃-𝑚. is the volumetric soil water content at minimum storage, or the water content that cannot be removed by plants. Minimum storage water content is described by the wilting point, which is conventionally measured at 1500 kPa suction. At suc...
	Given the goal of an ET cover to prevent the percolation of water through the soil to the biomass, the available storage capacity needs to be greater than or equal to the required water storage (,𝑆-𝑟.), as determined by the local climate. Equation 2...
	𝐿≥,,𝑆-𝑟.-,,𝜃-𝑐.−,𝜃-𝑚...               (3)
	Albright et al. determine required storage, ,𝑆-𝑟., using local climatological conditions on an annual time scale. They calculate monthly soil water storage (Δ𝑆) requirements using a simple mass balance (Equation 4),
	Δ𝑆=𝑃−𝑅−𝐴𝐸𝑇−𝐿−,𝑃-𝑟.               (4)
	where 𝑃 is precipitation, 𝑅 is runoff, 𝐴𝐸𝑇 is actual evapotranspiration, 𝐿 is internal lateral drainage, and ,𝑃-𝑟. is percolation. All quantities are cumulative for the given month and in units of depth (mm). However, given that most of these ...
	Δ𝑆=𝑃− 𝛽𝑃𝐸𝑇− Λ      (5)
	where 𝑃 is monthly cumulative precipitation in mm, 𝛽 is a dimensionless coefficient used to approximate AET from PET, 𝑃𝐸𝑇 is total monthly potential evapotranspiration in mm, and Λ is a loss term coefficient with units of depth (mm) that acts as ...
	Table 1: Coefficients for approximating monthly soil water storage requirements using the empirically based equation 5. These approximations allow for calculation of monthly soil water storage with data that can be easily measured or calculated (preci...
	Required storage on an annual time scale (,𝑆-𝑟.) is calculated by summing the positive monthly required storage for each month of a given year (,∆𝑆-𝑖., for 𝑖 months), as given by equation 6:
	,𝑆-𝑟.=,𝑖 = 1-12-,∆𝑆-𝑖.. for ∆𝑆≥0              (6)
	The resulting ,𝑆-𝑟. from equation 6 can then be substituted into equation 3 to solve for the required cover thickness given the local soil characteristics and meteorological conditions of the chosen year of data.
	In practice, Albright et al. recommend performing several iterations of the calculations with different years of data. The authors recommend starting with historical annual cumulative precipitation data for a range of years, finding the “typical” (ave...
	2.2.2 Introduction to Applied Water and Input Data
	The goal of this work is to build a geospatial tool hosted in ArcGIS to inform regions of interest for woody biomass burial. As such, all input data must be geospatial in nature. Given the simplified, empirical equation for required storage presented ...
	Required storage requires precipitation and PET input data. Equation 5 uses a parameter, 𝛽, multiplied by PET to approximate the actual evapotranspiration, AET, since PET can be calculated from common meteorological data and AET is challenging to mea...
	Climatological data was acquired from the Daymet, version 4.1 (V4.1) data product which provides daily surface weather records at a 1 km by 1 km spatial resolution from 1980 to near-present for North America and U.S. territories (Thornton et al. 2022)...
	While Daymet provides daily precipitation data, precipitation alone does not temporally account for when the water in precipitation will reach the soil column if the precipitation falls as snow. Much of the Western U.S. receives winter snow, and snow ...
	As such, we decided to move to an applied water approach instead of relying on precipitation. Applied water describes the water that reaches the atmosphere/soil surface on a given day. Water content reaching the soil profile from snowpack is most cons...
	Two methods of calculating applied water are presented in this thesis. Briefly, an initial approach based on the Daymet snow water equivalent (SWE) product is discussed in section 2.2.3 but found to be faulty due to the lack of mass balance in the und...
	All versions are based on an adaptation the ET cover depth estimation methodology from Albright et al. (2010) for geospatial application across the Western US. We adapted the required storage formula, equation 5, given the available AET data and use o...
