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The supercontinent cycle and Earth’s long-term climate

R. Damian Nancel%3

REVIEW

1Department of Geological Sciences, Ohio

University, Athens, Ohio, USA Abstract

2Department of Earth & Planetary Sciences, Earth’s long-term climate has been profoundly influenced by the episodic assembly and

Yale University, New Haven, Connecticut, USA q q q B
2 breakup of supercontinents at intervals of ca. 500 my. This reflects the cycle’s impact

.
Cl:::::tjr:iire:sg; r?;i:;Iace:::: :eg;;b” : on global sea level and atmospheric CO, (and other greenhouse gases), the levels of
which have fluctuated in response to variations in input from volcanism and removal
Correspondence

R. Damian Nance, Department of Geological
Sciences, Ohio University, Athens, OH 45701,
USA.

Email: nance@ohio.edu

(as carbonate) by the chemical weathering of silicate minerals. Supercontinent amalga-
mation tends to coincide with climatic cooling due to drawdown of atmospheric CO,
through enhanced weathering of the orogens of supercontinent assembly and a ther-
mally uplifted supercontinent. Conversely, breakup tends to coincide with increased
atmospheric CO, and global warming as the dispersing continental fragments cool
and subside, and weathering decreases as sea level rises. Supercontinents may also
influence global climate through their causal connection to mantle plumes and large
igneous provinces (LIPs) linked to their breakup. LIPs may amplify the warming trend
of breakup by releasing greenhouse gases or may cause cooling and glaciation through
sulfate aerosol release and drawdown of CO, through the chemical weathering of LIP
basalts. Hence, Earth’s long-term climatic trends likely reflect the cycle’s influence on
sea level, as evidenced by Pangea, whereas its influence on LIP volcanism may have
orchestrated between Earth’s various climatic states.
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INTRODUCTION

Lauroscandia?®) and c. 3.0 Ga (Ur?%39), in addition to Wegener's Pangea

(c. 325-200 Ma).
31-33

The supercontinent cycle describes the realization, developed over the
past 30 years, that much of Earth history has been punctuated by
the episodic assembly and breakup of supercontinents, during which
most of Earth’s continents are assembled into a single landmass.!
Consequently, the well-documented supercontinent Pangea (Figure 1),

first advocated by Wegener,2?

is viewed as only the most recent
in a series of supercontinents that have assembled and broken up
at intervals of roughly half-a-billion years since perhaps as far back
as the late Archean.*-8 Major support for this hypothesis has come
with the recognition of supercontinents (Figure 2) at c. 620-580 Ma
(Pannotia,®?-12 the existent of which is debated3-15), c. 950-800 Ma
(Rodinia®16-18) and c. 1.6-1.4 Ga (Nuna or Columbia9-24), and possi-

ble supercontinents (or supercratons) at c. 2.7-2.5 Ga (Kenorland;25-27

The episodic cycle has been linked to global orogenesis,
granitoid magmatism and zircon age peaks,**-37 crustal growth,38-41
mineralization,*2-48 |arge igneous provinces (LIPs)*?-53 and deep man-

tle convection patterns.>4-60 Additionally, the cycle has been shown

to have profound affects on sea level,$1765 ocean chemistry,3567-67

the stable isotope record,3>79-72 patterns of sedimentation,”3-7>

atmospheric composition,’¢"78 global biogeochemical cycles,479:80

85,86

climate’481-84  marine biodiversity, and the evolution of

|ife'83,87.88

The supercontinent cycle is consequently a unifying hypothesis
with major implications for the geosciences and our understanding of
Earth’s evolution. It has likely influenced the rock record more than any

other geologic phenomena,? its existence documents fundamental
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200 Ma
Late Triassic

FIGURE 1 Reconstruction of Pangea for the Late Triassic (at 200 Ma) by the PLATES program at the University of Texas Institute of
Geophysics. (http://www-udc.ig.utexas.edu/external/plates/images/pangea_07sep2007.jpg)

processes in the Earth’s mantle and at the core-mantle boundary,>®
and it has probably governed the planet’s surface environment for
much of Earth history.?°

For detailed reviews of the history, development, and consequences
of the supercontinent cycle, the reader is referred to Nance and
Murphy?? and Nance et al.! Here, | focus on just one aspect of the
cycle—its affect on Earth’s climate and climate-controlling processes.

