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A B S T R A C T   

Following a decade during which its presence was widely accepted, the existence of the putative Ediacaran 
supercontinent Pannotia has come into question since the turn of the millenium, largely due to the geochro-
nology of Ediacaran-Cambrian orogens, which suggests that the supposed landmass had begun to break up well 
before it was fully assembled. Paleomagnetic data from this time interval have been used to both support and 
refute the existence of Pannotia, but are notoriously equivocal. Proxy signals for Ediacaran-Cambrian super-
continent assembly and breakup, although collectively compelling, can be individually challenged, and efforts to 
detect the mantle legacy expected of supercontinent amalgamation, while promising, are inconclusive. Yet the 
existence of Pannotia is central to the nature, duration and evolution of the supercontinent cycle, and dictates the 
cycle’s geodynamic pathway from the breakup of Rodinia to the assembly of Pangea. Hence, the question of 
Pannotia’s existence, like that of Hamlet, is one of fundamental importance and demands far more attention than 
it has hitherto received.   

1. Introduction 

Over the past two decades, the putative Ediacaran-Cambrian super-
continent Pannotia has introduced an ironic twist in the notion, 
embodied by the concept of the supercontinent cycle, that a significant 
proportion of Earth history has been underscored by the episodic as-
sembly and breakup of supercontinents, at which time most of the 
continents are assembled into a single landmass. Of the various pre- 
Pangean supercontinents that have gained recognition during this 
period (e.g., Rodinia, Nuna/Columbia, Kenorland), Pannotia might be 
expected to be best understood since it was the first to be proposed 
(Valentine and Moores, 1970) and is geologically the most recent. It was 
also the candidate for which the case was considered strongest when the 
supercontinent cycle was first advanced four decades ago (Worsley 
et al., 1984, 1985; Nance et al., 1986, 1988). But at the very time that 
the supercontinent cycle has gained popularity, the existence of Pan-
notia has come into question. Cases have been made both in favor (e.g., 
Nance and Murphy, 2019; Murphy et al., 2021) and against (e.g., Evans, 
2021) the reality of this supercontinent, and in many studies its exis-
tence is acknowledged (e.g., Golonka et al., 2006; Scotese, 2009, 2021; 
Kröner et al., 2021). But in an increasing number of recent studies, 
Pannotia is either disputed (e.g., Oriolo et al., 2017), discounted (e.g., 

Merdith et al., 2017; Merdith et al., 2021; Li et al., 2019; Cawood et al., 
2021; Condie et al., 2021; Mitchell et al., 2021; Pesonen et al., 2021; 
Wang et al., 2021), or ignored. 

The implications are profound. The existence or non-existence of 
Pannotia not only dictates the interval over which the supercontinent 
cycle takes place, but it also determines the geodynamic pathway fol-
lowed by the cycle from the breakup of its predecessor, Rodinia, to the 
assembly of its successor, Pangea, more than 500 million years later. 

In this article, we briefly outline the origin of Pannotia’s fall from 
grace and review the evidence in favor of its existence and the argu-
ments against it. We then examine the ramifications of either outcome 
and suggest possible avenues by which the vital issue of its existence 
might be resolved. 

2. Background 

The existence of an end-Precambrian supercontinent was first sug-
gested on the basis of faunal diversity by Valentine and Moores (1970, 
1972) in a pair of pioneering papers linking such diversity to patterns of 
continental breakup and assembly, and accompanying changes in sea 
level (Fig. 1). Recognizing that marine regression and increased sea-
sonality during continental assembly should cause both sea level and 
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faunal diversity to be lowest following the assembly of a supercontinent, 
as evidenced by Pangea (their Pangaea II), they argued that a similar 
pattern associated with Pan African-Baikalian continental assembly 
pointed to the existence of an earlier (“Eocambrian”) supercontinent 
(their Pangaea I). 

The existence of a supercontinent in the late Neoproterozoic first 
found paleomagnetic support in Morel and Irving (1978), although Piper 
(1976) had previously proposed the existence of a supercontinent 
throughout much of the Proterozoic (spanning the tenure of both 
Rodinia and Pannotia), and others had suggested that a supercontinent 
had assembled in the late Mesoproterozoic and had broken up during the 
Neoproterozoic (e.g., Stewart, 1976; Sawkins, 1976). The breakup of a 
late Neoproterozoic supercontinent at 625-555 Ma was subsequently 
advanced by Bond et al. (1984) based on tectonic subsidence curves for 
early Paleozoic passive margins in North and South America, Australia 
and the Middle East. It was also a proposed supercontinent enduring 
until the Ediacaran-Cambrian transition that McMenamin and McMe-
namin (1990) called Rodinia (from the Russian rodit, to beget) because it 
incubated the earliest animals and spawned the Phanerozoic continents. 

With the moniker Rodinia subsequently appropriated as the name of 
an earlier, Meso-Neoproterozoic supercontinent (see Evans, 2013, 2021, 
for brief historical discussions of the nomenclature), the proposed late 
Neoproterozoic supercontinent, referred to as “Vendia” by Duncan and 
Turcott (1994) and “Greater Gondwanaland” by Stern (1994), was re- 
named Pannotia (from the Greek for “all southern”) by Powell (1995). 
The name was derived from the term “Pannotios” coined by Stump 
(1987) for a cycle of Neoproterozoic sedimentation and tectonic activity 
common to the southern (Gondwana) continents that ended with the 
formation of a supercontinent. A full reconstruction of the configuration 
of this late Neoproterozoic supercontinent that included Siberia (Fig. 2a) 
was first provided by Dalziel (1991, 1992) and figured prominently in 
his subsequent synthesis of Neoproterozoic-Paleozoic geography and 
tectonics incorporating all available paleomagnetic, geological and 
faunal data (Dalziel, 1997). Subsequent reconstructions for the Edia-
caran are shown in Fig. 2b-g. 

2.1. Paleomagnetic and geochronological uncertainties 

Pannotia initially enjoyed broad recognition as a potential super-
continent, but since 2000, its authenticity has been brought into ques-
tion. Paleomagnetism and geochronology, when applied to the global 
tectonostratigraphic record, are the two principal data sources upon 
which the existence of past supercontinents usually hinge. An initial 
paleomagnetic challenge to Pannotia’s existence was raised by an 
apparently wide separation between near-equatorial Laurentia and the 
south-polar Amazonian sector of Gondwana at 550 Ma (McCausland and 
Hodych, 1998), suggesting that the Iapetus oceanic tract long preceded 
Gondwana assembly and that the Appalachian rift-drift transition 
merely marked the separation of a ribbon-like terrane into that realm 
(Cawood et al., 2001). However, the Ediacaran-Cambrian interval is 
notorious for highly dispersed paleomagnetic datasets that could hint at 
non-uniformitarian processes such as oscillatory inertial interchange 
true polar wander (Evans, 1998) or a nonuniformitarian magnetic field 
(Abrajevitch and Van der Voo, 2010; Halls et al., 2015; Meert et al., 
2016; Bono et al., 2019; Thallner et al., 2021), or both of these processes 
acting in concert. Consequently, whereas some paleomagnetic re-
constructions of the past two decades are supportive of the supercon-
tinent (e.g., Dalziel, 1997, 2013; Meert and Lieberman, 2004; Scotese, 
2017) (Figs. 2a, c, f), others are equivocal (e.g., Cordani et al., 2003; 
Rino et al., 2008; Robert et al., 2018) (Figs. 2b, d), and yet others refute 
its existence (e.g., Li et al., 2008; Merdith et al., 2017, 2021; Zhao et al., 
2018; Wen et al., 2020; Robert et al., 2020, 2021; Evans, 2021) (Figs. 2e, 
g). Given these considerations, it has not been possible to substantiate 
Pannotia paleomagnetically. 