	Δ𝑆=𝐴𝑊− 𝐴𝐸𝑇      (7)
	where 𝐴𝑊 is applied water and 𝐴𝐸𝑇 is actual evapotranspiration, both in units of mm. For the first two versions discussed here, soil water balance is performed on a monthly scale, and thus applied water and AET are accumulated into monthly totals...
	2.2.3 Required Cover Thickness, V1: Monthly Applied Water Derived from a Daymet SWE-based Snow Model
	The first iteration of the applied water model used the precipitation and snow water equivalent (SWE) products from Daymet to calculate daily rainfall and snowmelt, which were summed to calculate daily applied water and then aggregated on a monthly b...
	Daymet utilizes a simple accumulation and melt algorithm to generate SWE from the primary Daymet variables, and this method is described across several publications. Snow is accumulated if precipitation falls when the daily average temperature is less...
	𝑆𝐴=𝑃 when ,,𝑇-𝑚𝑎𝑥.+,𝑇-𝑚𝑖𝑛.-2.0.<0.0℃         (8)
	where 𝑆𝐴 is snow accumulation in terms of liquid water depth (mm d-1), 𝑃 is precipitation (mm d-1), ,𝑇-𝑚𝑎𝑥. is maximum daily temperature (ºC), and ,𝑇-𝑚𝑖𝑛. is the minimum daily temperature (ºC). The variables 𝑃, ,𝑇-𝑚𝑎𝑥., and ,𝑇-𝑚𝑖𝑛....
	∆,𝑆𝑊𝐸-+.=𝑆𝐴∗,𝜌-𝑤.       (9)
	According to the recently published Daymet V4 documentation (Thornton et al., 2021), the methodology for Daymet SWE is based on the Thornton et al. (2000) paper. Thornton et al. (2000) describes a water vapor pressure and shortwave radiation joint ret...
	𝑆𝑀=,𝑟-𝑚.∗,,(𝑇-𝑚𝑖𝑛.+,𝑇-𝑚𝑎𝑥.)-2.0.  when ,𝑇-𝑚𝑖𝑛.> ,𝑇-𝑐𝑟𝑖𝑡.     (10)
	where 𝑆𝑀 is snowmelt (mm d-1),  ,𝑟-𝑚. is the calibrated melt rate (mm ºC-1 d-1), and ,𝑇-𝑐𝑟𝑖𝑡. is the calibrated critical temperature (ºC). The values cited for the Austrian Alps in Thornton et al. (2000) for ,𝑟-𝑚. and ,𝑇-𝑐𝑟𝑖𝑡. were 0.4...
	∆,𝑆𝑊𝐸-−.=𝑆𝑀∗,𝜌-𝑤.      (11)
	The Daymet variables precipitation and SWE can be used to develop a simple logic model to calculate applied water. For a given day, rainfall is defined as precipitation that falls when the average of the minimum and maximum temperature is greater than...
	𝑅𝐹=𝑃 when ,,𝑇-𝑚𝑎𝑥.+,𝑇-𝑚𝑖𝑛.-2.0.>0.0℃           (12)
	Figure 1: The initial logic model for applied water based on Daymet daily total precipitation and SWE. In the snowmelt module, if SWE for a given day is greater than or equal to SWE on the prior day, snowmelt is set to zero. If SWE for a given day is ...
	Given the ambiguity of the snowmelt algorithm in SWE as described above, snowmelt (𝑆𝑀) was defined in the model as the negative change in SWE from the prior day to the current day, divided by the density of water with final units of mm d-1 (equation...
	,𝑆𝑀-𝑖.= ,,,𝑆𝑊𝐸-𝑖.−,𝑆𝑊𝐸-𝑖−1..-∆𝑡∗,𝜌-𝑤.. when ,𝑆𝑊𝐸-𝑖.<,𝑆𝑊𝐸-𝑖−1.                       (13)
	where 𝑖 represents the current day, 𝑖−1 represents the day prior, and ∆𝑡 represents the time step between 𝑖 and 𝑖−1 (assumed to be 1 day). Applied water (𝐴𝑊) for a given day can be described simply as the sum of rainfall and snowmelt for that d...