BACKGROUND

That Earth history may have been punctuated by the episodic assembly
and breakup of supercontinents with profound consequences to the
geosphere is not a new idea, 5617992 and the notion of long-term
episodicity in tectonic processes predates plate tectonics.?3-1%0 How-

ever, widespread recognition of the supercontinent cycle is a relatively
recent phenomenon,”-8558%101 35 is the growing consensus regarding
its profound effect on Earth history and evolution.40.80,81:83,90,102-105
A wide variety of phenomena have been linked to the supercon-
tinent cycle (Figure 3). Supercontinent assembly, for example, is
accompanied by terrane accretion, collisional orogenesis, and con-
tinental shortening as the continents amalgamate and the oceans
between them close.?? Orogenic granitoid magmatism, recorded
as U-Pb age peaks for zircons with evolved eHf and elevated 5180
values consistent with increased reworking of crustal and sedimentary
material, is enhanced,343541.106,107 55 are conditions for continental
arc magmatism,1%8 extreme (UHT and UHP) metamorphism,32109
and active margin sedimentation with high clastic to carbonate
ratios.”> Epeirogenic uplift through continental insulation and man-
tle upwelling, both of which are thought to be consequences of
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FIGURE 2 Proposed reconstructions of pre-Pangean supercontinents. (A) Pannotia (c. 620-580 MaZ238), (B) Rodinia (c. 950-800 Ma23?
simplified after Li et al.'7), (C) Nuna/Columbia (c. 1.6-1.4 Ga23), and (D) Kenorland (c. 2.7-2.5 Ga). Abbreviations: (A) A, Australia; AM, Amazonia;
AN, Antarctica; B, Baltica; BTS, Borborema-Trans-Sahara; CSF, Congo-Sao Francisco; I, India; K, Kalahari; L, Laurentia; LP, Rio de la Plata; M,
Madagascar; PA, Pampea; PR, Parana; RA, Rio Apa; WA, West Africa. (B) A-F, Albany-Fraser orogen; EG, Eastern Ghats belt; K-1, Kibaran and
Irumide belts; M, Musgrave orogen; N-N, Namaqua-Natal province; S, Sunsas orogen; S-N, Sveco-Norwegian orogen; W, Wilkes province. (C) AM,
Amazonia; BA, Baltica; CA, Cathaysia; EA, East Antarctica; LA, Laurentia; IN, India; NC, North China; NA, North Australia; SA, South Australia; SB,
Siberia; WA, West Australia; WAF, West Africa. (D) Bund, Bundelkhand craton; NCC(EB), Eastern block of North China craton

supercontinent amalgamation,>¢110.111 |ead to a global lowering of
sea level6364112113 \ith accompanying enhanced weathering and
terrestrial deposition.”® The resulting drawdown of atmospheric CO,
causes climatic cooling, 114115 while the loss of insular continents and
shallow-marine habitats leads to low biotic diversity®5 and may precip-
itate mass extinctions. Enhanced erosion increases seawater 87Sr/865r,
534S and nutrient supply,3570-72116117 \while the resulting rise in
marine productivity and photosynthesis acts to increase atmospheric
oxygen levels.”178

On the other hand, supercontinent breakup and dispersal
reverses many of these trends and is heralded by peripheral sub-

duction rollback®%118-120 and continental rifting documented in
mafic dike swarms and LIPs,4%51.53121 followed by passive margin
development.”%122 Subdued collisional orogeny and granitoid mag-
matism is recorded in troughs in U-Pb age spectra for zircons with
juvenile eHf and lowered 880 values consistent with increased
mantle-derived magmatism.34:3541.107 Thermal subsidence and exten-
sion of the dispersing continental fragments, and the creation of a
younger world ocean floor through the opening of new ocean basins
and consequent increase in ridge length, is accompanied by rapid
sea level rise,636466123 enhanced shallow marine sedimentation,®
and organic carbon burial leading to negative 513C anomalies.”083
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FIGURE 3 Secular trends in detrital zircon ages, granulite facies thermal gradients, passive margin development, normalized seawater
875r/86Sr, and mean initial eHf and average 8180 in detrital zircons from recent sediments compared with the assembly (shaded intervals) of
various proposed pre-Pangean supercontinents (from Hawkesworth et al.3¢ and references therein). Abbreviations: HP, high pressure; UHP,

