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Photovoltaic (PV) Solar Panel Identification and Fault Detection Using Unmanned Aerial 
Vehicles (UAVs): A Case Study of a 0.5 MW PV System 

ABSTRACT 

Performance monitoring of individual PV modules in utility-scale solar farms can be a difficult 
undertaking due to the issue of scale. Since most PV systems are placed in-line and series 
connected, panel-specific granularity is costly and most systems monitor performance up to the 
inverter level. Because faulty PV modules are higher in temperature relative to the neighboring 
modules, unmanned aerial vehicles (UAVs) can play an important in this field because it can 
survey large areas within the RGB and infrared radiation (IR) wavelengths in a convenient and 
low-cost manner. In this study, we developed a workflow to capture UAV images, process the data, 
and perform panel identification and fault detection in the PV systems. We found that including a 
RGB dataset can greatly improve panel identification results since our algorithm utilizes 
ISODATA unsupervised classification. All of the 1048 panels were successfully identified, parsed, 
and turned into polygons. Moreover, our fault detection algorithm, using two spatial 
autocorrelation techniques, was able to detect 4 out of 6 faulty panels within our region of interest 
(ROI). Data validation was performed and we found that instantaneous mean temperature 
measurements did not have an intuitive relationship with energy output—positive relationship with 
an r-squared of 93%. It is very likely that the poor temporal resolution of the orthomosaic 
influenced instantaneous temperature measurements and temperature sensitivity to environmental 
factors like sunlight and cloud coverage. These results suggest that spatial information is quite 
important and should receive sizeable weight in fault detection techniques because temperature 
gradients within a ROI is robust. Furthermore, the use of Anselin Local Moran’s I technique with 
the inverse distance squared method in our fault detection algorithm is valid because it utilizes 
spatial context to determine clusters and outliers.  

Keywords: ArcGIS Pro, Anselin Local Moran’s I, Global Moran’s I, IR camera, ISODATA 
unsupervised classification, performance monitoring, PV module/panel, RGB camera, UAVs 
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1. INTRODUCTION 

1.1. Background 

The positive long-run relationship between energy consumption and greenhouse gas 

emissions has been well studied and widely recognized (Azhar Khan et al., 2014; Hamit-Haggar, 

2012). This trend is concerning because global energy demand is projected to increase dramatically 

in the next few decades as the world population grows and various countries become more 

developed (IEA, 2021). To decouple energy consumption and greenhouse gas emissions, 

policymakers have greatly focused on transforming the global energy mix—by reducing reliance 

on fossil fuels and harnessing renewable resources for energy generation (Mundaca et al., 2019). 

Currently, some of the most widely-utilized renewable resources around the world are solar, wind, 

geothermal, and hydropower (BP, 2021). The solar energy industry, in particular, has been 

growing at a dramatic rate (Hartmann et al., 2016). For instance, in the United States, solar is 

projected to make up 51% of all renewable electricity generation and become the most widely-

utilized renewable resource by 2050 (Figure 1). The second most utilized renewable resource is 

projected to be wind, at 31% (U.S. EIA, 2022).  

There are various forms of solar technology, but photovoltaics (PV) is the most popular. 

Individual PV modules typically have manufacturer warranty periods of up to 25-30 years but 

prolonged use and exposure to solar irradiation and temperature can cause reduced electrical power 

output and panel deterioration (Quater et al., 2014; Tsanakas et al., 2015). These defects come in 

various forms within the PV modules; visible failures can appear as delamination, bubbles, 

cracking, or yellowing while others like microcracks, snail trails, and shading can be hard to detect 

by visual inspection (Quater et al., 2014). When PV modules are in operation, defective cells 

within the panels typically have higher temperatures than normal cells around it (Kim et al., 2017; 
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Spagnolo et al., 2012; Vergura et al., 2015). Therefore, abnormal temperature gradients in infrared 

(IR) images are a valid proxy for issues within PV module.  

 

Figure 1. U.S. renewable electricity generation, including end use AEO2022 reference case. (Source: 
U.S. EIA, 2022). 

Although visual inspection of PV arrays using IR thermography is a proven technique for 

fault detection, it is not practical for large PV systems . Utility-scale PV plants with a rated capacity 

of 1-20 MW typically require 34,000 m2/MWac of land; while larger utility-scale PV plants, like 

those with a rated capacity >20 MW, need 32,000 m2/MWac of land (Ong et al., 2013). Another 

technique for monitoring panel faults is using energy output measures;  however, since most 

utility-scale PV plants are often placed in-line and series connected, panel-specific detection is 

hard due to data granularity issues (Kim et al., 2017). Unmanned aerial vehicles (UAVs) are able 

to fill the niche for IR thermography application of panel-specific fault detection in utility-scale 

PV plants. They are compact, convenient to use, and have a low operational cost. Moreover, the 

images produced have higher spatiotemporal resolution compared to other remote sensing 
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platforms such as satellite and manned vehicles (Smith, 2015). Currently, UAVs are utilized in 

fields such as agriculture, archeology, forestry, hydrology, power infrastructure monitoring, and 

urban studies (Entrop & Vasenev, 2017; Herrmann et al., 2020; Kotivuori et al., 2020; Lu et al., 

2022; Pecci, 2020; Santangeli et al., 2020; Tamminga et al., 2015; Tauro et al., 2016; Varghese et 

al., 2017; Vetrivel et al., 2015). UAVs have also recently become popular within the solar industry 

for various applications. 