	,𝐴𝑊-𝑖.=,𝑅𝐹-𝑖.+,𝑆𝑀-𝑖.      (14)
	Once daily applied water is calculated for all days within the time period 2013-2022, it is summed into a monthly timestep for this time period. This temporal resolution both matches the inputs for the required water storage equation 7 from Albright ...
	Daymet has a monthly total precipitation product available for direct download, and this is adequate to describe total precipitation in version 1 since it is a simple sum of daily precipitation over a monthly timestep. Daymet also offers an average mo...
	The implementation of this logic model on a geospatial basis with daily precipitation and SWE was a significant computational challenge compared to previous modeling that could be completed in ArcGIS Pro. This required daily precipitation and SWE ras...
	However, the approach for calculating applied water from Daymet SWE presented here was not used in future versions of the model. Ambiguity within the Daymet snowmelt methods was described above, and I identified more concerns when checking the Daymet...
	2.2.4 Required Cover Thickness, V2: Monthly Applied Water Derived from a Restricted Degree-Day Radiation Snowmelt Model
	Due to the shortcomings described above, a new snowmelt model was implemented for the second version of applied water (Figure 2). The same methodology for determining rainfall as precipitation that fell when the average of minimum and maximum daily t...
	𝑆𝑀= ,𝑎-𝑟.,𝑇-𝑑.+,𝑚-𝑄.,𝑅-𝑛.  when ,𝑇-𝑑.=,,𝑇-𝑚𝑎𝑥.+,𝑇-𝑚𝑖𝑛.-2.>0.0℃             (15)
	where ,𝑎-𝑟. is a restricted degree-day factor (mm ºC-1), ,𝑇-𝑑. is the degree-day temperature above a base temperature (considered to be 0.0ºC for this study), ,𝑚-𝑄. is a conversion factor from energy flux density to snowmelt depth (2.6 mm m2 d-1...
	,𝑅-𝑛.=(,𝐷𝑎𝑦𝑙-86400 𝑠.)(1−𝛼)(𝑆𝑟𝑎𝑑)     (16)
	We defined average snow albedo (𝛼) as 0.74, which has been approximated as the average snow albedo between fresh snow and nearly ablated snow (Kustas et al., 1994; Khire et al., 1997).
	To calculate snowmelt, snow must first be accumulated and stored in a reservoir. Snow was accumulated from precipitation in Daymet on a daily timestep using the same temperature-based accumulation condition described in equation 8. Snow water depth (...
	Figure 2: The logic model for applied water calculated using the restricted degree-day radiation (RDDR) snowmelt model approach. Daily total precipitation and average temperature are used to partition rainfall and snowfall. Water in snowfall is stored...
	Computationally, this approach required over twice as much data for inputs as well as daily iterative computation over all 1.7 million pixels included in the Daymet swath of the Western US. As such, this model was designed for and run on Grace High P...
	As described in the first version of applied water, daily applied water was aggregated into monthly products. Once monthly cumulative applied water was derived for each year between 2013-2022, it was averaged by month (i.e., every January averaged tog...
	2.2.5 Required Cover Thickness, V3: Daily Water Balance Modeling using the RDDR Applied Water Approach
	Given the coarse temporal resolution in the monthly water balance approximations presented in V1 and V2, with the publication of daily AET data in early 2024, we developed V3 of the burial tool using a daily water balance for 2001-2020, with 2000 as ...
	Applied water was calculated as outlined in the V2 model section (section 2.2.4) using the RDDR approach for snowmelt. The only change in methodology was that the data was kept at a daily resolution and not aggregated to cumulative monthly totals. Th...
	Daily AET rasters from SSEBop were retrieved from the USGS archive using a batch download script in Python. Each daily GeoTIFF raster was reprojected from WGS84 to North American Lambert Conformal Conic to match Daymet data using cubic convolution. E...
	Instead of a traditional mass balance equation that assessed the change in water stored in the column, the daily water balance model was designed to understand the amount of storage required, in units of liquid water depth, under the assumption that ...