At the same time, increasingly precise absolute age constraints on 
Ediacaran-Cambrian stratigraphy and tectonics opened the possibility 
that continental breakup began well before the landmass was fully 
assembled. As Hoffman (1991) presciently described the emerging 
geochronological debate, “not surprisingly, some question the reality of 
a supercontinent that may have disintegrated before it had formed.” The 
putative assembly of Pannotia is attributed to Pan African-Brasiliano 
orogenesis and the uniting of Gondwana cratons, to which Laurentia, 
Baltica and perhaps Siberia should have remained attached (e.g., Dal-
ziel, 1997; Meert and Van Der Voo, 1997; Blakey, 2008; Scotese, 2009). 
Late Neoproterozoic continental breakup, on the other hand, took place 
with the separation of Laurentia, Baltica and Siberia from the West 
Gondwana cratons, reflecting the opening of the Iapetus and Tornquist 
oceans (e.g., Cawood et al., 2001). The timing of the collisional 
orogenesis of assembly spans the broad interval ca. 700-500 Ma, with 
peaks at ca. 650-600 Ma and 570-530 Ma, based on the ages of associ-
ated magmatism and metamorphism (e.g., Meert, 2003; Kröner and 
Stern, 2004; Oriolo et al., 2017; Schmitt et al., 2018), and inferred from 
the age spectra of detrital zircon and monazite in modern river systems 
(e.g., Rino et al., 2008; Itano et al., 2016). 

The breakup interval of ca. 625-555 Ma documented by Bond et al. 
(1984) corrects to ca. 605-520 Ma in accordance with the revised 
geological timescale of Gradstein et al. (2020). Precise radiometric ages 
for rift-related magmatic rocks broadly concur with this estimate. On the 
eastern margin of Laurentia, magmatic activity spanning the interval ca. 
615-550 Ma is traditionally linked to Iapetus Ocean opening (Kamo 
et al., 1989), although there remains the possibility that only a ribbon- 
like continental fragment dispersed at that time into an already-wide 
proto-Iapetan oceanic tract developed earlier, in mid-Neoproterozoic 
time (Cawood et al., 2001; Waldron and van Staal, 2001; Chew et al., 
2008; Escayola et al., 2011; Casquet et al., 2012; Rapela et al., 2016; 
Robert et al., 2020, 2021). Such a scenario would seem to preclude a 
conjoined landmass containing Laurentia and a united Gondwana, but 
even the traditional model, in which the passive margin succession 
along eastern margin of Laurentia is related to Iapetus opening, merits 
scrutiny of the geochronological data for testing possible Pannotia 
connections. Evidence of rifting in eastern Laurentia, southwestern 
Baltica, and Oaxaquia in the form of mafic dikes is as old as 620-615 Ma 

Fig. 1. Phanerozoic correlation of biological diversity and patterns of conti-
nental assembly and breakup (modified from Valentine and Moores, 1970). A =
Ediacaran suturing of Pan African-Baikalian system (1) and formation of Pan-
notia (their Pangaea I); B = Cambrian-Ordovician breakup to produce Paleozoic 
oceans (2 = Iapetus, 3, 4 = Rheic, 5 = paleo-Uralian); C = Silurian-Devonian 
Caledonian suturing; D = Pennsylvanian-Permian Appalachian-Variscan su-
turing; E = Permian-Triassic Uralian suturing to form Pangea (their Pangaea II); 
F = Triassic-Lower Jurassic opening of Tethys; G = Cretaceous-Recent Tethys 
closure and opening of the Atlantic. a = Gondwana, b = Laurasia, c = North 
America, d = South America, e = Eurasia, f = Africa, g = Antarctica, h = India, j 
= Australia. 
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(Kamo et al., 1989; Kamo and Gower, 1994; Bingen et al., 1998; Weber 
et al., 2019), but magmatism is likely to have remained within a rift 
setting until ca. 570-550 Ma (e.g., Puffer, 2002). The youngest rift- 
related magmatism is ca. 555-550 Ma in Newfoundland (Cawood 
et al., 2001), ca. 550 Ma in the Central Iapetus Magmatic Province 
(CIMP; e.g., Ernst et al., 2013; Youbi et al., 2020) of the northern Ap-
palachians and Morocco, and ca. 540-530 Ma in the Wichita igneous 
province of southern Oklahoma (Hanson et al., 2013; Wall et al., 2021). 
Collectively, these data suggest a southward propagating rift-drift 
transition starting at ca. 540-535 Ma. The earliest drift-related sedi-
mentation is probably no older than ca. 525-520 Ma (Cawood et al., 
2001). Mafic magmatism attributed to rift and drift leading to the 
opening of the Tornquist Ocean has been dated at ca. 550 Ma (Compston 
et al., 1995; Vidal and Moczydlowska, 1995; Krzywiec et al., 2018), 
which broadly coincides with some estimates for the onset of spreading 
between Siberia and Laurentia (e.g., Sears and Price, 2003; Merdith 
et al., 2017). 

The assembly of Pan African and related orogens clearly began well 
before the opening of these oceans. But was it complete by this time? 
Gondwana was largely assembled by ca. 550 Ma (Meert, 2003; Meert 

and Lieberman, 2008), but uncertainty surrounds the timing of its final 
amalgamation. Consequently, while many of the younger Pan African 
ages date post-tectonic events, the possibility remains that important 
tectonic elements of Gondwana did not finally assemble until the 
Cambrian. Among these are the São Francisco and Rio de Plata cratons 
and their assembly to Amazonia at ca. 540-510 Ma (e.g., Tohver et al., 
2006, 2010; Schmitt et al., 2008; McGee et al., 2018; Rapalini, 2018), 
and those elements of eastern Gondwana (Australia-East Antarctica) 
that were assembled during the ca. 570-500 Ma Kuunga orogeny (e.g., 
Meert, 2003; Collins and Pisarevsky, 2005; Boger, 2011; Schmitt et al., 
2018). Hence, it remains unclear whether there is leeway for the 
amalgamation of a short-lived supercontinent sometime in the interval 
ca. 620-550 Ma. 

So while a wealth of data indicates that the Ediacaran-Cambrian 
interval starts with widespread orogenesis and ends with widespread 
rifting, serious questions remain as to whether the period witnessed the 
assembly and breakup of a supercontinent. In the absence of compelling 
paleomagnetic data and a clear geochronologic record, cases for (Nance 
and Murphy, 2019) and against (Evans, 2021) the existence of Pannotia 
have turned to the interpretation of proxy signals. 