 Prior to performing PV module fault detection, a panel detection method is required to 

select the regions of interest. There have been various PV panel detection algorithms developed. 

In Kim et al. (2016a), an automatic PV extraction algorithm used image segmentation techniques 

like horizontal, vertical, and morphological filtering. Other studies have utilized machine learning 

techniques like convolution neural networks (CNNs) to identify panels (Díaz et al., 2020). Since 

IR images are lower in resolution relative to RGB images, these algorithms are complicated to 

replicate. Moreover, they can vary in effectiveness depending on the resolution, which is affected 

by UAV flight parameters such as flight height and speed. Fault detection in panels has been 

approached through various avenues like statistical analysis of thermal intensity characteristics of 

each PV module and CNN-based models (Kim et al., 2017; Nie et al., 2020).  

1.2. Objectives 

 In this study, my aim is to utilize UAV remote sensing and machine learning techniques to 

create a two-part algorithm that will first identify individual PV modules as polygons and then 

perform fault detection. In contrast to current literature, which use edge extraction methods (i.e.: 

Canny edge detector and Hough Transform) and machine learning techniques that require training 

sets (i.e.: CNNs) to delineate panel pixels from other pixels, our panel identification algorithm will 

utilize RGB and thermal data. Although RGB cameras are often built into UAVs and can provide 
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valuable spectral information, they are underutilized as most panel detection algorithms have only 

focused on using IR images to detect PV modules. Our fault detection algorithm will be performed 

using a combination of ArcGIS Pro, an industry standard for mapping-related operations, and 

Python within an ArcGIS-integrated Jupyter Notebook—which both have intuitive graphic user 

interfaces (GUIs) and will allow for easier reproducibility. 

First, we operate an UAV to capture RGB and IR images of a 0.5 MW solar array. Second, 

we perform the ‘Four-band Thermal Mosaicking’ (FTM) technique, developed by Yang & Lee 

(2019), to create an image mosaic, also known as an orthomosaic, of the surveyed area. Third, 

Iterative Self-Organizing data Analysis Technique Algorithm (ISODATA) unsupervised 

classification is performed to label each pixel. Fourth, we develop an algorithm to identify 

individual PV panels. Fifth, an ArcGIS-based algorithm is created to detect possible faults in the 

PV panels. Lastly, we acknowledge our study limitations, validate our results, and discuss its 

industry implications. 

1.3.  Study Area 

 We surveyed a 0.5 MW ground mount PV system owned by Bishop’s Orchards in Guilford, 

Connecticut, United States (Figure 2). Its coordinates are approximately 41.2896 N, 72.6966 W. 

The PV system went into operation on December 05, 2017. It has 8 inverters with a total of 1048 

panels connected. The panel model is Trina Tallmax Plus TSM-325DD14A(II), and it has a rated 

power of 325W and an efficiency of 16.8%. The cell type is monocrystalline and the panel length, 

width, and depth are 1956 mm, 992 mm, and 40 mm, respectively. Every two panels are fitted with 

a ‘SolarEdge Power Optimizer’ which allows for performance monitoring at a two-panel 

granularity level. This is useful for energy output and fault validation purposes since PV system 

performance is generally monitored at the inverter level instead of the panel level (Orduz et al., 
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2013). The study area imaged by the UAV has several surface types: bare soil, grass, PV modules, 

and snow. 

 

Figure 2. Study Area Maps. (a) This map is of Bishop’s Orchard and the solar array. The red box 
depicts the approximate area surveyed by the UAV. The red start on the inset map depicts the 

approximate location of Guilford, CT. (b) The solar array is on a slight slope, as shown in the digital 
surface model (vertical exaggeration: 1.5x). 

2. METHODS 

2.1. Material & Instruments 

 A DJI Phantom 4 Pro Quadcopter was used to survey the PV system (Figure 3). Along with 

the built-in RGB camera, we also mounted on the FLIR DUO R dual-sensor RGB/IR camera. Both 

cameras took images in the nadir direction, and photos from both cameras were used. The DJI-

RGB camera was synced with the DJI flight app and only images at optimized flight path locations 

were taken. The FLIR camera took images in its burst mode, which captures synchronized RGB 

and thermal image pairs every second. The RGB photos from the UAV (DJI-RGB) were saved in 

the 8-bit JPG format, the RGB photos from the FLIR camera (FLIR-RGB) were saved in the 8-bit 

JPG format, and the thermal images were saved in the 16-bit TIFF format. The resolution of the 
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DJI-RGB, FLIR-RGB, and thermal lenses are 5472x3648, 1920x1980, and 160x120 pixels. The 

DJI camera has a GPS sensor but the FLIR camera does not. Other materials included external 

batteries, propellers, UAV controller, and an iPad with the DJI flight app (Figure 3). 

