Energy Studies is a multidisciplinary academic program (MAP) in Yale College. The curriculum is designed to provide selected undergraduates with the knowledge and skills needed for advanced studies, leadership, and success in energy-related fields. Energy Studies scholars must also complete the requirements of a Yale College major, as Yale does not offer a major in Energy Studies.

Study of the world of energy can take many forms. Think about your home. Where does the energy come from to turn on the lights and to charge your mobile phone, or to heat the space or cool it? Answers to these questions involve energy science and technology. Today, despite all the progress of the last twenty years in renewable energy sources, such as wind and solar, about 80% of the world’s primary energy still comes from fossil fuels—coal, oil, and natural gas. That number, which comes as a surprise to many, highlights the challenge of a rapid transition to renewable energy. What new technologies, new breakthroughs, can speed up the move away from fossil fuels?

Many students will be interested in the environmental impacts of modern energy use, especially air and water pollution and climate change. We now know that the world needs to reduce man-made greenhouse gas emissions from fossil fuels to zero within the next three decades. Are there realistic pathways to a “Net Zero” energy economy by the year 2050? Can geoengineering help to avoid excessive warming?

Other students will be interested in energy’s social and economic impacts. Moving away from fossil fuels will be hard enough on its own, but more difficult still is making this transition while providing modern energy services to the hundreds of millions of people around the world who now lack them. Can sustainable global investment help assure a just energy transition?

Students normally apply to Energy Studies in the fall term of sophomore year. The program’s requirements are completion of six courses from a list approved by the faculty advisory committee (see reverse side for sample courses) plus a senior capstone project. The six courses must be distributed (two each) across the program’s three tracks:

- Track 1 Energy Science and Technology
- Track 2 Energy and Environment
- Track 3 Energy and Society

Only two of the six courses can be required courses in the student’s major. One of the six can be taken Pass/Fall; the others must be taken for full letter grade. Other program activities include field trips, special guest lectures, bi-weekly program dinners, and participation in the Yale Alumni in Energy Conference.

The capstone of the program is a senior project, which can take the form of a traditional senior essay (with permission, the student’s senior essay in the major may fulfill this requirement), a credited or uncredited independent study project, or a written report on an internship in an energy-related field. A Yale Energy Studies group on LinkedIn helps students find internships.
COURSES IN ENERGY STUDIES

Below are some of the courses accepted for Energy Studies credit. These lists are not exhaustive, and some courses are not offered every year. See the website for further information.

ENRG 300, Topics in World Energy, is offered as a seminar for junior Energy Studies Scholars in the Fall Term. **ENRG 400** is the Senior Capstone Seminar in the Spring Term.

Track 1 – Energy Science and Technology

- APHY 100, Energy Technology and Society
- CENG 300, Chemical Engineering Thermodynamics
- CENG 315, Transport Phenomena
- CHEM 430, Statistical Mechanics and Thermodynamics
- EENG 406, Photovoltaic Energy
- EPS 274, Fossil Fuels and World Energy
- EPS 275, Renewable Energy
- MENG 211, Thermodynamics for Mechanical Engineers
- MENG 389, Mechanical Engineering IV: Fluid Thermal Energy Science
- PHYS 180, University Physics
- PHYS 420, Thermodynamics and Statistical Mechanics

One general science course below can normally count in Track 1.

- CHEM 161/165, General Chemistry I and II
- CHEM 163/167, Comprehensive University Chemistry I and II
- CHEM 332/333, Physical Chemistry I and II
- PHYS 180/181, University Physics
- PHYS 200/201, Fundamentals of Physics
- PHYS 260/261, Intensive Introductory Physics
- PHYS 401/402, Advanced Classical Physics from Newton to Einstein

Track 2 – Energy and Environment

- ENVE 120, Introduction to Environmental Engineering
- ENAS 360, Green Engineering and Sustainable Design
- ENVE 373, Air Pollution Control
- ENVE 377, Water Quality Control
- ENVE 416, Chemical Engineering and Process Design
- ENVE 448, Environmental Transport Processes
- ENVE 473, Air Quality and Energy
- EPS 101, Climate Change
- EPS 140, Atmosphere, Ocean, and Climate Change
- EPS 232, Earth Surface Processes
- EVST 431, The Physical Science of Climate Change

Track 3 – Energy and Society

- AMST 236, American Energy History
- ANTH 409, Climate and Society from Past to Present
- ANTH 473, Abrupt Climate Change and Societal Collapse
- ECON 330, The Economics of Natural Resources
- ECON 432, Economics of Social Catastrophes
- EVST 224, Writing About the Environment
- EVST 247, Politics of the Environment
- GLBL 167, Green Germany, History and Culture of Sustainability
- GLBL 253, Globalization Space
- GLBL 394, Climate and Society from Past to Present
- LITR 345, Climate Change and the Humanities
- PHYS 330, Science and Public Policy
- PLSC 212, Democracy and Sustainability

SAMPLE COURSES OF STUDY

Energy Science & Technology Focus

- PHYS 180 · EPS 140 · ECON 330
- EPS 274 · EENG 406 · EVST 431
- PHYS 200 · EPS 275 · GLBL 384
- EPS 140 · ENVE 473 · MENG 389

Energy & Sustainability Focus

- APHY 100 · EPS 232 · GLBL 217
- ECON 330 · EPS 275 · PLSC 212
- APHY 100 · ECON 330 · PLSC 212
- EPS 140 · ENAS 360 · ANTH 409

Energy & Environment Focus

- CHEM 161 · ENVE 120 · EPS 140
- ENVE 473 · EPS 274 · ECON 330
- APHY 100 · EPS 140 · PLSC 212
- EPS 275 · AMST 236 · ECON 432

Energy Policy & Climate Focus

- PHYS 260 · EPS 140 · EPS 101
- ECON 330 · ANTH 409 · EVST 431
- CHEM 163 · EPS 101 · EPS 275
- ANTH 473 · ECON 432 · PHYS 320