Fig. 2. Continental reconstructions for the Ediacaran at: (a) ca. 545 Ma (Dalziel (1997), (b) ca. 600–580 Ma (Cordani et al., 2003), (c) ca. 580 Ma (Meert and 
Lieberman, 2004), (d) ca. 540 Ma (Rino et al., 2008), (e) ca. 600 Ma (Li et al., 2008), (f) ca. 600 Ma (Scotese, 2017), and (g) ca. 600 Ma (Merdith et al., 2017). (a) 
Horizontal shading = East African collisional orogen involving East and West Gondwana; thick lines = incipient mid-Iapetus ridges, crosses with 95% confidence 
circles = paleomagnetic poles; AM = Amazonia, B = Baltica, C = Congo, D-R-A = Delamarian–Ross arc, E = Ellsworth-Whitmore, ESMT = hypothetical Ells-
worth–Sonora–Mojave transform, F = Florida, F/MP = Falkland–Malvinas Plateau, K = Kalahari, MAOT = hypothetical Malvinas–Alabama–Oklahoma transform, R 
= Rockall, RP = Rio de la Plata, S = Siberia; SF = São Francisco, SV = Svalbard, TxP = hypothetical Texas plateau, WA = West African Craton, EA = East Avalonia, 
WA = West Avalonia. (b) A = Australia, AM = Amazonia, AN = Antarctica, B = Baltica, BTS = Borborema–Trans-Sahara, CSF = Congo–São Francisco, I = India, K =
Kalahari, L = Laurentia, LP = Rio de la Plata, M = Madagascar, PA = Pampea, PR = Paraná, RA = Rio Apa, WA = West Africa. (c) Ama = Amazonia, Ant =
Antarctica, Ara = Arabia, Arm = Armorica, Aus = Australia, Ava = Avalonia, Bal = Baltica, Con = Congo, Ind = India, Kal = Kalahari, Lau = Laurentia, Rio = Rio de 
la Plata, São = São Francisco, Sib = Siberia, Waf = West Africa. (d) Amz = Amazonia, Ant = Antarctica, Au = Australia, Bal = Baltica, Co = Congo, Ind = India, Kal =
Kalahari, Lau = Laurentia, Rio = Rio de la Plata, SF = São Francisco, Sib = Siberia, WAf = West Africa. (e) East Ant = East Antarctic, (f) A = Pannotia, Ba = Barents, 
Grn = Greenland, GT India = Greater India, Ib = Iberia, Indo = Indochina, Lh = Lhasa, Lut = Lut Block (Iran), Md = Madagascar, Mx = northern Mexico, QT =
QiangTang, Sbm = Sibumasu (Siam, Burma, Malaysia, and Sumatra), Trm = Tarim. (g) Am = Amazonia, Az = Azania, Ba = Baltica, Bo = Borborema, By = Bayuda, C 
= Congo, Ca = Cathaysia (South China), Ch = Chortis, G = Greenland, H = Hoggar, I = India, K = Kalahari, L = Laurentia, Ma = Mawson, NAC = North Australian 
Craton, N-B = Nigeria-Benin, NC = North China, Pp = Paranapanema, Ra = Rayner (Antarctica), RDLP = Rio de la Plata, SAC = South Australian Craton, SF = São 
Francisco, Si = Siberia, SM = Sahara Metacraton, WAC = West African Craton. For further details on these reconstructions, the reader is refered to the original 
publication. 
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2.2. Proxy evidence for supercontinent assembly and breakup 

When supercontinents are viewed not as isolated phenomena, but as 
a stage in the supercontinent cycle, a variety of tectonic, climatic and 
biogeochemical signals associated with the cycle can be used to infer 
intervals of supercontinent amalgamation and break-up (e.g., Worsley 
et al., 1985; Bradley, 2011; Hawkesworth et al., 2010). Prominent 
among these signals are collisional orogeny, continental rifting, major 
changes in sea level and climate, and major extinctions and evolutionary 
radiations. Additionally, parameters such as continental perimeter/area 
and arc length (e.g., Merdith et al., 2019) are likely to become pivotal 
proxies as paleogeographic reconstructions improve. 

2.2.1. Collisional orogenesis and continental rifting 
Of all supercontinent proxies, the most obvious are the association of 

worldwide collisional orogenesis, zircon age peaks and granitoid mag-
matism with continental assembly (e.g., Condie and Aster, 2013); and 
the association of mafic dike swarms, rift magmatism and large igneous 
provinces (LIPs) with continental breakup and dispersal (e.g., Yale and 
Carpenter, 1998; Ernst et al., 2008, 2013; Condie et al., 2021). Indeed, it 
was through interpretation of the geologic significance of these proxy 
records that the supercontinent cycle was first proposed (Fischer, 1984; 
Worsley et al., 1984, 1985). For Pannotia, the associated Pan African- 
Brasiliano collisional orogens, which climaxed over the interval ca. 
650-530 Ma, were some of the most widespread in Earth history (Rino 
et al., 2008). This global-scale orogenic activity is coeval with a strong 
zircon age peak at 630-540 Ma (e.g., Puetz et al., 2018) (Fig. 3) and a 
major cluster of orogenic granitoid ages at 650-550 Ma (Condie and 
Aster, 2010; Condie and Aster, 2013). Conversely, evidence of conti-
nental rifting occurs in the form of mafic dike swarms, most notably in 
Laurentia and Baltica (e.g., Cawood et al., 2001; Weber et al., 2019), rift- 
related igneous activity (see Cawood et al., 2001, Fig. 7) and LIPs such as 
the Wichita (e.g., Hanson et al., 2013; Wall et al., 2021), Baltoscandian 
(e.g., Kumpulainen et al., 2021) and Central Iapetus Magmatic Province 
(e.g., Ernst et al., 2013; Youbi et al., 2020), the ages of which collectively 
span the interval ca. 615-530 Ma. 

On the assumption that the timing of supercontinent amalgamation 
is recorded by the onset of collisional orogenesis rather than its termi-
nation, and that supercontinent breakup is diachronous, these tempo-
rally overlapping proxies have been considered permissive of the 
assembly and breakup of a short-lived supercontinent sometime in the 
interval 620-550 Ma (e.g., Nance and Murphy, 2019). The counterar-
gument, summarized by Evans (2021), contends that the chronologic 
constraints only barely permit the existence of Pannotia and, then, only 

under the most favorable of tectonic interpretations. These constraints 
raise the question as to whether Pannotia, if it existed, survived for a 
sufficient length of time to have any effect on the broader Earth system, 
including mantle convection patterns that are geodynamically con-
nected to plate motions and the supercontinent cycle. Furthermore, 
Ediacaran orogenesis, and the zircon and granitoid age peaks with 
which it is associated, could simply record the assembly of Gondwana 
rather than a full Pannotia supercontinent. Likewise, the Cambrian 
rifting events described above can be interpreted as either a continua-
tion of the mid-Neoproterozoic breakup of Rodinia (e.g., Li et al., 2008) 
or merely the separations of smaller continental fragments unrelated to 
classic notions of the supercontinental cycle. Indeed, the early Paleozoic 
LIP record is modest in comparison with those associated with the 
fragmentation of both mid-Neoproterozoic Rodinia and Mesozoic Pan-
gea (Ernst et al., 2021; Condie et al., 2021). 