 

Figure 3. Materials and instruments. (a) The DJI Phantom 4 Pro Quadcopter. It has an RGB camera. 
(b) FLIR DUO R. It has an RGB and IR camera. (b) The UAV remote controller with an iPad mini.  

2.2. Data 

2.2.1. Flight 

Our flight was conducted around 3:00 PM on March 10, 2022. The ambient temperature 

was around 7°C with 2.7 m/s winds coming from the northeast. The weather was partially cloudy 

with a relative humidity of 62%. These atmospheric conditions were inputted into the FLIR camera 

to correct for the effect of atmospheric absorption. Our flight route ran approximately parallel to 

the PV arrays, in the W-E direction. The UAV flew at 23 m above launch height with a flight speed 

of 5.4 m/s. The front and side overlaps were about 90% and 90% for both RGBs and thermal 

images. These parameters were chosen to optimize image quality over flight time efficiency; 

therefore, the whole flight took about 1.5 hours. Prior to image pre-processing, there were a total 

of 826 DJI-RGB images, 4,143 FLIR-RGB, and 4,143 thermal images (FLIR-IR). 
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2.2.2. Energy Output 

 Since every two panels were equipped with SolarEdge Power Optimizers, our energy 

production data was relatively granular. Our dataset was downloaded on March 9, 2022. It contains 

the daily energy output in Watt-hours, the current in amperes, and voltage in volts—along with 

the inverter number, panel model, and serial number. We took several steps to clean the data and 

summarize important statistics, specific to each inverter: count, aggregate energy output, and 

average kWh per panel.  

2.2.3. Data Preprocessing 

 

Figure 4. This diagram depicts the workflow from preprocessing to orthomosaicking and then 
postprocessing—represented by the black, blue, and orange boxes, respectively. 

The DJI-RGB photos did not need to be preprocessed because they were already optimally 

taken by the UAV and geotagged. There were three preprocessing steps involved in cleaning the 

FLIR-RGB and thermal images (Figure 4). First, images that did not have RGB+IR pairs were 

removed; a filename matching algorithm in Python was created and performed since each pair has 

a unique name. A total of 14 FLIR-RGB images were removed because they didn’t have 

corresponding thermal images. Second, the FTM algorithm was performed to combine the FLIR-
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RGB and thermal images into one four-band image (Figure 5). Third, blurry images from ascent, 

descent, and turning of the UAV at the end of flight swaths were removed. The UAV was 

stationary at times throughout the flight, so images that were similar were manually removed to 

cut down on processing time. A total of 218 images were taken out. 

 

Figure 5. This is the four-band thermal mosaicking algorithm. RGB and thermal images of a rooftop 
solar installation at one of Yale’s West Campus buildings is used as the background for demonstrating 

the FTM process.  It is important to note that the thermal image size is not proportional to the RGB image 
size. In reality, the thermal image is much smaller given its dimensions. This figure was adapted from 

figure 3 in Yang & Lee (2019). 

The FTM algorithm used was developed to overcome the difficult of mosaicking low-

resolution, single-band thermal photos (Yang & Lee, 2019).  Since the thermal and FLIR-RGB 

lenses have a vertical pixel resolution of 120 and 1080 pixels, respectively, it is valid to up-sample 

the thermal image by a factor of 9 to create a 9x9 matrix of pixels with identical Digital Number 

(DN) values. After up-sampling, the thermal image has a horizontal resolution (1440 pixels) that 

is slightly smaller than that (1920 pixels) of the FLIR-RGB image. Therefore, the FLIR-RGB 

image is cropped to the same size as the thermal image; it is then converted to the 16-bit ‘TIFF’ 

format with stretch multiplier of 10 to again match the thermal image format. Then the thermal 

band is combined with the visible band to create a four-band TIFF image with the sequence of red, 
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green, blue, and thermal IR. This FTM MATLAB algorithm developed in Yang & Lee (2019) was 

adapted and used to batch process all of the FLIR-RGB and thermal images. 

2.2.4. Orthomosaicking and Postprocessing 

The orthomosaicking workflow was performed in Pix4D, which uses a technique called 

‘structure-from-motion’ (SfM) photogrammetry. This technique is a low-cost and innovative way 

to combine multiple images to form one large image called an orthomosaic (Iglhaut et al., 2019). 

In Pix4D, there are three steps to create an orthomosaic: Initial Processing, Point Cloud and Mesh, 

and then DSM, Orthomosaic, and Index.  