ultra-high pressure; UHT, ultra-high temperature

Diminished seawater 87Sr/86Sr ratios and warm, equable climates are
linked to elevated atmospheric CO, levels, driving rapid evolutionary
radiation of new taxa and increasing biotic diversity,3570.71,78124

The cycle is likely driven by some combination of continental insu-
lation, mantle plume dynamics, and slab rollback. The mechanism first
proposed was that of continental insulation 6110125 whereby the
thermal insulating effect of continental lithosphere on mantle heat
flow is considered to trap mantle heat beneath supercontinents result-
ing in their thermal uplift and breakup.56111126 The new oceans so
produced then either widen until the leading edges of the dispersing
continental fragments collide to form a new supercontinent, a process

termed extroversion,'?7 or they close as their floors grow older and
less buoyant, such that the continental fragments are reassembled,
a process termed introversion. In both cases, the assembled super-
continent would once again trap mantle heat and the cycle would be
repeated.

Alternatively, the mechanism may be a consequence of the cycle’s
strong coupling to mantle dynamics,?® whereby subduction to the
core-mantle boundary of the oceanic lithosphere surrounding a
supercontinent creates mantle plumes that rise beneath them and
contribute to their breakup.385054128 |n this case (Figure 4), super-
continents are considered to form over areas of mantle downwelling
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FIGURE 4 Numerical modeling of supercontinent assembly and breakup.5° (A) Initial small-scale convection evolves to (B) an early stage
degree-1 mantle structure (antipodal regions of upwelling and downwelling) as the supercontinent assembles, and (C) a stable degree-1 structure
as the supercontinent forms. (D) With the formation of a subduction girdle and the onset of a superplume beneath the supercontinent, convection
evolves to a degree-2 planform (antipodal regions of upwelling), which (E) contributes to supercontinent breakup as true polar wander brings the
supercontinent to the equator. Alternation of the two modes of mantle convection is thought to be responsible for the cyclic process of
supercontinent assembly and breakup. Blue = cool mantle, yellow = hot mantle, red = core

in an Earth with a degree-1 mantle structure, that is, one with single,
antipodal zones of mantle upwelling and downwelling.5* They subse-
quently break up because the subduction girdle that develops around
a supercontinent once it assembles creates a slab graveyard of sub-
ducted oceanic lithosphere at the core-mantle boundary, 129130 which
influences the mantle’s large low shear velocity provinces (LLSVPs)
in such a way as to foster the generation of mantle plumes that rise
beneath the supercontinent.59.5%60.131 The result is an Earth with a
degree-2 mantle structure, that is, one with two antipodal zones of
upwelling, the one beneath the supercontinent being responsible for
its breakup.3%34 Upon breakup, the subduction girdle that develops
around the supercontinent following its assembly forms a new ring of
mantle downwelling over which the dispersing continental fragments
gather. This girdle, which would be longitudinal if true polar wander
brings a supercontinent to the equator,5%54132 may then move away
from the former supercontinent to recreate an antipodal degree-1
mantle structure and reassemble a supercontinent by way of extrover-
sion, or it may move toward the former supercontinent and reassemble
one by way of introversion.?7 Alternatively, the dispersing continental
fragments may coalesce along the girdle such that the new super-

continent assembles roughly 90 degrees away from its predecessor, a
process termed orthoversion.133

A potential breakup mechanism also exists in the forces associated
with slab rollback along the supercontinent periphery,118120,134-136
This mechanism is consistent with the development of a slab
girdle, the oceanward retreat of which would generate exten-
sional forces that may be sufficient to cause supercontinent
breakup.118