2.2.2. Global sea level 
Supercontinent assembly and breakup should also be accompanied 

by major changes in global sea level (e.g., Fischer, 1984; Worsley et al., 
1984; Heller and Angevine, 1985). Supercontinent amalgamation 
should be associated with very low sea level if supercontinents are 
thermally uplifted as a result of mantle insulation and continental lid 
epeirogeny (e.g., Coltice et al., 2007; Ganne et al., 2016; Guillaume 
et al., 2016) or the rise of mantle plumes beneath them (e.g., Zhong 
et al., 2007; Li and Zhong, 2009; Mitchell et al., 2021). Conversely, 
supercontinent breakup should be associated with rapid sea level rise as 
the dispersing continental fragments cool and subside and new oceans 
open at the expense of old ones with a consequent increase in ridge 
volume (e.g., Cogné et al., 2006; Wright et al., 2020). Conventional sea 
level curves (e.g., Vail et al., 1977; Hallam, 1992; Haq and Schutter, 
2008) broadly support this relationship for Pannotia (Nance and Mur-
phy, 2019), with the pattern of Ediacaran to Ordovician sea level change 
– very low sea level followed by rapid sea level rise – being similar to the 
Permian-Cretaceous pattern of sea level change associated with the 
amalgamation and breakup of Pangea (Fig. 4a). 

However, as pointed out by Evans (2021), traditional estimates of 
Phanerozoic sea level carry large uncertainties, including an assumption 
of continental hypsometry (e.g., Hallam, 1992; Algeo and Seslavinsky, 
1995) and the weighting of various cratonic records (e.g., Conrad, 
2013). Furthermore, recent estimates of Phanerozoic sea level that 
attempt to avoid these potential pitfalls, such as those of Vérard et al. 
(2015), which employs a bathymetry based on global plate re-
constructions, and van der Meer et al. (2017), which uses Sr isotopic 
data as a proxy for sea level (Fig. 4b), show patterns of sea level change 

Fig. 3. Global U-Pb age-histograms (30-Myr bin-sizes) weighted by area and converted to relative frequency probability (Puetz et al., 2018).  
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at the Ediacaran-Cambrian boundary that are less consistent with the 
existence of Pannotia. Although these estimates are also laden with as-
sumptions, they raise legitimate concerns regarding the fidelity of 
Pannotia’s sea-level proxy record. 

2.2.3. Climate 
Supercontinents can be expected to perturb global climate through 

their influence on silicate weathering (e.g., Marshall et al., 1988; Kump 

et al., 2000; Goddéris et al., 2014). Following supercontinent amal-
gamation, silicate weathering of an epeirogenically uplifted supercon-
tinent and the orogenic belts associated with its assembly should lead to 
drawdown of atmospheric carbon dioxide and consequent climatic 
cooling. Conversely, supercontinent breakup should be associated with 
global warming because the dispersing continental fragments flood as 
they cool and subside, reducing silicate weathering and allowing at-
mospheric carbon dioxide levels to build (e.g., Nance et al., 1988). This 
pattern of icehouse climate followed by greenhouse climate (Fig. 5), 
which is exemplified by the Carboniferous-Permian amalgamation and 
Mesozoic breakup of Pangea (e.g., Goddéris et al., 2017a; Scotese et al., 
2021), also broadly occurs in the Ediacaran and Early Paleozoic (Craig 
et al., 2009), consistent with the existence of Pannotia (Nance and 
Murphy, 2019). 

Countering this pattern and its application to Pannotia (Evans, 
2021), the protracted Sturtian glaciation (ca. 717-663 Ma; e.g., Rooney 
et al., 2015; Cox et al., 2018; Lan et al., 2020) demonstrably coincides 
with the breakup of the supercontinent Rodinia rather than its amal-
gamation (e.g., Li et al., 2008, 2013), whereas the shorter-lived Mar-
inoan glaciation (ca. 650-635 Ma; e.g., Rooney et al., 2015; Hoffman 
et al., 2017; Bao et al., 2018) occurred prior to the proposed timing of 
Pannotia amalgamation. Likewise, refined chronostratigraphy (e.g., 
Boucot et al., 2013; Evans, 2021) suggests that the Late Paleozoic 
Gondwana glaciation likely preceded the peak of Pangea’s amalgam-
ation. Evans (2021) has further cautioned that, whereas it can be argued 
that the venting of carbon dioxide associated with the emplacement of 
LIPs during rifting might transiently add to the warming trend following 
supercontinent breakup (e.g., Ernst and Youbi, 2017), in the longer 
term, the effect of LIP basalt weathering should be one of climatic 
cooling (e.g., Donnadieu et al., 2004). 

2.2.4. Biological diversity 
Given the profound effects of the supercontinent cycle on global sea 

level, and the direct connectivity of continents and their margins (e.g., 
Worsley et al., 1984; Cogné et al., 2006; Wright et al., 2020), 

Fig. 4. Estimates of Phanerozoic sea-level change: (a) Sea-level curves of 
Hallam (1992), Haq and Al-Qahtani (2005), Miller et al. (2005) and Haq and 
Schutter (2008) compared with timing of Pangea assembly, tenure and break- 
up (after Conrad, 2013), and, in addition, (b) those of Algeo and Seslavinsky 
(1995) based on Paleozoic modelling using alternative ‘analogues’ for conti-
nental hypsometry based on modern elevation profiles, and van der Meer et al. 
(2017) based on Sr isotopic data (modified after Evans, 2021). Sauk trans-
gression of Laurentia stylized from Miller et al. (2005). 

Fig. 5. Global climate, episodes and extent of continental glaciation, and atmospheric CO2 levels relative to present day for the past billion years (from Craig et al., 
2009). Maximum ice cover during the main periods of glaciation (shown in degrees of latitude from the poles), is inferred from the preservation of glacigenic 
sediments and climate modelling (after Crowell, 1999). Global climate change (red and green identifying periods of warm and cool climate, respectively) based on 
geological data summarized by Coppold and Powell (2000). 
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supercontinent amalgamation and breakup can be expected to have a 
major influence on biological diversity (e.g., Valentine and Moores, 
1970, 1972). A variety of factors are likely to promote extinctions during 
supercontinent amalgamation, including increased competition among 
species as the number of independent continents decreases, and loss of 
much of the shallow-marine habitat as mantle insulation and continental 
lid epeirogeny combine to raise the continental shelves above sea level 
(e.g., Haq and Schutter, 2008; Vérard et al., 2015). Conversely, super-
continent breakup is likely to be accompanied by major evolutionary 
radiation and enhanced marine productivity as a result (among other 
causes) of the creation of new, underpopulated shallow-marine habitat 
as sea level rises and the continents flood (Nance et al., 1988; Peters and 
Gaines, 2012), and the increased release of nutrients from continental 
weathering (e.g., Campbell and Allen, 2008; Zhu et al., 2022). 

In support of this relationship, the major end-Permian extinction that 
defines the end of the Paleozoic nearly coincides with the final amal-
gamation of Pangea, whereas the major biological radiation that char-
acterizes the onset of the Mesozoic coincides with Pangea breakup, as 
evidenced by the total diversity curve for the Phanerozoic (Fig. 6a). 
Likewise, the assembly of Pannotia reportedly coincides with major 
extinctions among stromatolites, acritarchs and other palynoflora (e.g., 
Grey et al., 2003; Young, 2015; Peters et al., 2017), and was followed 
during breakup by a rapid increase in diversity, first with appearance of 
Ediacara biota (e.g, Narbonne and Gehling, 2003; Meert and Lieberman, 
2008) and then with the Cambrian explosion (e.g., Briggs, 2015; Dar-
roch et al., 2018; Landing et al., 2018; Bowyer et al., 2022). 