In Initial Processing, the 3,925 four-band images were loaded in and several processing 

parameters were set to compute, calibrate, and match keypoints. The focal length was set to 34.8 

mm since the FTM algorithm cropped the four-band image to the same Field of View (FOV) as 

the thermal image. Optimal band weights were inputted with the red, green, blue, and IR bands 

receiving 0.2126, 0.7152, 0.0722, and 0, respectively (Yang & Lee, 2019). The IR thermal band 

received no weight since it has a lower resolution and would reduce the accuracy of the mosaicking 

process. The Point Cloud and Mesh step creates a sparse point cloud which is then densified to 

control a 3D model of the measurement target (Yang & Lee, 2019). Although it is optimal to 

perform this step before orthomosaic generation, this step was skipped because it was RAM-

intensive for the number of photos that we needed to process. The DSM, Orthomosaic, and Index 

step produced a digital surface model and orthomosaic with the 4-band images. In a similar fashion, 

the 826 DJI-RGB photos were processed into an orthomosaic using Pix4D. Because the DJI is a 

common UAV used for photogrammetry, the focal length, band weights, among other parameters 

were automatically set. The images went through all three steps because there were a relatively 

smaller number of images so we had sufficient RAM processing power. So, from the Pix4D 
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workflow, two orthomosaics were produced: DJI-RGB orthomosaic and the four-band 

orthomosaic (Figure 4). 

Several postprocessing steps were performed. Because the DJI-RGB images had 

geotagging, it was a better orthomosaic than the RGB portion of the four-band orthomosaic. 

Moreover, since the FLIR-RGB has served its purposes in assisting the creation of a thermal 

orthomosaic, we decided to warp the thermal portion of the 4-band orthomosaic onto the DJI-RGB 

orthomosaic using the ‘Warp and Resample’ tool in ENVI (Figure 4). Through trial-and-error 

attempts, it was found that the optimal warping and resampling methods were ‘resampling, scaling, 

and translation’ (RST) and bilinear interpolation, respectively. Over 50 ground control points 

(GCPs) were chosen in each orthomosaic for the algorithm to use as tie points between the 

orthomosaics. Any GCPs with a root mean square (RMS) error greater than three was discarded. 

Because the original DJI-RGB photos were georeferenced, the DJI-RGB orthomosaic was 

georeferenced as well; subsequently, the thermal orthomosaic was automatically georeferenced 

while it was being warped with the DJI-RGB orthomosaic. Now, the DN values in the thermal 

layer need to be calibrated to temperature values in Celsius. In Yang & Lee (2019), a linear 

regression was performed between the DN value and sampled temperature measured using an 

infrared camera. The regression equation (equation 1) had an r2  value of 0.82 and a p-value of 

0.01. Given that the air temperature and sky conditions were similar between this flight and those 

in Yang & Lee (2019), it is valid to use equation 1 to perform the temperature calibration. This 

new orthomosaic, hereinafter referred to as the ‘DJI-FLIR Orthomosaic’, contains four bands with 

the RGB layers from the DJJI camera and the calibrated thermal layer from the FLIR camera. 

Moreover, it will be used for panel identification and fault detection. 

                          Sampled Temperature = 0.024 * DN – 60.71                                         (1) 



 14 

2.3. Panel Identification and Fault Detection Algorithm 

2.3.1. ISODATA Unsupervised Classification 

The first step in our panel detection algorithm is to classify the pixels in the DJI-FLIR 

Orthomosaic. We used a popular remote sensing software called ENVI, which offers two machine 

learning unsupervised classification tools: K-Means and ISODATA. The K-Means method locates 

a user-defined amount of initial arbitrary cluster centroids and then assigns neighboring pixels 

according other minimum Euclidean distance. Moreover, the variability within clusters is 

minimized. The ISODATA method is similar to the K-Means method but without its disadvantages. 

Clusters are merged if their separate distance in multispectral space is below a certain threshold 

and the rule for splitting one cluster into two (El-Rahman, 2016; Sirat et al., 2019). 

Given that ISODATA is a more refined type of unsupervised classification, it was chosen 

over the K-Means method to classify the RGB-FLIR Orthomosaic. There are several parameters 

to set for ISODATA classification: number of classes, maximum iterations, and change threshold. 

After several trails, it was found that 8 classes with a maximum of 10 iteration was optimal—from 

visual inspection, the panels did not share the same class with other surface types. The change 

threshold was kept at the default of 2%. Minor post-classification steps were taken to refine the 

classified image. The PV panels were contained in class 3 and class 4, and so they were grouped 

together. A mask was created to limit the region of interest to just the whole PV system. Lastly, 

the classes were renamed for visual convenience. 

2.3.2. Panel Identification 

 Esri’s ArcGIS Pro is the industry standard software for GIS-related tasks because of its 

intuitive user interface and wide array of tools. It also has an integrated Python environment (i.e.: 
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Jupyter Notebook) for automating workflows. Our panel identification workflow takes in an image 

with each pixel classified. All of the non-panel pixels are masked out using the ‘Reclassify’ tool.  

Working with a raster that has pixels just in the PV panel class, we had to take out any 

noise such as misclassified pixels. To do this, every pixel must take on a region identity. The 

‘Region Group’ tool was used for this zonal processing—connectivity was orthogonally defined, 

so every pixel that was connected on all four sides was grouped into a region. The ‘Zonal Statistic’ 

sum tool was iterated across every region group and the pixel counts for each region was generated. 