All three mechanisms are supported by modeling,3%118:125126 3nd jt
is likely that each plays a role in the breakup of supercontinents once
they have amalgamated. Hence, the cycle appears to operate because
supercontinents sow the seeds of their own destruction and break
up, but in doing so, they set the stage for their eventual reassembly.
While their relationship to the supercontinent cycle is unlikely to be a
simple one,52137.138 the apparent role of mantle plumes is significant
because it links the supercontinent cycle to deep mantle upwelling and
processes occurring at the core-mantle boundary. Hence, it elevates
the supercontinent cycle from a near-surface phenomena to a whole-
mantle process linking top-down plate tectonics and bottom-up plume
tectonics.
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FIGURE 5 Comparison of the effect of the supercontinent cycle
on sea level (straight-segmented line), calculated for the
Phanerozoic®! given the known duration of Pangea (box), with the
first-order eustasy curve (undulating line).146 The close
correspondence between these two lines was used by Worsley et al.61
to support their case for a supercontinent cycle.?!

INFLUENCE ON GLOBAL CLIMATE

The role of the supercontinent cycle in governing long-term global cli-
mate is chiefly based on the Phanerozoic record and rests largely on its
influence on global sea level and the governing affect this has on conti-
nental erosion and silicate weathering, and the consequent abundance
of CO, and other greenhouse gases in the atmosphere.476139-141
However, the cycle also influences climate through its control of con-
tinental geography and through the association of supercontinent
amalgamation and breakup with LIP events.?952142 | |P events have
been correlated with a wide variety of environmental impacts and
can profoundly influence global climate, both through the release of
large volumes of volcanic CO, to the atmosphere43.144 and through
extreme atmospheric CO, drawdown brought about by the weathering

of equatorial flood basalts.14>

Influence on global sea level

The supercontinent cycle has a profound effect on global sea level as a
result of its long-term control of both the elevation of the continents
and the depth of the ocean basins.62-6466 |n fact, the close correspon-
dence between the changes in global sea level predicted by the cycle
for the Phanerozoic,®? which amounted to several hundred meters,
and the contemporary depositional record of sea level change over the
same interval1#¢ was a key argument used in support of the original
hypothesis (Figure 5). Supercontinents tend to correspond to intervals

of very low global sea leve|112:147

as aresult of their epeirogenic uplift,
either because continental insulation traps mantle heat beneath them,
and/or because descent of the subduction girdle to the core-mantle
boundary fosters mantle upwelling beneath them. Shortening of the
crust as aresult of the collisional orogenies of supercontinent assembly
may also lower sea level by increasing oceanic area.t1

Conversely, supercontinent breakup tends to correspond to a rapid
global rise in sea level as a combined result of the thermal subsidence of
the continental fragments as they disperse and cool, crustal extension
as a result of rifting, and the decrease in ocean basin volume caused
by the overall decrease in seafloor age and increase in the volume of
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FIGURE 6 Phanerozoic proxy reconstructions and modeled
predictions (Geocarb 111'3°) of atmospheric CO, levels for the
Phanerozoic.241 Shaded area represents error range in modeling.

mid-ocean ridges that accompany the opening of new ocean basins
floored by young oceanic lithosphere.® This rise in sea level results in
widespread continental flooding, but is ultimatelyreversed as the new
ocean basins get older.

Influence on atmospheric composition

Because of its demonstrated effect on Phanerozoic global sea level,
the supercontinent cycle has likely had a profound influence on the
long-term levels of CO, (and other greenhouse gases) in the atmo-
sphere (Figure 6). Atmospheric CO; levels have fluctuated throughout
much of Earth history in response to variations in the input of this
gas from volcanic exhalations and the breakdown of carbonates and
organic matter, and its removal through the chemical weathering of
the continents and photosynthesis,148-150 the former involving its
reaction with Ca and Mg silicates to form Ca and Mg carbonates fol-
lowing riverine transport of the weathering products to the oceans.1>1
Since the efficacy of this process depends, in part, on the land area
available for chemical weathering, its effect on atmospheric CO, lev-
els, and hence climate, varies with sea level. Hydrothermal alteration
of seafloor basalts likely provides an independent sink for atmo-