Countering this argument, the nature and timing of Pannotia-linked 
extinctions is fraught with uncertainty (Evans, 2021), for example, in 
imprecise taxonomy (Riding, 2011) and uneven preservation (Cohen 
and Macdonald, 2015). In addition, the overall decline in stromatolites 
appears to have started well before the Ediacaran (Peters et al., 2017) 
and the Cambrian explosion may have been initiated in the Ediacaran (e. 
g., Erwin et al., 2011; Schiffbauer et al., 2016; Darroch et al., 2018). 
Furthermore, if the total diversity curve is subdivided into its component 
(Cambrian, Paleozoic and modern) faunal associations (Fig. 6b), the 
two-peaked synoptic curve of Figure 6a can be seen to superimpose 
subsets that, with exception of the Paleozoic fauna, show little similarity 
to the pattern of the overall curve. Finally, climatic and environmental 
deterioration as a consequence of rift-related LIP volcanism may cause 
major extinction events (e.g., end-Triassic) during supercontinent 

breakup (e.g., Blackburn et al., 2013; Bond and Grasby, 2017; Percival 
et al., 2017), which would disrupt any long-term biological radiation. 

2.2.5. Other proxies 
In addition to these conspicuous proxies of supercontinent assembly 

and breakup, there are other, more subtle tracers that include: (i) 
extreme (granulite-UHT, eclogite-HP and HP-UHP) conditions of meta-
morphism during the collisional orogenesis of supercontinent amal-
gamation (Brown, 2007a, 2007b); (ii) negative εHf and elevated δ18O 
values in zircon as a result, respectively, of enhanced crustal recycling 
and reworking of sedimentary material during supercontinent assembly 
(e.g., Collins et al., 2011; Condie and Aster, 2013; Van Kranendonk and 
Kirkland, 2016), and more juvenile εHf values in zircon indicative of 
crustal growth during periods of break-up (Gardiner et al., 2016); (iii) 
major changes in atmospheric composition, including carbon dioxide 
levels and an abrupt increase in oxygen following breakup, possibly as a 
result of enhanced marine photosynthesis associated with increased 
biological activity (Campbell and Allen, 2008; Zhu et al., 2022); (iv) 
major changes in ocean geochemistry including possible 87Sr/86Sr 
maxima in seawater during supercontinent amalgamation and breakup 
due to the erosional influx of strongly radiogenic strontium from 
elevated continental crust coupled with a reduced input of low 87Sr/86Sr 
flux from fewer ocean spreading centers (e.g., Bradley, 2011; Condie and 
Aster, 2013; Goddéris et al., 2017b; van der Meer et al., 2017; Paulsen 
et al., 2022); (vi) major potential negative δ13C excursions indicative of 
a reorganization of the Earth’s carbon cycle in response to the influence 
of supercontinent assembly on life (e.g., Kaufman et al., 1993; Ripper-
dan, 1994; Payne et al., 2004); (vii) low marine platform δ34S during 
amalgamation as a possible result of the sequestering of isotopically 
heavy sulfur in evaporites (Worsley et al., 1985; Worsley and Nance, 
1989; Condie et al., 2001); and (viii) extensive passive margin devel-
opment during the continental dispersal that follows supercontinent 
breakup (Bradley, 2008). 

The assembly and breakup of Pangea is clearly evident in the 
Phanerozoic record of these proxies and it can be argued that the Edi-
acaran record is likewise consistent with the existence of Pannotia 
(Nance and Murphy, 2019). However, as with the more prominent 
proxies, the record of these tracers and their link to supercontinent as-
sembly and breakup is open to alternative interpretations (Evans, 2021). 
It can be argued, for example, that (i) the proxies for supercontinent 
amalgamation reflect the universally accepted assembly of Gondwana 
rather than a full-fledged Pannotia supercontinent; (ii) the interpreta-
tion of the 87Sr/86Sr record in seawater and, to a lesser degree, εHf 
values in zircon is inconsistent with the assembly and breakup of Pangea 
(e.g., Algeo et al., 2015; Van Kranendonk and Kirkland, 2016), negating 
any straightforward link to the supercontinent cycle; (iii) the overall 
Cambrian to Permian decline in zircon εHf and marine 87Sr/86Sr values 
(e.g., Collins et al., 2011; Condie and Aster, 2013; Paulsen et al., 2022) 
argues against a Paleozoic supercontinent cycle; (iv) recent studies of 
atmospheric and marine oxygenation note the limitations of the proxy 
record, the temporal resolution of which is inadequate to be confidently 
linked to any global tectonic setting (Cole et al., 2020; Tostevin and 
Mills, 2020); (v) a variety of causes and interpretation have been pro-
posed to account for the large carbon isotopic variations that charac-
terize the Ediacaran-Cambrian (e.g., Grotzinger et al., 2011; Boyle et al., 
2018; Shields, 2018; Hoffman and Lamothe, 2019); (vi) the marine 34S 
record is more sensitive to pyrite burial than evaporite formation and is 
difficult to interpret due to a complex interplay between oxygenation 
and cycling of carbon, iron and sulfur (Berner, 2006); and (vii) the in-
crease in the length of passive margins attributed to Pannotia breakup is 
modest compared to that accompanying the dispersal of Pangea and 
Rodinia (Bradley, 2008). 

Finally, supercontinent amalgamation is likely to be associated with 
episodes of true polar wander (Evans, 1998, 2003; Zhong et al., 2007; Li 
and Zhong, 2009) as a result of the accompanying change in the dis-
tribution of mass in the Earth’s mantle and lithosphere. True polar 

Fig. 6. Phanerozoic faunal diversity. (a) Total number of marine genera (from 
Sepkoski Jr., 1982), and (b) family-level diversity curves for three component 
(Cambrian, Paleozoic and Modern = Mesozoic/Cenozoic) faunal associations 
identified by Sepkoski Jr. (1984) (from Evans, 2021). 
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wander occurs in response to the need for Earth’s axis of maximum 
moment of inertia to be aligned with its rotation axis in order to mini-
mize the planet’s rotational energy (Goldreich and Toomre, 1969). The 
effect is to bring positive mass anomalies to the equator, which, in the 
case of supercontinents, brings high-latitude continental masses to low 
latitudes. 

During the Ediacaran, from 615 Ma to 590 Ma and, again, from 575 
Ma to 565 Ma, such equatorial movements are seen in the apparent polar 
wander paths of several continents, notably Laurentia, Baltica and West 
Africa (e.g., Abrajevitch and Van der Voo, 2010; Robert et al., 2017). 
Explanations for these phenomena include unreliable paleomagnetic 
and/or age data (e.g., Hodych et al., 2004), an unstable geodynamo (e. 
g., Abrajevitch and Van der Voo, 2010; Halls et al., 2015; Meert et al., 
2016; Bono et al., 2019; Thallner et al., 2021), and rapid true polar 
wander (e.g., Evans, 2003; McCausland et al., 2011; Mitchell et al., 
2011). Major episodes of true polar wander during the Ediacaran would 
be consistent with the amalgamation of a supercontinent at that time. 
However, to what extent the highly dispersed paleomagnetic datasets 
characteristic of the Ediacaran-Cambrian reflect true polar wander, 
rather than a nonuniformitarian magnetic field or some combination of 
these processes, is uncertain. 