We converted the total pixel of each region to area in cm2. Now that we have every pixel in a 

defined region, the noise can be addressed. We masked out all region smaller or larger than 1.5 

standard deviations (SDs) from the median region size—assuming the median region size is the 

median size of a panel in the image. Because there are slight elevation changes relative to a 

constant flight height, the difference in panel size is expected.  

This workflow isolates most of the PV modules; however, there are some issues in making 

the assumption that all PV panels will be 1.5 SDs from the median panel size. Regions that are 1.5 

SDs below the median size are likely misclassified pixels; however, regions that are 1.5 SDs above 

the median size may be two panels combined. This can happen when misclassified pixels ‘bridge’ 

the two panels together by a strand of pixels. Therefore, a raster, of regions larger than 1.5 SDs 

from the median, was create and then focal statistics tools like “Shrink” and “Expand” were used 

to automate the refinement process to isolate out each PV panel region. After the panel refinement 

process, the regions were appended to the main raster with the rest of the isolated panels. 

2.3.3. Fault Detection 

Now that the previous workflow has produced a raster file with panels detected and noise 

removed, the fault detection workflow can proceed. Given the vastness of the study area, region 
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of interests (ROIs), defined as areas with panels that visually exhibit higher mean temperatures, 

are established. Within an ROI, the ‘Zonal Statistics as Table’ tool was used to calculate the re-

calculate the mean temperature across each panel—this step is important for raster-to-polygon 

conversion purposes. Then, the output attribute table was joined with the raster with isolated panels. 

Finally, the raster file is converted to a polygon file. 

For fault detection, we use two types of spatial autocorrelation techniques called Global 

Moran’s I and Anselin Local Moran’s I to look for specific panel temperature clusters and outliers. 

The former quantifies spatial autocorrelation of the whole defined region of interest while the latter 

measures spatial autocorrelation at specific locations within the region of interest. Both utilize 

Moran’s I statistic, an indicator of spatial autocorrelation that ranges from -1 to 1. When Moran’s 

I is a high positive number, the location of interest has similar values, either high or low, compared 

to its neighbors. Moreover, these are known as spatial clusters: high-high clusters or low-low 

clusters. When Moran’s I is a high negative value, the location of interest has different values 

compared to its neighbors. They are known as spatial outliers: high-low or low-high outliers. If 

Moran’s I statistic is zero, perfect spatial randomness is implied. The local Moran’s I index can be 

expressed as (Anselin, 1995; Fu et al., 2014; Getis & Ord, 1992; Zhang et al., 2008): 

                                                    𝐼𝐼𝑖𝑖 =  𝑧𝑧𝑖𝑖− �̅�𝑧
𝜎𝜎2

∑ [𝑊𝑊𝑖𝑖𝑖𝑖(𝑧𝑧𝑖𝑖 − 𝑛𝑛
𝑖𝑖=1,𝑖𝑖≠𝑖𝑖 𝑧𝑧̅)]                                               (2) 

The 𝑧𝑧̅ represents the average of z with the sample value of n; zi is the value of the variable at 

location I; zj is the value of the variable where j ≠ i; σ2 gives the variance of z; Wij is the distance 

weighting between zi and zj. 

 There are several parameters within ArcGIS Pro for using the Anselin local Moran’s I tool. 

For the ‘Conceptualization of Spatial Relationships’ parameter, inverse distance squared was 

chosen because it gives more weight to nearby neighboring features than those farther away. 
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Moreover, taking the square of the inverse distance makes the influence of further features drop 

off more quickly (ArcGIS Pro, n.d.). Another important parameter for this tool is ‘Permutations’. 

Random datasets are generated and compared to the Local Moran’s I of the original data. A pseudo 

p-value is calculated because it looks at the proportion of the Local Moran’s I statistics from 

permutations that have more clustering than that from the original data. Therefore, the more 

permutations, the more ‘precise’ the pseudo p-value will be (ArcGIS Pro, n.d.). 

3. RESULTS 

3.1. DJI-FLIR Orthomosaic 

 

Figure 6. DJI-FLIR Orthomosaic. (a) This image contains the first three bands, DJI-RGB, of the 4-band 
orthomosaic. It looks pixelated but that is due to the linear patterns within the panels. A zoomed-in view 

of the panels is depicted by the red box. (b) The thermal band is the fourth band of the 4-band 
orthomosaic. Its DN values have been calibrated. 

The four-band orthomosaic has a pixel size of about 0.6 cm. Before cropping to the extent 

of the PV arrays, it contained a surveyed area that was around 9,900 m2. There is a strong pattern 

between the RGB and thermal images (Figure 6). The PV modules are clearly depicted in the RGB 
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and corresponds with the distinct rows in the thermal image. Moreover, the panels are discernable 

in the thermal image because of the strong temperature contrasts between the PV modules and 

surrounding surface (Figure 6b.). The snow patches between the PV modules are associated with 

the lower temperature dark regions between the rectangular strips in the thermal images. Looking 

solely at the panels, there is a top to bottom temperature gradient that goes from colder panels to 

warmer panels, respectively. This slight gradient is also apparent in the surrounding surface, 

suggesting that the sun nontrivially affected the measured temperatures across the surveyed area. 