	,𝑠-𝑟,𝑖.=,𝐴𝑊-𝑖.−,𝐴𝐸𝑇-𝑖.  for 𝑖=0           (17)
	,𝑠-𝑟, 𝑖.= ,𝑠-𝑟, 𝑖−1.+,𝐴𝑊-𝑖.−,𝐴𝐸𝑇-𝑖.  for 𝑖>0 and ,𝑠-𝑟,  𝑖−1.>0     (18)
	If ,𝑠-𝑟,𝑖. for a given day is less than zero, it is recorded as zero since negative water storage is not possible but instead is indicative of no required water storage in the soil column. Daily required storage was calculated for each pixel on eac...
	For daily required water storage, we calculated several statistics to describe the distribution of required storage. Mean and standard deviation were calculated for each pixel across all days in the final required storage record. Coefficient of varia...
	2.2.6 Model Assumptions
	In order to build an extensive geospatial model covering variable terrain, we employed several assumptions to simplify the model. For each assumption we made, we were careful to ensure that the assumption made our model more conservative (i.e., predi...
	2.2.7 Statistical Analysis
	Descriptive statistics for input variables were assessed using probability density functions (PDFs) to understand the distribution of observations. We calculated basic descriptive statistics, mean, standard deviation, and coefficient of variation, fo...
	2.3 Results
	Monthly model V1 produced the results shown in figure 3. Required cover thickness is highest along the Pacific Northwest coast in Washington, Oregon, and Northern California, and in the mountain ranges including the Cascades, Sierra Nevada, and Rocki...
	Figure 3: The minimum required cover thickness determined using (a) the applied water calculated from the V1 monthly SWE-based model and (b) monthly total precipitation directly from Daymet. (c) shows the difference between the modeled required cover ...
	Figure 4: Minimum required cover thickness for model versions 1-3 (a-c). Panel (a) shows the minimum required cover thickness derived using monthly Daymet SWE-based applied water model (V1). Panel (b) shows the minimum required cover thickness using m...
	Version 2 of the minimum required cover thickness model based on monthly applied water calculated with the RDDR snowmelt approach has a very similar geospatial distribution to V1 (Figure 4a, b). The topographic high points and the Northern Pacific co...
	Version 3 of the minimum required cover thickness model is based on the accumulated required water storage, as liquid water depth, determined by the water balance model. Mean, 95th percentile, and maximum accumulated required water storage are presen...
	Figure 5: Daily accumulated required water storage for the Western US, 2001-2020, calculated using the RDDR snowmelt model applied water approach (V3). Pixels classified as waterbodies, wetlands, or agricultural lands using the NLCD are masked white. ...
	The required cover thickness from the modeled accumulated required water storage (V3) is presented in figure 6. As implicated by the calculation, maximum required water storage results in thicker required covers than 95th percentile required water st...
	Figure 6: Minimum required cover thickness calculated from (a) maximum required water storage (,𝑠-𝑟, 𝑚𝑎𝑥.) and (b) 95th percentile required water storage (,𝑠-𝑟, 95.) products from model V3 for the Western US, 2001-2020. Panel (c) shows the diff...
	2.4 Discussion
	While V1 and V2 of minimum required cover thickness capture the broad trends in required cover thickness described in V3, far more assumptions are used and the coarse timestep (monthly) decreases our confidence in the numerical output from those mode...
	In the Western US, western Nevada, the Sonoran Desert, parts of the Colorado Plateau in the Four Corners region, and the Great Plains have the highest potential for woody biomass burial as indicated by the lowest required cover thicknesses. Regions o...
	The geospatial implementation of simple water balance modeling across a broad region was only possible with the use of certain simplifying assumptions regarding runoff, snow sublimation, and wind transport of snow. We want to explicitly acknowledge t...
	2.5 Conclusion
	We successfully used publicly available meteorological data from Daymet and SSEBop to make a reasonable geospatial water balance product in V3 of required water storage. The results of this water balance were used to calculate minimum required cover ...
	3.  Projecting Future Potential for Woody Biomass Burial: Using CMIP6 Data to Model Applied Water, Potential Evapotranspiration, and Aridity Index
	3.1 Introduction
	As demonstrated in the previous section, woody biomass burial appears feasible in specific regions across the Western US under historical conditions from 2001-2020, but any consideration of durable carbon storage needs to take into account potential f...