152-154

spheric CO,, while the subduction of platform carbonates at

continental margin arcs may provide a significant additional source.>>

Supercontinent amalgamation and breakup

As a consequence of the relationship between land area and atmo-
spheric CO,, supercontinents tend to coincide with climatic cooling
due to atmospheric CO, drawdown because they are associated with
very low sea levels as a result of their thermal uplift. Adding to this
cooling influence is the enhanced chemical weathering of the orogens
of supercontinent assembly. Both of these processes would be ampli-
fied if true polar wander brings the supercontinent to the equator as
a consequence of centrifugal forces acting on the positive dynamic
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FIGURE 7 Distribution of warm (greenhouse) and cool (icehouse) global climatic conditions for the past 1 Gal24 compared with times of

supercontinent assembly and breakup for Rodinia, Pannotia, and Pangea.

topography (excess mass) created by its thermal uplift, 5054132 since
the reaction rates of chemical weathering, and hence the rate of draw-
down of atmospheric CO,, are strongly dependent on temperature and
precipitation.”6:156

As a likely result of these processes, the amalgamation of both
Pangea and Pannotia was accompanied by cold, “icehouse” cli-
mates (Figure 7) and widespread continental glaciation—respectively,
the c. 335-260 Ma Gondwanan115157.158 and the c. 640-635 Ma
Marinoan?5? and c. 580/565 Ma Gaskiers/post-Gaskiers.1¢0-163 Con-
versely, continental glaciation accompanied the breakup of Rodinia
(c. 717-663 Ma Sturtian164-16¢) Kenorland/Lauroscandia (c. 2.44-2.3
Ga Huronian [Gowganda]'67-16%), and perhaps even the earliest pro-
posed supercraton Ur (c. 2.9 Ga Pongola79-172), This could reflect the
abrupt erosional release of dissolved Ca and Mg to the oceans follow-
ing the onset of rifting, 14173 the combination of uplift and subsidence
in rift settings having been long thought to provide ideal conditions
for both the initiation of glaciation and the preservation of the result-
ing glacigenic sediments.174175 The role of the supercontinent cycle in
continental glaciation, however, is a complex one, and while supercon-
tinents may foster ice ages, they do not mandate them as evidenced by
the apparent absence of any glaciation associated with Nuna/Columbia
and its unrelated presence during the Hirnantian (c. 445 Ma) 176177 and
the Pleistocene to present day.

The Huronian glaciations accompanying Kenorland/Lauroscandia
also coincide with the Great Oxidation Event (c. 2.43-2.25 Ga'78),
during which biologically produced O, first started to accumulate in
the atmosphere,'7? perhaps as a result of the breakup-related evolu-
tion of the first oxygen-requiring cyanobacteria,’8° or a LIP-generated
pulse of sulphate to the oceans, the reduction of which liberated
oxygen.'81 The rise in atmospheric oxygen, evident in the loss of Fe-
poor paleosols, detrital pyrite, and detrital uraninite,182-184 jn the first
appearance of redbeds,’8% and in the loss of mass-independent frac-
tionation of sulfur isotopes in sedimentary rocks,186187 |ikely led to
the demise of atmospheric methane, the most powerful of the green-

house gases, thereby providing an alternative mechanism for dramatic

climatic cooling.188-190

Snowball Earth

The climatic cooling that led to the continental glaciations associated
with Kenorland or Lauroscandia (Huronian/Gowganda), Rodinia (Stur-
tian), and Pannotia (Marinoan) is thought to have been sufficiently
extreme as to cause the entire planet to freeze, a unique situation
known as “Snowball Earth.”81:164189-192 g,ch conditions are thought
possible if ice comes to within c. 30° of the equator because the albedo
feedback from the planet’s ice-covered surface then becomes self-
sustaining1?3-195—one more latitudinal degree of ice cover causing
albedo cooling sufficient to give one more latitudinal degree of cover
(Figure 8). As a result, glacial ice spreads rapidly toward the equator,
eventually leading to an ice-covered planet with a global mean temper-
ature estimated at c. —50°C.192 In the case of the Sturtian (c. 717-663
Ma165196) and Marinoan (c. 640-635 Ma15?) glaciations, such Snow-
ball Earth conditions were likely promoted by the concentration of
continents between 30°N and 30°S, and the consequent high rates of
chemical weathering and atmospheric CO, drawdown, following the
breakup of Rodinia,'4> the final equatorial position of which” may
have been the result of true polar wander.>4