  Although the RGB orthomosaic appears pixelated, it is just that linear patterns of the PV 

cells create an illusion of pixels. A zoomed-in portion of the RGB orthomosaic was included to 

illustrated that the image itself is detailed and high definition (Figure 6a.). Another important 

aspect of the image to note is that the RGB and thermal image are stacked together in th four-band 

orthomosaic. Therefore, the subsequent analyses performed on the orthomosaic were done so 

considering all four data layers, unless otherwise noted. 

3.2. ISODATA Classification and Panel Detection 

 ISODATA unsupervised classification successfully distinguished the PV modules from the 

surrounding surface within the four-band orthomosaic (Figure 7a.). The majority of the image is 

comprised of PV module pixels. The background is largely grass with patches of snow north of 

each panel. The location of the snow makes intuitive sense because the south facing panels likely 

blocked the sun from melting the snow, deposited from the snowfall during the night prior. 

Between each panel, there are pixels misclassified as snow. This is because the panels are bordered 

by a metal with low emissivity. Therefore, it has a lower apparent temperature reading and is 

categorized as snow. For the purposes of this study, this is negligible and does not need to be 

corrected for. Moreover, it is actually advantageous because all non-PV module pixels will be 
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masked out and the misclassified panel border pixels will serve to separate each panel for panel 

detection. 

 

Figure 7. ISODATA Classification and the panel detection algorithm. (a) There are 6 main classes 
within the classified image. The PV modules class is the one used in furthers steps. (b) After isolating 

pixels and removing noise, a raster with just panels was created. This map depicts the mean temperature 
for each of those panels. 

 The panel detection workflow successfully singled out the 1048 panels in a raster file. This 

important step allows for iterative analysis across each specific PV panel. For example, in Figure 

7b., mean temperature is measured and displayed across the panels. The raster can also be 

converted into polygon format for vector-based analysis techniques. The PV panels in Figure 7a. 

contain “holes” within the panels. It is negligible for mean temperature visualization and was not 

addressed; however, for fault detection, the holes were simply smoothed over to create uniform 

panel regions. 

3.3. Fault Detection 

The lower right corner of the PV system was chosen as the region of interest for further 

analysis, since visual inspection shows that there are higher mean panel temperatures there (Figure 
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7b.). The results of the Global Moran’s I analysis revealed that there were statistically significant 

clusters within the region of interest—given a p-value of 0 and an alpha value of 0.01, the null 

hypothesis that the mean PV panel temperatures are randomly spatially-distributed is rejected 

(Figure 8).  Moreover, the Moran’s I index is approximately 1, which means that there are clusters 

of similar temperature data within the region of interest. Therefore, we proceeded with the Anselin 

Local Moran’s I analysis to determine which specific panels are statistically significantly clustered. 

 

Figure 8. Results of Global Moran's I analysis. The red box around ‘clustered’ indicates that our ROI 
has clustered patterns for mean temperature. Since the p-value is practically 0, the null hypothesis is 

rejected. 

 Anselin Local Moran’s I with inverse distance squared spatial relationships and zero 

permutation produced the best results. Faulty panels were defined as those with little to no energy 
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output during the flight. Because the instantaneous energy data that we obtained was granular up 

to every two panels, this fault detection analysis was able to validated. There was a total of 6 faulty 

panels within the region of interest (Figure 9). In Figure 9a., the inverse distance squared method 

with zero permutation was used. It was able to detect 4 true positives, and it also categorized 2 

false positives. It was not able to detect 2 true positives—panels 5 and 6 in Figure 9a. In Figure 

9b., the k nearest neighbors method with zero permutations was used. The default of 8 neighbors 

was kept. It produced 4 true negatives and 6 false positives. It also did not detect 2 true positives—

panels 5 and 6 in Figure 9b—and a high-low outlier. In general, zero permutation were used 

because increasing the number of permutations also increased the ‘sensitivity’ of the tool and more 

false positives were present. 

 

Figure 9. Fault detection results. (a) The inverse distance squared method was used, along with 0 
permutations. 6 total high-high clusters were identified, two of which were false positives. Two false 

negatives were identified. (b) The k nearest neighbors method was used, along with 0 permutations. Many 
more high-high clusters were found. Also, a high-low outlier was identified. In general, the low-low 

clusters were assumed to be the same as “not significant’. 
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3.4. Data Validation 

3.4.1. Validating Panel Identification and Fault Detection 

There were 1048 total panels within the final raster created from the panel identification 

workflow. This matches the number of panels that were present within the image. Therefore, the 

algorithm used for singling out each individual panel was valid. 