	Methods have been developed to approximate AET from potential evapotranspiration (PET), such as the Budyko-Fu curves or empirical calibration (Milly, 1984; Chowdhury, 1999; Peng et al., 2018). However, these methods are generally specific to a relativ...
	Estimates of PET can be derived under simulated conditions from global circulation model (GCM) datasets using a range of modeled climate variables such as air temperature, solar radiation, relative humidity, and surface wind (Kingston et al., 2009; Be...
	CMIP6, the most recent intercomparison project, was published between 2019 and 2022. Emissions scenarios in CMIP6 are termed “shared socio-economic pathways” or SSPs. CMIP6 presents five SSPs representing very low (SSP1-1.9), low (SSP1-2.6), intermedi...
	The IPCC released climate change synthesis report AR6 in 2023 and utilized CMIP6 data in their analysis. Among many global findings, they identified that more extreme precipitation events and droughts, decreases in soil moisture, and increases in arid...
	In this section, I develop a geospatial implementation of a PET model based on the Penman (1948) PET equation with parameterization specific to the Western US. I run this model, with a complete integration of the daily applied water model described in...
	3.2 Methods
	3.2.1 Input Data
	Since the goal of the burial tool to assist in location selection for possible woody biomass burial deployments, we wanted to preserve as fine of spatial resolution as possible while maintaining meaningful results. We conducted a review of spatially d...
	We acquired daily average temperature, minimum temperature, maximum temperature, precipitation rate, downwelling shortwave radiation, near-surface wind, and near-surface relative humidity (Table 1) for 26 GCMs from the NASA NEX-GDDP-CMIP6 THREDDS serv...
	Aside from CMIP6 climatological data, the PET calculations required surface elevation data. We used acquired the USGS National Map 3D Elevation Program (3DEP) data with a 100 meter resolution (USGS, 2019). This data was upscaled in ArcGIS Pro using cu...
	Table 1: CMIP6 variables used in this analysis. CF variable name refers to the NetCDF Climate and Forecast (CF) metadata convention. Near-surface indicates the variable was modeled at a height 2 m above the ground surface with exception of 𝑠𝑓𝑐𝑊𝑖�..
	Table 2: CMIP6 models within the NASA NEX-GDDP-CMIP6 downscaled product with designations of if a given model was used in this analysis and the reasoning if the model is excluded. ‘Y’ denotes that the model was included while ‘N’ with red shading indi...
	3.2.2 Adaptations of Applied Water for CMIP6 Data
	The foundations for the daily applied water model for CMIP6 data were based on the historic applied water model with the restricted degree-day radiation (RDDR) snowmelt model described in detail in section 2.2.4. All equations, constants, and the the...
	Although the NASA NEX-GDDP-CMIP6 data is downscaled and bias-corrected with historical data, we wanted to confirm that this output was compatible with historical Daymet applied water. The NASA NEX-GDDP-CMIP6 product uses the Global Meteorological For...
	Dataset (GMFD) for Land Surface Modeling from the Terrestrial Hydrology Research
	Group at Princeton University for historic climate data (Sheffield et al. 2006). For a historical test period of 2000-2014 with 1999 as an initialization year, we calculated the total cumulative applied water using both Daymet and NASA NEX-GDDP-CMIP6 ...
	3.2.3 Potential Evapotranspiration: Theoretical Basis and Model Implementation
	In this paper, we present PET calculated using the Penman (1948) approach. Broadly, when calculating PET, the choice of PET equation is driven by data availability and the conditions of the location being modeled (Tegos et al., 2015). Certain equatio...
	Given the geospatial nature of this project and the need for an accurate equation that captured regional dynamics, we reviewed published methodologies for a radiation-based approach suitable for arid and non-arid regions primarily forced by physical f...
	𝑃𝐸𝑇=,∆-∆+𝛾.,,,𝑅-𝑛.-𝜆..+,𝛾-∆+𝛾.,𝐸-𝑎.      (19)
	In the Penman (1948) equation, PET (mm d-1) of a saturated surface is a function of the slope of the vapor pressure curve (∆; kPa ºC-1), psychrometric constant (𝛾; kPa ºC-1), net radiation (Rn; MJ m-2 d-1), latent heat of vaporization (𝜆; MJ kg-1), ...