Consequently, while the proxy signals for Ediacaran supercontinent 
assembly and breakup, and hence the existence of Pannotia, might be 
collectively strong, they cannot be considered definitive, and it can be 
argued that the case for Ediacaran continental amalgamation is stronger 
than that for Early Paleozoic breakup. It can also be argued that, if not a 
supercontinent, what global tectonic regime promoted the major 
changes to Earth’s surface environment that characterize the Ediacaran, 
some of which are among the most profound in Earth history (e.g., 
Dalziel, 1997; McKenzie et al., 2014; Spence et al., 2016)? Yet the past 
50 m.y. has likewise been a period of profound change in Earth systems, 
including climatic variation, evolutionary radiation, widespread 
orogenesis and a rapid rise in the strontium ration in seawater (e.g., 
Crame and Owen, 2002; Rosenbaum and Lister, 2002; Figueirido et al., 
2012; Turchyn and DePaolo, 2019; Wright, 2019), without involving the 
assembly of a supercontinent. 

2.3. Supercontinents and megacontinents 

An alternative explanation for the Ediacaran proxies may lie in the 
existence of a proxy-producing phase of the supercontinent cycle that we 
have not taken into account. Such is the case for the “semi-supercontin-
ent” of Evans et al. (2016) and the intermediate “megacontinent” stage 
proposed by Wang et al. (2021) that, if true, might create a landmass large 

enough to produce the observed proxies, but not large enough to cause 
cycle to repeat, as would be the case with a supercontinent. According to 
Wang et al. (2021), the assembly of each of the supercontinents Columbia, 
Rodinia and Pangea was preceded by the formation of a megacontinent, 
with Gondwana (ca. 520 Ma; Collins and Pisarevsky, 2005; see also 
Grenholm, 2019; Cawood et al., 2021) being the megacontinental pre-
cursor to Pangea (ca. 325-175 Ma; e.g., Stampfli et al., 2013, Peace et al., 
2019). Present-day Eurasia (soon to be enlarged by Australia) is proposed 
as the megacontinental forerunner of the next supercontinent (ca. +200- 
250 Ma; e.g., Battersby, 2017; Davies et al., 2018). 

The premise of the megacontinental stage is that dispersing conti-
nents move away from a fragmenting supercontinent and towards areas 
of mantle downwelling (e.g., Gurnis, 1988) represented by a retreating 
girdle of subduction (e.g., Li and Zhong, 2009; Mitchell et al., 2021). 
Where downwelling along this girdle is particularly intense, several such 
fragments may assemble to form a megacontinent, which then migrates 
along the girdle and, in doing so, collides with the remaining continental 
fragments to form a supercontinent. In this scheme, the Ediacaran 
proxies do not record the assembly of a supercontinent, but rather record 
the assembly a megacontinent (Gondwana) on the subduction girdle 
that had previously encircled Rodinia (Fig. 7). Motion of Gondwana 
along this girdle resulted in its collision with the remaining continental 
fragments of Rodinia breakup and the consequent assembly of the su-
percontinent Pangea (Wang et al., 2021). As a stage-result of the as-
sembly of a true supercontinent (e.g., Evans et al., 2016), the Ediacaran 
can be expected to record proxies of continental assembly, but will not 
show evidence of profound change in mantle circulation that modeling 
suggests accompanies the assembly of a supercontinent (e.g., Zhong 
et al., 2007). 

Although this is an appealing solution, it is not without issues. Except 
for major (Alpine-Himalayan) orogeny (e.g., Rosenbaum and Lister, 
2002), an increase in seawater 87Sr/86Sr ratio (e.g., Goddéris et al., 
2017b) and a modest zircon age peak (Puetz et al., 2018), the assembly 
of Eurasia, which is taken to be the megacontinental precursor to the 
assembly of the next supercontinent, has not yet produced proxy sig-
natures as dramatic as those of the Ediacaran. Furthermore, the conti-
nental assembly phase of the Ediacaran was followed by a continental 
dispersal phase in the Lower Paleozoic marked by the opening of the 
Iapetus (e.g., Cawood et al., 2001), Tornquist (e.g., Krzywiec et al., 
2018), paleo-Uralian (e.g., Puchkov, 2002, 2016), Rheic (e.g., Nance 
et al., 2010) and proto- and paleo-Tethys (e.g., Stampfli and Borel, 2002, 
2004) oceans in a fashion more consistent with supercontinent breakup 
than with megacontinent migration unless all these oceans originated as 
marginal basins. 

Fig. 7. Megacontinent-supercontinent geodynamics as envisaged by Wang et al. (2021). Focused downwelling along Rodinia degree-2 subduction girdle (Step 1) 
initially leads to the formation of a megacontinent (Gondwana) over the locus of downwelling (small arrows), following which (Step 2) convergence of continents 
(bold arrows) to and along the subduction girdle leads to the formation of a supercontinent (Pangea). L = Laurentia, B = Baltica, G = Gondwana. 
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2.4. Mantle dynamics 

Another potential test of the existence or nonexistence of Pannotia 
lies in its expected influence on mantle dynamics. Modeling (e.g., Zhong 
et al., 2007; Li and Zhong, 2009; Mitchell et al., 2021) suggests that 
supercontinents form over areas of downwelling in a mantle with a 
degree-1 structure (i.e., one with antipodal areas of upwelling and 
downwelling), and subsequently break up because cessation of sub-
duction of the closing oceans of supercontinent assembly and conse-
quent initiation of subduction around the margins of the supercontinent 
influence mantle dynamics in such a way as to convert the downwelling 
into an upwelling, thereby producing a mantle with a degree-2 structure 
(i.e., one with two antipodal areas of upwelling bisected by a down-
welling girdle). Mantle plumes emanating from the core-mantle 
boundary (CMB) are preferentially generated along the edges of such 
upwellings (e.g., Burke et al., 2008; Torsvik et al., 2006), which rise 
beneath the supercontinent, fostering its breakup. If this is the case, then 
supercontinent amalgamation and breakup can be expected to have a 
profound effect on mantle circulation (e.g., Yale and Carpenter, 1998; 
Santosh, 2010; Ernst et al., 2013; Condie et al., 2015; Heron et al., 2015; 
Heron, 2019) and Pannotia, if it existed, should have produced a clear 
mantle legacy (Murphy et al., 2021; Heron et al., 2021). 

A strong link between mantle dynamics, LIPs and supercontinent 
breakup has long been recognized in the case of Pangea (e.g., Dalziel 
et al., 2000; Whalen et al., 2015; Le Pichon et al., 2019; Peace et al., 
2019). For Pannotia, this would be manifest in plume-related magma-
tism that, in the absence of late Neoproterozoic collisional orogenies in 
Laurentia and Baltica (e.g., Cawood et al., 2016), would be predicted to 
occur around the Gondwanan portion of the supercontinent. Numerous 
candidates for which plume activity is inferred to exist have been 
identified for the interval ca. 615-450 Ma (Murphy et al., 2021), 
including the ca. 615-530 Ma Central Iapetus Magmatic Province 
(CIMP), with a main peak at 580-560 Ma (e.g., Youbi et al., 2020), and 
the vast ca. 511 Ma Kalkarindji LIP of western Australia (Ware et al., 
2018), and their distribution closely matches the peri-Gondwanan pre-
diction of idealized post-assembly marginal upwelling models (Tan 
et al., 2002) (Fig. 8). Furthermore, using a 3D mantle convection model 
that simulates mantle evolution in response to the amalgamation of 
Rodinia and Pangea based on a subduction history derived from the 
reconstructions of Merdith et al. (2017) and Matthews et al. (2016), 
Heron et al. (2021) have shown that Ediacaran continental convergence 
could have generated a post-Pannotia mantle signature consistent with 
that of a supercontinent. Likewise, while Müller et al.’s (2022) plate 
motion model in a mantle reference frame for the last billion years failed 
to produce a late Neoproterozoic supercontinent, being based on the 
reconstructions of Merdith et al. (2021), it did produce a degree-2 basal 
mantle structure between 600 and 500 Ma, as it did following Pangea 
breakup. 