Table 1 

Confusion Matrix (Fault Detection) 

Note: TP = true positive, FP = false positive, FN = false negative, TN = true negative. 

 A confusion matrix, traditionally used for quantifying classification results, was produced 

to quantify the fault detection process (Table 1). The total number of predicted faulty panels and 

actual faulty panels are equal. However, this is because two were misrepresented as faulty panels 

and two other true faulty panels were not detected (Figure 9a. and 9b.). Moreover, these results 

produced several values: sensitivity (0.667), specificity (0.979), precision (0.667), accuracy 

(0.961), F1 score (0.667), and Matthews Correlation Coefficient (0.646). 

3.4.3. Temperature and Energy Production 

One major assumption in this study was that there is a relationship between PV module 

temperature and its productivity—an inverse relationship is expected since a higher temperature 

relative to its neighbors means that a panel is likely faulty. Therefore, it is important to look to see 

  Predicted 

  Faulty Not Faulty Actual Total 

Actual 

Faulty TP: 4 FN: 2 6 

Not Faulty FP: 2 TN: 94 96 

Predicted Total 6 96 - 
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if the relationship between temperature and energy production is intuitive. The temperature 

distribution across all the panels is right-skewed (Figure 10a). The temperature distribution for the 

region of interest is relatively normal distributed with a slight left-skewed, given that the median 

is to the right of the mean (Figure 10b.). Moreover, notice that there are a few panels with higher 

temperatures that seem to be clustered to the right of the histogram. 

 

Figure 10. Temperature histograms. (a) This histogram depicts the temperature distribution across all 
the panel at Bishop’s Orchard. There is a right-skew to the data. (b) This histogram depicts the 

temperature distribution across the ROI in the southern right corner of the PV system. It normally 
distributed but there is a slight left skew. 

 A simple linear regression was performed between daily energy output per panel and mean 

temperature (Figure 11). These variables are grouped by inverter. Although there are only 7 data 

points, this is sufficient because the values were calculated by averaging all of the panels within 

the inverters—with each inverter having around 69 panels. It was grouped this way because joining 

mean temperature with energy output was difficult at the panel-panel granularity level. In the linear 

regression, the r-squared value is around 93% (Figure 11). Moreover, 93% of the variability in 

energy output is explained by the mean temperature. Since the p-value is smaller than an alpha 

value of 0.01, the positive relationship between energy output and mean temperature is statistically 

significant. Although there is strong evidence for this positive relationship, it is not intuitive. 
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Figure 11. Linear regression plot of mean temperature and energy output per inverter. The gray band is 
the 95% confidence band. Each number corresponds with an inverter number. The regression equation, 

r2, and p-value are given in the box.  

4. DISCUSSION 

4.1. Energy and Temperature 

It has been established through empirical observations and academic studies that when a 

PV module is faulty, it will be higher in temperature relative to the other panels around it (Kim et 

al., 2017; Spagnolo et al., 2012; Vergura et al., 2015). However, this was not observed in the linear 

regression performed between mean temperature and energy output of the panels (Figure 11). 

There are several reasons that this may be the case. It is possible that grouping temperature and 

energy output by inverter, instead of by panel, created a false trend given the broader scope of the 

analysis. It may also be that temperatures are only significantly higher when there are faulty 

panel—and since most panels were functioning normally, it was not evident in the mean 

temperature values across inverters. However, the most influential reason why the linear regression 
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results are not intuitive is likely because the temporal resolution of the variables is quite different. 

Given that the mean temperature values are near-instantaneous snapshots of the panel temperatures, 

it has poor temporal resolution compared to the daily energy output values. Therefore, it is much 

more sensitive to factors like sunlight affecting its values. The UAV flight lasted over an hour and 

that affected temperature readings more than faulty panels would have. These observations reveal 

that instantaneous temperature readings may not be a great proxy for energy output. Rather, mean 

temperature within a PV panel over a longer time period may produce more intuitive results. 

Within the context of fault detection, temporal resolution is not a limiting factor. This is 

evident through the fact that the fault detection algorithm in ArcGIS Pro was able to identify 

clusters of hot panels which correlated with the true faulty panels (Figure 10). In fact, the linear 

regression results strengthen the case for including spatial information into fault detection. The 

Anselin Local Moran’s I technique, with the inverse distance squared method, finds clusters but 

gives more weight to panels that are closer to the clusters of interest. Therefore, spatial information 

(i.e.: temperature gradients between panels) is more important than just looking at mean 

temperature values with no spatial context. 

4.2. Limitations 

There were several constraints within our study that are important to note. Our flight took 

around an hour and a half, which is quite long for a relatively small study area. Due to limited time, 

we decided to optimize image quality over flight efficiency to prevent the possibility of going back 

to perform more flights. Optimization of image overlap with flight time is a process that involves 

making assumptions because cameras can have different FOVs and are offset from each other. In 

our case, we used a 90% by 90% overlap which increase flight time. There is literature that focuses 
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on these issues that should be implemented in future work (Grimaccia et al., 2015; Leva et al., 

2015; Luo et al., 2017).  