	Figure 7: Overview of the Penman potential evapotranspiration (PET) model implementation. Four modules, the vapor pressure module, wind module, net radiation module, and psychrometric constant model, were used to calculate the final PET equation. The ...
	The vapor pressure module includes saturation vapor pressure, vapor pressure deficit, and the slope of the vapor pressure curve. Saturation vapor pressure, ,𝑒-𝑠., is calculated using equation 20 (Bjarke et al., 2023):
	,𝑒-𝑠.=0.6108,𝑒-(17.27 𝑇)/(237.3+𝑇).    (20)
	where 𝑇 is air temperature in ºC and ,𝑒-𝑠. is in units of kPa. Daily saturation vapor pressure (,𝑒-𝑠-∗.) is calculated from averaging the saturation vapor pressure for where 𝑇 is set to each minimum daily temperature ,𝑇-𝑚𝑖𝑛. and maximum dail...
	𝑉𝑃𝐷=,1−,,ℎ-𝑟.-100..,𝑒-𝑠-∗.      (21)
	where ,𝑒-𝑠-∗. is daily saturation vapor pressure (kPa) and ,ℎ-𝑟. is daily relative humidity (%), which is provided in CMIP6 data as ℎ𝑢𝑟𝑠. Finally, the slope of the vapor pressure curve, ∆, is calculated using the following equation 22 (Bjarke et...
	∆=,4098,𝑒-𝑠-∗.-,,,𝑇-𝑎𝑣𝑔.+273.3.-2..      (22)
	where ∆ is in units of kPa ºC-1, es* is daily saturation vapor pressure as calculated above (kPa) and ,𝑇-𝑎𝑣𝑔. is daily average temperature (ºC) for which we CMIP6 𝑡𝑎𝑠, converted to ºC.
	The wind module depends on the results of the vapor pressure module and incorporates vegetation parameterization. Daily mean surface wind is modeled in the CMIP6 data at a height 10 m above the ground surface (𝑠𝑓𝑐𝑊𝑖𝑛𝑑, m s-1). We adjust wind h...
	,𝑢-2.=,𝑢-𝑧.,,ln-,,2-,𝑧-0....-,ln-,,𝑧-,𝑧-0.....       (23)
	where ,𝑢-2. is wind speed 2 m above the surface (m s-1), ,𝑢-𝑧. is wind speed (m s-1) at height 𝑧 above the surface (m), and ,𝑧-0. is roughness length (m). Roughness length is a function of vegetation height and can be approximated as 1/10th of th...
	,𝑧-0.≅,,ℎ-𝑣.-10.       (24)
	Given that preliminary analysis and potential sites for burial indicated that sagebrush or other woody vegetation would likely be the ground cover, we selected a vegetation height of 1 m for this analysis. Wind speed 2 m above the surface (,𝑢-2.) is ...
	,𝐸-𝑎.=𝑓(𝑢)(𝑉𝑃𝐷)      (25)
	where 𝑓(𝑢) is a wind equation and 𝑉𝑃𝐷 is vapor pressure deficit (kPa). Several wind equations exist to relate the effect of wind to PET, and we chose Penman’s 1956 wind equation based on previous studies finding that earlier wind equations were i...
	𝑓,𝑢.=1.313+1.381,𝑢-2.     (26)
	The next module is the psychrometric constant module. The psychrometric constant (𝛾; kPa ºC-1) is calculated using formula 27 (Allen et al., 1998),
	𝛾=,,𝑐-𝑝.𝑝-𝜀𝜆.      (27)
	where ,𝑐-𝑝. is the specific heat of water at constant pressure (1.013 x 10-3 MJ kg-1 ºC-1), 𝑝 is atmospheric pressure at the ground surface, 𝜀 is the ratio of the molecular weight of water vapor to dry air (0.622), and 𝜆 is the latent heat of vap...