Once initiated, the icehouse conditions of a Snowball Earth
are thought to prevail until volcanically sourced atmospheric CO,,
deprived by ice cover of a continental weathering (and photosynthetic)
sink, rises dramatically to c. 350 present atmospheric levels.81197 At
this threshold point, rapid greenhouse-induced and albedo-feedback
accelerated deglaciation ensues (Figure 8), leading within c. 5 Ma, to
a “hothouse” Earth with a global mean temperature of c. 40°C.192
With re-establishment of the CO, cycle and renewal of continental
weathering (and photosynthesis), the climate rapidly returns to its
initial state, setting the stage for the process to repeat. There are
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FIGURE 8 Time scale for estimated changes in global mean surface temperature, based on energy-balance calculations, and ice extent
through one complete snowball event.192 The global palaeogeography is for 750 Ma, some 30 my. before the Sturtian glaciation. Abbreviations:
Am, Amazonia; Au, Australia; Ba, Baltica; Co, Congo; In, India; K, Kalahari; M, Mawson; Si, Siberia; Ta, Tarim; WA, West Africa; Y, South China

consequently five stages in the evolution of a Snowball Earth: (1) strong
equatorial drawdown of atmospheric CO, through continental weath-
ering needed to cause the oceans to start freezing, (2) albedo-feedback
expansion of the ice cover to a latitude of c. 30°, whereupon it becomes
self-sustaining and the planet freezes from pole to pole, (3) shutdown
of continental weathering allowing volcanically derived CO, to build
rapidly in the atmosphere, (4) greenhouse effect of rising atmospheric
CO;, levels reaches acritical threshold, whereupon the ice rapidly melts
and a hothouse world is established, and (5) resumption of continental
weathering and restoration of the CO, cycle reduces the greenhouse
effect and returns climate to its initial state.

Supercontinent dispersal

The processes that lead to global cooling during the assembly and rift-
ing of supercontinents are reversed following supercontinent breakup
as the dispersing continental fragments cool and subside. With the
ensuing rise in global sea level, the continents flood, continental
weathering decreases, and atmospheric CO; levels rise. As a result,
continental dispersal tends to coincide with a progressive build-up
of atmospheric CO, and accompanying global warming. In addition,
the release of CH,4 (or the CO, produced by its oxidation) as gas
hydrates break down with rising temperatures would provide this
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breakup-related global warming with a strong positive feedback.198:199
Not surprisingly, therefore, supercontinent breakup tends to coincide
with climatic warming, as evidenced by the “greenhouse” climates of
the Mesozoic, early Paleozoic, and much of the Tonian,124:200.201 fg|.
lowing the breakup of Pangea, Pannotia, and Rodinia, respectively
(Figure 7). The introduction of large amounts of CO; into the oceans
during supercontinent breakup and dispersal has also been linked
to increased carbon burial and black shale abundance,’® while the
increased run-off of terrigenous nutrients in warmer climates has been
coupled to oceanic anoxia. 202203

An additional climatic influence of supercontinent breakup comes
from its proposed link to stepwise increases in atmospheric oxygen,
possibly as a consequence of enhanced marine productivity resulting
from an increase in the erosional release to the oceans of nutrients,
such as bioproductivity-limiting phosphorus.”® Like CO,, atmospheric
O, levels are thought to have had a significant impact on long-term
global climate,2%4 even though oxygen is not a greenhouse gas. This is
because rising O, levels result in an increase in atmospheric density
and, hence, greater scattering of incoming solar radiation and con-
sequent reduction in surface evaporation. As a result, precipitation
decreases, humidity levels fall, and cooler temperatures ensue because
less heat is trapped by water vapor, which is a strong greenhouse gas.