During the orthomosaic process, we discovered that hardware is an important factor in 

processing large datasets. We had to skip the ‘point cloud and mesh’ step for generating the FLIR 

RGB+IR four-band orthomosaic because it was RAM-intensive—we had 64 GB of RAM and it 

was not enough. This reduced the quality of the final orthomosaic; the southernmost row of PV 

panels was removed during postprocessing since they were close to the edge of the orthomosaic, 

where distortions occurred and DN values were not reliable. This problem can be addressed 

through flight optimization, which will reduce the number of images in the flight dataset. Moreover, 

other photogrammetry software like Agisoft Metashape and RealityCapture can be used if they 

require less RAM for image processing. 

Another limitation within our study was that we had an optimal dataset to work with, in 

terms of PV module coverage, because there were no objects in the way between the camera and 

PV modules. In other studies, algorithms accounted for obstructions like powerlines, shade, and 

sun glint (Díaz et al., 2020). In future studies, our unsupervised classification method should be 

performed on RGB+IR orthomosaics that contain objects that occlude PV modules from the 

camera view, so that additional steps are added to the panel detection algorithm to address these 

issues. Moreover, these new study sites will ideally have more faulty panels for data validation 

purposes. 

4.3. Industry Implications 

We introduced several novel applications of techniques for data processing, panel 

identification, and fault detection throughout our study. Most studies have only utilized the thermal 

image to conduct panel identification and fault detection (Díaz et al., 2020; Kim et al., 2016a, 
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2016b). Because of its lower resolution, more complicated techniques need to be implemented to 

distinguish and, furthermore, create panel polygons. Using machine learning (i.e.: unsupervised 

classification) and an additional RGB data layer, panel detection can be a lot simpler—

unsupervised classification does not need training sets nor need to establish panel borders through 

line detection techniques. 

ArcGIS Pro was the main software that we used for fault detection analysis since it is 

heavily integrated in the spatial and GIS-related fields. Therefore, it will be easily accessible to 

those within this industry. Moreover, because this process can be automated within the ArcGIS-

integrated Jupyter Notebook, fault detection can be conveniently performed. In fault detection 

algorithm, Anselin Local Moran’s I was used. Although this technique has been applied to large-

scale spatial analyses, we proposed a different application of this technique by implementing it for 

small-scale cluster and outlier analyses (Chen et al., 2020; Fu et al., 2014; Shariati et al., 2020; 

Zhang et al., 2008). Because this technique is able to identify faulty panel clusters, as shown in 

Figure 10, it may prove useful for industry-based implementation. 

5. CONCLUSION 

 UAVs will play an important role in the utility-scale PV solar farm industry. As PV systems 

get larger, performance and fault monitoring will become more difficult but the convenience and 

affordability of the UAV fills a niche in the field. In our study, we conducted a UAV flight for 

data collection, and then we developed our own panel identification and fault detection algorithm. 

Most of the algorithm was performed in Python and ArcGIS. We found that adding an RGB layer 

greatly improves panel detection, compared to thermal-only scenarios. Moreover, ISODATA 

classification is a simple but effective machine learning algorithm to distinguish PV module pixels. 
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Global Moran’s I and Anselin Local Moran’s I are powerful cluster and outlier analysis techniques, 

especially when they are used in conjunction with each other. Moreover, they are applicable to 

small-scale operations like detection of faulty panels. Within our ROI, Anselin Local Moran’s I 

was able to identify 4 of the 6 faulty panels. Moreover, 2 non-faulty panel were miscategorized. 

In the context of a confusion matrix, the fault detection algorithm has a sensitivity of 0.667, 

accuracy of 0.961, and a Matthews Correlation Coefficient of 0.646. 

 We discovered that instantaneous mean panel temperature may not be a great indicator of 

energy production because the positive linear relationship between the two variables is not intuitive. 

Other factors such as time of day and cloud coverage can greatly affect the instantaneous 

temperature of the panel. For proper comparisons, the two variables should have similar temporal 

resolutions. These results, however, strengthened the fact that spatial information (i.e.: temperature 

gradients) is important within fault detection. Spatial gradients are robust and aren’t prone to issues 

caused by poor temporal resolution—especially if the Anselin Local Moran’s I technique is used 

within a ROI. 

 It is evident that there are various applications for our panel identification and fault 

detection techniques within the field. Future work should involve testing out the algorithm on other 

PV system datasets. Moreover, the range of software used can be condenses for consistency and 

ease of access. For instance, much of the data postprocessing that was performed in ENVI can be 

adapt to the ArcGIS Pro environment. In literature, there’s been more research done on real-time 

monitoring instruments and techniques, especially for series-connected PV systems (Moreno-

Garcia et al., 2016; Ochiai & Ikegami, 2016). UAV-based fault detection techniques, coupled with 

different types of granular on-site monitoring systems, will be an efficient method for utility-scale 

PV system performance monitoring. 
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