	𝑝=101.3,,,293−0.0065𝜁-293..-5.26.     (28)
	In this equation, 𝜁 is elevation above sea level in meters. Latent heat of vaporization (𝜆; MJ kg-1) was calculated on a daily using daily average temperature (,𝑇-𝑎𝑣𝑔.; ºC) for a given pixel using the following equation 29.
	𝜆=2.501−(2.361 × ,10-−3.),𝑇-𝑎𝑣𝑔.     (29)
	The most involved module is the net radiation module. Most GCMs include output for incoming and outgoing shortwave and longwave radiation as well as sensible and latent heat fluxes from surface processes and geothermal heat. These variables allow for...
	,𝑅-𝑛.=,𝑟-𝑛𝑠.+,𝑟-𝑛𝑙.      (30)
	where ,𝑟-𝑛𝑠. is net surface shortwave radiation and ,𝑟-𝑛𝑙. is net surface longwave radiation.
	Net surface shortwave radiation can be determined with surface downwelling shortwave radiation and ground surface albedo. We used a surface albedo of 0.25 which is representative of semi-desert (Douglas et al., 2009). We integrated the applied water m...
	,𝑟-𝑛𝑠.=(1−𝛼),𝑟-𝑑𝑠.      (31)
	In this equation, ,𝑟-𝑛𝑠. is net surface shortwave radiation (MJ m-2 d-1), ,𝑟-𝑑𝑠. is downwelling surface shortwave radiation (MJ m-2 d-1), and albedo, as described above, is dimensionless. Note that downwelling surface shortwave radiation must be...
	Net surface longwave radiation can be calculated as a function that accounts for vapor pressure, air temperature, and cloud cover. The overall formula for net surface longwave radiation is described in equation 32,
	,𝑟-𝑛𝑙.=𝜎,,,𝑇-𝑚𝑎𝑥-4.+,𝑇-𝑚𝑖𝑛-4.-2..,0.34−0.14,,𝑒-𝑎...,1.35,,𝑟-𝑑𝑠.-,𝑟-𝑠𝑜..−0.35.   (32)
	where 𝜎 is Stefan-Boltzmann’s constant (5.67 x 10-8 W m-2 K-4), ,𝑇-𝑚𝑎𝑥. and ,𝑇-𝑚𝑖𝑛. are maximum and minimum daily air temperature respectively, ,𝑒-𝑎. is actual vapor pressure (kPa), ,𝑟-𝑑𝑠. is downwelling surface shortwave radiation (MJ m...
	,𝑒-𝑎.=,,ℎ-𝑟.-100.,,,𝑒-𝑠, 𝑚𝑖𝑛.+,𝑒-𝑥, 𝑚𝑎𝑥.-2..     (33)
	Cloud cover is approximated by the ratio between downwelling surface shortwave radiation and clear sky radiation. Clear sky radiation is a function of elevation and extraterrestrial radiation as shown in equation 34, where 𝜁 is elevation above sea l...
	,𝑟-𝑠𝑜.=(0.75+2×,10-−5. 𝜁),𝑟-𝑎.     (34)
	Extraterrestrial radiation is calculated from solar declination and the sunset angle, which are function so of the day of year and pixel latitude (Equation 35).
	,𝑟-𝑎.=,1440-𝜋.,,𝑆-0..,,𝑑-𝑟-2..[,𝜔-𝑠.,,sin-𝜑..,,sin-𝛿..+,cos-𝜑.,,cos-𝛿..,,sin-,𝜔-𝑠...]   (35)
	In this equation, ,𝑆-0. is the solar constant (0.0820 MJ m-2 min-1; by convention, multiplied by 1440 in the first term of ,𝑟-𝑎. to convert to units of MJ m-2 min-1), ,𝑑-𝑟. is the inverse relative Earth-Sun distance (dimensionless), ,𝜔-𝑠. is th...
	,𝑑-𝑟-2.=1+0.033,cos-,,2𝜋-365. 𝐷𝑜𝑌..     (36)
	Solar declination (𝛿) is also a function of DoY (Equation 37).
	𝛿=0.409,sin-,,2𝜋-365.𝐷𝑜𝑌−1.39..     (37)
	Sunset hour angle (,𝜔-𝑠.) is calculated with equation 38.