Increased atmospheric O, levels might also be expected during peri-
ods of enhanced organic carbon burial, such as those proposed to
accompany the rapid sedimentation of supercontinent breakup and
dispersal.’®117 Conversely, decreased atmospheric O, levels should
accompany the increased chemical weathering of supercontinent
amalgamation and breakup because the chemical reactions involved
are largely oxidative.294

Influence on mantle plumes and LIPs

Since supercontinent breakup requires continents to rift, the super-
continent cycle has long been linked to mafic dike swarms and
LIPs, 44961205206 and through their emplacement, to the activity
of mantle plumes. 525860207208 Jncertainty continues to exist as
to whether the timing of LIP events (Figure 9) coincides with the
breakup of supercontinents, 461205209 or their amalgamation,*%:206

or both,137.138210 in part because the timing and number of pre-
Pangean supercontinent amalgamation and breakup events remain
poorly constrained?!? even while the dating of LIP events has become
increasingly precise.553142 However, while evidence has been pre-
sented that questions the relationship,138.212213 recent time-series
analysis suggests a cyclicity in both continental and oceanic LIPs and
accompanying plume activity that is both comparable to that of the
supercontinent cycle and corresponds closely to periods of super-
continent rifting and breakup.€° This is consistent with the idea that
supercontinent amalgamation works to trigger mantle plumes at the
core-mantle boundary;5%128 3 proposition that finds support in the
correlation between the reconstructed positions of Mesozoic LIPs and
the margins of the African (Tuzo) LLSVP, which has been identified at
the core-mantle boundary on the basis of seismic tomography, and
which is centered over the former position of Pangea.214-216

LIPs and climate

Mantle plumes can, in and of themselves, affect climate simply by ther-
mally uplifting the lithosphere and thereby changing global sea level
and weathering-mediated atmospheric CO, levels.217218 The influ-
ence of LIPs on global climate, however, stems from the voluminous
volcanic activity with which they are associated, the effect of which can
cause both climatic warming and cooling. The immediate effect of this
volcanism is one of brief regional or global cooling as a result of the dis-
persal and absorption of solar radiation by fine volcanic ash and H,SO,4
aerosols vented to the stratosphere during explosive eruptions.21?
However, the most dramatic climatic effect of LIPs is one of long-term
global warming due to the increased magmatic venting of greenhouse
gases, such as CO, and CH,.1#* The introduction of such gases to the
atmosphere during supercontinent rifting and breakup would act to
boost those generated by the decrease in continental weathering asso-
ciated with breakup-related sea level rise, further enhancing global
warming. Depending on the rock-type, contact metamorphism associ-
ated with LIP magmatism can also release huge volumes of greenhouse
gases to the atmosphere.??0 In fact, these may play a leading role
in global warming, given that the dominant LIP magma is relatively
gas-poor tholeiitic basalt.
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In addition to their climatic impact, LIP magmatism and contact
metamorphism liberate large volumes of toxic gases, such as SO, and
F, so it is not surprising that Phanerozoic LIP flood volcanism has
long been correlated with mass extinctions (Figure 10).88144.221,222
A strong correlation exists, for example, between the Yakutsk-
Vilyui, 223224 Emeishan,22> Siberian Traps,226227 CAMP228 Karoo-
Ferrar,2? and Deccan Traps23? LIP events and mass extinctions in
the Late Devonian (Frasnian-Famennian), Middle Permian (Capita-
nian), end-Permian, end-Triassic, Early Jurassic (Toarcian), and end-
Cretaceous, respectively.231 A temporal link also exists between the
final pulses of the Central lapetus Magmatic Province (CIMP)143
and the extinction of the Ediacaran fauna immediately prior to the
Cambrian explosion.232

However, the long-term warming influence of major LIP events may
be followed, or interrupted, by abrupt cooling. It has been argued, for
example, that the equatorial continental paleogeography of the Cryo-

genian, which would have favored cool global climates as a result of
climate-enhanced chemical weathering and organic carbon burial, 233
may have been driven into runaway global glaciation of the Sturtian
Snowball Earth by the weathering of extensive LIP continental flood
basalts erupted throughout the break-up of Rodinia, such as those
associated with the Gunbarrel (c. 780 Ma), Mundine Well (c. 755 Ma),
and Franklin (c. 723 Ma) provinces.145234235 Donnadieu et al.145 fur-
ther suggest that this may also have been the case for the Marinoan
Snowball Earth.