But while these studies lend support to the existence of Pannotia, 
they remain preliminary. Murphy et al. (2021), for example, are quick to 
acknowledge that their tally of plume candidates is far from complete 
and that many require geochemical and isotopic verification. Aside from 
CIMP, the Kalkarindji LIP (Ware et al., 2018), and the Volyn lavas of 
Baltica (e.g., Poprawa et al., 2020), they also tend to have smaller vol-
umes and are located within narrow active margins of the Gondwana 
landmass, unlike the giant radiating dike swarms that penetrated deep 
into Pangea’s interior and heralded separation of continent-sized frag-
ments. Additionally, Evans (2021) has pointed out that the time required 
for subducted material to transit to the deep mantle may be too long to 
allow the development of CIMP and the rifting of the Iapetus Ocean to be 
the result of mantle plumes following Pannotia assembly, especially if 
CIMP started as early as 615 Ma (e.g., Kamo et al., 1989; Bingen et al., 
1998; Pisarevsky et al., 2008). Although this would not be the case for 
shallow plumes produced as a consequence of mantle insulation 
following Pannotia amalgamation (i.e., continental lid tectonics), since 
these would not be subject to mantle transit times, the argument is 

potentially crucial to the issue of Pannotia’s viability as a landmass 
capable of significantly influencing mantle convection. Estimates sug-
gest that the time it has taken for subducted material to reach the deep 
mantle since the amalgamation of Pangea is at least 150 Myr and 
probably greater than 200 Myr (van der Meer et al., 2010; van der Meer 
et al., 2018; Domeier et al., 2016; Le Pichon et al., 2019). The time 
required for plumes generated at the CMB to reach the surface is esti-
mated to be greater than 50 Myr (Davies et al., 2000; Steinberger and 
Antretter, 2006). According to these estimates, a full circuit would take a 
minimum of 200 to 250 Myr. Given the timing of orogenic assembly 
relevant to the Pannotia debate (650-520 Ma), the arrival at the Earth’s 
surface of plumes formed as a consequence would not be expected much 
before mid-Paleozoic time. On the other hand, it could be argued that 
these timescales accord tolerably with Cambrian-formed Gondwana 
having its own effect on mantle circulation, expressed in the form of 
Mesozoic plumes. 

However, these inferences are model dependent and the processes by 
which supercontinents (and possibly megacontinents) influence mantle 
dynamics and the time scales over which they operate are still far from 
understood. Nevertheless, the argument raises fundamental questions 
regarding mantle circulation and its link to supercontinent breakup. If 
the change from downwelling to upwelling beneath a supercontinent 

Fig. 8. Locations on Pannotia reconstruction of Dalziel (1997) of possible 
plume magmatism around Gondwanan portion of Pannotia following Pan- 
African collisional orogenesis (modified from Murphy et al., 2021). 1-3 =
CIMP (Central Iapetus Magmatic Province), 1 = Egersund-Long Range (615-610 
Ma: Bingen et al., 1998; Kamo and Gower, 1994), 2 = Tayvallich volcanics (595 
Ma: Halliday et al., 1989), 3 = Catoctin (565 Ma: Aleinikoff et al., 1995), 4 =
Volyn (590-550 Ma: Poprawa et al., 2020), 5 = Wichita (540-540 Ma: Hansen 
et al., 2013), 6 = Greendale (607 Ma: Murphy et al., 1997), 7 = Avalonian 
basalts (530 Ma; Murphy et al., 1985), 8 = Ossa Morena, southern Spain (510 
Ma: Sánchez-García et al., 2008), 9 = Ollo de Sapo, northern Spain (490-480 
Ma: García-Arias et al., 2018), 10 = Ouarzazate (560-580 Ma: Mills et al., 1991) 
11 = Blovice, Czech Republic (>530 Ma: Ackerman et al., 2019), 12 = Soltan 
Maiden, Iran (450 Ma: Derakhshi and Ghasemi, 2015), 13 = paleo-Asian Ocean 
(540-500 Ma: Safonova, 2008; Zhang et al., 2017; Yang et al., 2020), 14 =
Nongpoh-Shillong, NE India (500 Ma: Sadiq et al., 2018), 15 = Zhulongguan, 
NW China (600-580 Ma; Xu et al., 2015), 16 = Kalkarindji (511 Ma: Ware et al., 
2018), 17 = Delamerian (570 Ma: Crawford et al., 1997), 18 = Kuboos (507 
Ma: Frimmel, 2000), 19 = Piranhas-Parauapebas (535-507 Ma: Santos et al., 
2002; Teixeira et al., 2019). See Figure 2 for abbreviations and Dalziel (1997) 
for details of the reconstruction. 
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following its amalgamation is a CMB-driven process, then mantle-transit 
times will play a key role in its timing since upwelling must await the 
descent of the subducting slabs of the closing oceans of supercontinent 
assembly. On the other hand, if upwelling is initially generated by lateral 
movement of the shallow mantle in response to the detachment of these 
slabs, the change would be largely independent of mantle transit times 
and might take effect soon after initiation of the collisional orogenesis of 
supercontinent assembly. 

2.5. Duration of the supercontinent cycle 

Another avenue of enquiry into the validity of Pannotia involves the 
duration of the supercontinent cycle, which the existence or nonexis-
tence of the supercontinent clearly affects. Neither the interval of the 
supercontinent cycle nor what constitutes a supercontinent are well- 
defined (e.g., Bradley, 2011; Meert, 2014; Nance and Murphy, 2019; 
Pastor-Galán et al., 2019). However, if we ignore Pannotia and use ages 
of ca. 1.6-1.4 Ga for Nuna/Columbia (Pisarevsky et al., 2014; Pehrsson 
et al., 2016), 950-800 Ma for Rodinia (e.g., Torsvik, 2003; Li et al., 2008) 
and ca. 325-175 Ma for Pangea (e.g., Stampfli et al., 2013; Peace et al., 
2019), the cycle shows a fairly steady post-Archean repetition at an 
interval of ca. 600-650 Myr (Fig. 9a). On the other hand, adding putative 
Pannotia at ca. 600 Ma (e.g., Scotese, 2009) produces a cycle that would 
appear to be accelerating toward a repetition interval of ca. 300-350 
Myr (Fig. 9b). This apparent acceleration is further enhanced with the 
inclusion of Kenorland at ca. 2.7-2.5 Ga (e.g., Williams et al., 1991; 
Aspler and Chiarenzelli, 1998; Lubnina and Slabunov, 2011). 