	,𝜔-𝑠.=,arccos-[−,tan-,𝜑..,tan-,𝛿..].     (38)
	3.2.4 Aridity Index
	We calculated aridity index (AI) for all the cumulative time steps (monthly, seasonally, annually) by dividing cumulative precipitation by cumulative PET for each time step (Equation 39), following the convention set by UNEP (1992).
	𝐴𝐼=,𝑃-𝑃𝐸𝑇.       (39)
	The resulting non-dimensional number was analyzed both numerically and using the classification scheme provided by UNEP (1992) and provided in table 4.
	Table 4: Aridity index classifications from UNEP (1992).
	3.2.5 Analysis of CMIP6 Products
	All CMIP6 GCM ensemble products were aggregated into annual, seasonal, and monthly time steps. Precipitation, applied water, and PET were aggregated by summing daily data for the duration of each time step. Aridity index was calculated from the preci...
	The primary product used to understand the projected change in conditions relevant for biomass burial was the difference between the maximum seasonal aridity index from all years and all seasons from 2021-2100 for each SSP compared to the maximum his...
	Figure 8: Average annual total precipitation (row i), total PET (row ii), and aridity index (row iii) for the historical, 1991-2010, time period (column a), and the change between the historical time period and the end century projection, 2081-2100, t...
	3.3 Results
	3.3.1 Interannual Results of Historical and Future Modeling
	Mean annual total precipitation and PET are projected to predominantly increase under both SSPs from the historical period (1991-2010) to the end-century time period (2081-2100) (Figure 8). Increases in both total precipitation and PET are larger und...
	On the interannual scale, total applied water and precipitation are identical. In the historical time period, minimum mean annual total precipitation is 43 mm in the Sonoran Desert, and the maximum is 3048 mm in the Coast Range of Washington. Precipit...
	Figure 9: Change in mean annual total precipitation across all time periods for SSP2-4.5.
	Figure 10: Change in mean annual total precipitation across all time periods for SSP5-8.5.
	Projected increases in mean annual total PET are highest in areas with high topography (Figure 8). In the historical time period, mean annual total PET ranges from 2900 mm per year in the high Rocky Mountains and near the Canadian border to as high as...
	Figure 11: Change in mean annual total PET across all time periods for SSP2-4.5.
	Figure 12: Change in mean annual total PET across all time periods for SSP5-8.5.
	Mean annual aridity index is projected to increase in by the end-century time period in the majority of the Western US under both SSPs (Figure 8). The most arid region has its southern end in the Sonoran Desert in Arizona and California and stretches...
	Figure 13: Change in mean annual aridity index across all time periods for SSP2-4.5.
	Figure 14: Change in mean annual aridity index across all time periods for SSP5-8.5.
	3.3.2 Seasonal Changes from Historical to Future Climate Scenarios
	Historical precipitation in the Western US is highly seasonally variable for most of the region (Figure 15a). Precipitation is consistently high across seasons in Coast Range and Cascades in Washington and consistently low in the Sonoran Desert and C...
	Figure 15: Seasonal historical (1991-2010) mean total precipitation (a) and the projected change from historical to end-century (2081-2100) seasonal precipitation under SSP2-4.5 (b) and SSP5-8.5 (c). “MAM” represents months March, April, and May (spri...
	Seasonal applied water is distinct from seasonal precipitation due to the accumulation and melting of snowpack. The seasonal distribution of historic applied water and projected changes have the same general trends and geospatial distribution as seaso...
	Figure 16: Seasonal historical (1991-2010) mean total applied water (a) and the projected change from historical to end-century (2081-2100) seasonal applied water under SSP2-4.5 (b) and SSP5-8.5 (c). “MAM” represents months March, April, and May (spri...
	Figure 17: Monthly change in applied water for the end-century time period (2081-2100) from the historical time period (1991-2010) under (a) SSP2-4.5 and (b) SSP5-8.5.
	Seasonal PET reflects the latitudinal gradient observable in annual data (Figures 8, 18). PET is highest in the summer for most regions except for the subtropical deserts at the southern borders of California, Arizona, and New Mexico. PET is lowest i...
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