Other factors

According to Jellinek et al..2* an additional influence of the superconti-
nent cycle on global climate may lie in its control on the degree to which
warm subcontinental mantle is globally mixed, since the impact of
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volcanism and weathering on Earth’s long-term carbon cycle is mod-
ulated by lateral ocean-continent variations in mantle temperature.
Their calculations suggest that supercontinents girdled by subduction
zones foster lateral ocean-continent mantle temperature variations
because mixing of insulated subcontinental mantle is inhibited. As a
result, outgassing of CO, from mid-ocean ridges is reduced, giving rise
to cold climates and icehouse/hothouse climate variability like that
associated with Rodinia. Conversely, long-lived ice-free climates, like
that associated with Nuna/Columbia, are features of thorough mantle
thermal mixing.

The supercontinent cycle can also influence climate solely as aresult
of the changes it makes in the distribution of continents and oceans. By
applying a climate system model to the breakup of Pangea, for exam-
ple, Tabor et al.23¢ have shown that opening of an ocean basin such as
the Atlantic fosters humidification of the tropics, large-scale reorgani-
zation of tropical circulation, and both regional and global changes in
temperature. Weaker tropical easterlies and reduced upwelling warm
the equatorial ocean, while increased moisture and cloud formation in
the tropics cool both land and sea.

Finally, as pointed out by Foley and Driscoll,237 plate tectonics, as
governed by the supercontinent cycle, is itself influenced by climate.
Cool climates, which the cycle maintains through its plate tectonic con-
trol of the long-term carbon cycle, act to enhance stresses within the
lithosphere and promote its hydration and weakening that, in turn,
enable plate tectonics to take place. Hence, the supercontinent cycle
may have played a significant role in ensuring Earth maintained its
status as a habitable planet.

CONCLUSIONS

The supercontinent cycle, by which Earth history is viewed as having
been punctuated by the episodic assembly and breakup of supercon-
tinents, has, through its management of plate motion, planetary geog-
raphy, sea level, and mantle circulation, profoundly influenced Earth's
long-term climatic history. By necessitating alternating episodes of
supercontinent assembly, during which the continents approach one
another, and breakup, during which they disperse, the cycle has gov-
erned Earth's paleogeography and, in doing so, the regional climate
experienced by any given continent at any given time.%? By exercis-
ing control over the drawdown of CO, and other greenhouse gases
from the atmosphere through its influence on sea level and chemical
weathering, and the input of these gases to the atmosphere through
its influence on plate tectonics and magmatism, the cycle has medi-
ated Earth'’s long-term global record of alternating warm (greenhouse)
and cold (icehouse) climates. A strong coupling also appears to exist
between supercontinents and mantle dynamics that would link the
cycle to mantle plumes and LIPs, and, consequently, the climatic effects
of their volcanic emissions, which have been associated with mass
extinctions, oceanic anoxia, and catastrophic changes to the surface
environment. The proposed tendency for true polar wander to center
supercontinents on the equator as a result of centrifugal forces acting
on their excess mass may also set the stage for extreme global cooling

(Snowball Earth) through the enhanced drawdown of atmospheric CO,
caused by the equatorial weathering of breakup-related LIP basalts. It
is, therefore, likely that the supercontinent cycle has, over the course of
Earth history, played a dominant role in governing the climate of indi-
vidual continents, the planet’s long-term warming and cooling trends,
and its occasional climatic extremes, while, at the same time, maintain-
ing surface conditions sufficiently hospitable to ensure the continuity
of life.
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