These two contrasting outcomes (an accelerating versus steady state 
cycle) represent fundamentally different pathways in Earth’s history of 
mantle dynamics and global tectonics, and serve to emphasize the 
importance of resolving the existence or non-existence of Pannotia as 
well as its status as a supercontinent. Both pathways are tenable, 
although a ca. 600 Myr supercontinent cycle is favored by most recent 
studies (e.g., Gardiner et al., 2016; Mitchell et al., 2019; Doucet et al., 
2020). As a case in point, Li et al. (2019) have argued that the geologic 
record of passive margin development, orogenesis and mineral deposits 
point to both a 500-700 Ma supercontinent cycle and one with a signal of 

twice this duration (1.0-1.5 Ga) that they term the superocean cycle. To 
account for this, they suggest that supercontinent assembly has alter-
nated between extroversion (assembly though closure of the exterior 
ocean that surrounded the previous supercontinent) and introversion 
(assembly through closure of interior oceans formed when the previous 
supercontinent broke up), such that the exterior superocean and sub-
duction girdle survive every second (introverted) supercontinent. 
However, their model requires that the breakup of Rodinia led directly 
to the assembly of Pangea and breaks down if Pannotia was also a 
supercontinent. 

Conversely, Korenaga (2006) has argued that plate motion modu-
lated by strong, depleted lithosphere created by mid-ocean ridge pro-
cesses would have been more sluggish when the mantle was hotter and, 
in a model that incorporates Pannotia, has used the accelerating fre-
quency of supercontinent formation to support his case that plate tec-
tonics has gradually sped up since the Archean. Although this 
provocative hypothesis runs counter to the traditionally held view that 
geodynamics should slow as the planet cools (e.g., Burke et al., 1976; 
Hargraves, 1986; Pollack, 1997; Blake et al., 2004), it finds support in 
the decreasing time interval between peaks in the global distribution of 
zircon ages (Fig. 3). 

An accelerating versus steady state supercontinent cycle would also 
impact the expected time interval to the assembly of the next super-
continent. Given a ca. 600 Myr steady-state cycle that excludes Pan-
notia, the next supercontinent would not be expected to assemble for 
some 400 million years. Conversely, an accelerating cycle that includes 
Pannotia and, as a result, has a decreasing duration, would predict that 
the next supercontinent might assemble in as little as 100 million years. 
Hence, the potential validity of a Pannotia-inclusive cycle affects our 
understanding of the time interval needed to amalgamate the next su-
percontinent, several reconstructions of which have been proposed (e.g., 
Battersby, 2017). These have been dubbed Novopangea (Nield, 2007), 
Pangea Proxima (Scotese, 2007), Amasia (Hoffman, 1992, 1997; 
Mitchell et al., 2012) and Aurica (Duarte et al., 2018) depending on 
which present-day ocean is predicted to close in order to affect the as-
sembly. Thus, Novopangea is produced by closing the Pacific Ocean, 
Pangea Proxima by closing the Atlantic Ocean, Amasia by closing the 

Fig. 9. Significance of Pannotia to the duration of the supercontinent cycle. (a) Without Pannotia, cycle shows post-Archean repetition at interval of ca. 600-650 
million years, predicting next supercontinent to assemble at ca. +400 Ma. (b) With Pannotia, cycle shows accelerating trend toward ca. 300-350 million years 
(enhanced with inclusion of Kenorland), predicting next supercontinent to assemble at ca. +100 Ma. 
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Arctic Ocean, and Aurica by closing both the Atlantic and Pacific oceans 
while opening a new ocean in central Asia. 

Although assumptions are involved in all of these assemblies, each is 
predicted to occur in about 200-250 million years’ time (e.g., Yoshida 
and Santosh, 2011; Davies et al., 2018). This would equate to a cyclicity 
of ca. 450-500 Ma, consistent with the considerations of Duarte et al. 
(2018) and the numerical simulations of Yoshida (2016). But the time 
interval lies halfway between those predicted for an accelerating and 
steady-state cycle and, hence, does not discriminate between them. 

However, in their analysis of Novopangea, Davies et al. (2018) pre-
dict closure of most of the Pacific in about 100 million years. This timing 
is consistent with the 3D numerical modeling of Trubitsyn et al. (2008) 
and would reassemble a supercontinent in an interval closer to that 
predicted for an accelerating supercontinent cycle. It should be noted, 
however, that Rolf et al. (2014), also on the basis of 3D dynamic nu-
merical models, dismissed any regularity in the assembly and breakup of 
supercontinents in favor of a statistical cyclicity with a characteristic 
period dictated by mantle and lithosphere properties. Their results 
suggest an average duration of 640 ± 105 Myr, consistent with an 
essentially steady-state cycle. 

2.6. Discussion and conclusions 

Valid cases can be presently made both for and against the legitimacy 
of Ediacaran-Cambrian Pannotia, so the question of its existence remains 
unresolved. Although it can be argued that the proxy signals for super-
continent assembly and breakup, and the magmatic record of a mantle 
legacy, collectively provide some support for the supercontinent (Nance 
and Murphy, 2019), they do not demonstrate its existence conclusively. 
Likewise, the counterarguments to the proxy record (Evans, 2021) do 
not completely preclude its validity. Questions also exist as to which 
proxies are most relevant to the Pannotia debate (see Gernon et al., 
2021), which are crustal proxies driven by plate reorganization, and 
which are mantle proxies driven by mantle dynamics. Hence, just as the 
authors of this contribution retain differing viewpoints in healthy and 
amicable debate on the issue, there is currently no clear answer to the 
question as to whether Pannotia should be or should not be. 

Nevertheless, the question of Pannotia’s existence is a vitally 
important one. The answer speaks fundamentally to the nature of su-
percontinent cycles, dictating whether they are in steady state or 
accelerating, and determining the geodynamic pathway followed by the 
cycle from the breakup of Rodinia to the assembly of Pangea. Pannotia’s 
existence also bears upon the fundamental questions of the mantle dy-
namics involved in bringing continents together and then driving them 
apart, the role played in this process by descending oceanic slabs, and 
whether or not mantle plumes emanating from the CMB are a cause or a 
consequence of it. In an academic forum where supercontinent cycles 
are widely discussed, the question of Pannotia’s existence is not, 
therefore, one that can be ignored or overlooked. 

From a geological perspective, the existence of Pannotia hinges most 
critically on the timing of Laurentia’s separation from Amazonia and the 
resulting opening of the Iapetus Ocean. If the initial separation of these 
cratons coincided with the onset of the North American passive margin 
at ca. 530 Ma (e.g., Cawood et al., 2001), well after the initial collisions 
of Gondwana, the existence of a short-lived supercontinent in the in-
terval preceding it remains plausible. If, however, the separation of 
Laurentia occurred with the opening of a Paleo-Iapetus Ocean at ca. 700 
Ma, as advocated by Robert et al. (2020), the case for an Ediacaran 
supercontinent is lost. The question of Pannotia’s existence conse-
quently rests, above all, on the resolution of this uncertainty. 

Other promising avenues for further research into the existence or 
nonexistence of Pannotia concern its mantle legacy and dynamic 
modeling aimed at constraining the timing of the next supercontinent. 
But the question warrants a concerted international effort like that un-
dertaken for Rodinia in the years following the turn of the millenium. 
Indeed, had it not been for the great success of IGCP Project 440 and the 

international research endeavor it inspired, we would likely be asking 
the same questions of Rodinia that we are now asking of Pannotia. Our 
concluding statement is consequently a plea to the international 
geologic community to initiate a cooperative plan of action aimed at 
addressing the question of Pannotia. 
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