korenaga

Jun Korenaga

Professor of Earth & Planetary Sciences
Earth & Planetary Sciences

Bio

My research interest has been centered on the evolution of Earth as a platform for the emergence of life and its subsequent evolution in the solar system. I place a particular emphasis on the dynamics of Earth’s mantle, because of its parental nature to the continental and oceanic crust, its thermal and chemical interaction with the core, and its potential role in the evolution of the atmosphere and oceans. I enjoy cracking long-standing problems by combining physics, chemistry, applied math, and statistics. My research adopts a holistic, multidisciplinary approach, often involving the development of new observational and theoretical methods along the way.

I’m a freestyle geophysicist, and my group has worked on a variety of problems, including the evolution of plate tectonics, the dynamics of lithosphere and mantle plumes, chemical geodynamics, the origins of large igneous provinces, global water cycle and the history of ocean volume, and the thermal evolution of Mars, Venus, and exoplanets. The currently ongoing projects span the synergy of experimental rock mechanics and geodynamical modeling, the physics and chemistry of protoplanetary disks, early Earth geodynamics and environments, and the seismic imaging of the deep Earth using USArray.

Education

University of Tokyo, Geophysics, B.Sc., 1992.
University of Tokyo, Earth and Planetary Physics, M.Sc., 1994.
MIT/WHOI Joint Program, Oceanography, Ph.D., 2000.
MIT, Postdoctoral Fellow, Mantle dynamics, 2000-2001.
UC Berkeley, Miller Research Fellow, Theoretical mineral physics, 2001-2002.

Courses

EPS 326/526 “Introduction to Geophysics and Planetary Physics”
AMTH 428/E&EB 428/EPS 428/PHYS 428/EPS 528 “Science of Complex Systems”
EPS 529 “Introduction to Geodynamics”

Opportunities

For Yale undergraduates

I have an array of research project ideas that are suitable for undergraduate research, so if you have a strong background in math and physics and like to work on the theoretical or computational side of earth and planetary sciences, please feel free to contact me. For examples of past undergraduate research, please see Fraeman and Korenaga [2010], Padhi et al. [2012], and Mullet et al. [2015].

For prospective graduate students

Students interested in geodynamics, seismology, or planetary physics are encouraged to apply through the Yale Graduate School of Arts and Sciences. I am always looking for exceptionally talented and motivated students with a strong background in physics and applied mathematics. Being computationally savvy is also a plus.

For current graduate students

If you are looking for a minor discourse project in geodynamics, seismology, or planetary sciences (and happen to have a functioning brain), please drop me an email. I can set up a meeting to discuss potential project ideas. For examples of past minor discourse research, please see Chu and Korenaga [2012], Wirth and Korenaga [2012], and Servali and Korenaga [2018].

For postdoctoral students

If you are looking for a postdoctoral opening in the field of theoretical earth and planetary sciences (broadly defined) and are interested to join in my scientific endeavor (see my research below), please email me your research statement and CV.

People

  • Amy Ferrick (PhD candidate) Amy is currently developing new scaling laws of thermal convection that can take into account the effects of heating mode as well as mantle rheology, with applications to the evolution of terrestrial planets at large.
  • Steph Larsen (PhD student) - Steph is currently building a new model for the early Earth landscape that is based on the thermal evolution of Earth and can also be coupled to the long-term evolution of atmosphere and oceans.
  • Coral Chen (PhD student) - Coral is working on implementing the ultimate version of teleseismic migration using dual bootstrap stacking. She will be addressing long-term convective mixing in Earth’s mantle, both with seismic observations and with geodynamical considrations.
  • Anastasiia Chupakhina (PhD student) - Anastasiia is working on the role of magmatism on the thermal evolution of Earth as well as the geochemical and geophysical manifestation of magmatism over Earth history.
  • Darius Modirrousta-Galian (Postdoc) - Darius is an expert on the atmosphere of exoplanets, and he is currently working on hydrogen loss from early Venus and early Earth.
  • Meng Guo (Postdoc) - For her PhD thesis, Meng worked on the physics and chemistry of crust-mantle differentiation by building a new kind of geochemical box modeling, and she also explored Hadean ocean chemistry. For a postdoc project, she will work on abiotic nitrogen cycle.
  • Brianna Fernandez (Postgrad) - For her senior essay, Brianna worked on the MCMC inversion of orthopyroxene deformation data. She will continue to work on the reanalysis of the deformation data of crust-forming minerals, which also have implications for global mantle dynamics.

  • Abigail Fraeman (B.Sc., 2009)
    • Thermal evolution of Mars
  • Ian Rose (B.Sc., 2009)
    • Scaling of bending dissipation in plate tectonics
  • Joseph O’Rourke (B.Sc., 2012)
    • Evolution of Venus and Super-Venus planets
  • Ben Mullet (B.Sc., 2013)
    • Markov chain Monte Carlo inversion for the rheology of olivine single crystals
  • Catherine Padhi (B.Sc., 2014)
    • Thermal evolution of Earth and xenon degassing
  • Vuong Mai (B.Sc., 2021)
    • Thickness of Archean continental crust
  • Andrea Servali (M.Sc., 2018)
    • Origin of continental mantle lithosphere
  • Tanya Lyubetskaya (M. Phil., 2005)
    • Composition of primitive mantle (I and II)
  • Erin Wirth (Ph.D, 2014)
    • Small-scale convection in the subduction zone mantle wedge
  • Adria Melendez (Ph.D., 2015, U. Barcelona)
    • Development of a 3-D seismic tomography code
  • Xu Chu (Ph.D., 2015)
    • Olivine rheology, shear stress, and grain growth in the lithospheric mantle
  • Chhavi Jain (Ph.D., 2020)
    • Markov chain Monte Carlo inversion for the rheology of olivine aggregates (I, II, and III) and probabilistic geodynamics of suboceanic mantle
  • Yoshinori Miyazaki (Ph.D., 2021)
    • Physical and chemical evolution of protoplanetary disks (I and II), early Earth evolution (I, II, and III), and the atmospheric evolution of rocky exoplanets
  • Puskar Mondal (Ph.D., 2021)
    • Rayleigh-Taylor instabilities related to core formation and crustal delamination
  • Tadashi Kito (postdoc, 2008-2010)
    • High-resolution teleseismic migration
  • Cecilia Cadio (postdoc, 2011-2014)
    • Thermal evolution of oceanic lithosphere,a new Bayesian inversion scheme of geoid anomalies, and the strength of oceanic lithosphere
  • Juan Carlos Rosas (postdoc, 2016-2019)
    • Continental growth and early Earth dynamics and early Earth landscape
  • Kuangdai Leng (postdoc, 2017-2018)
    • Three-dimensional scattering of elastic waves by small-scale heterogeneities in the Earth’s mantle

Research

The current theme:

Understanding the evolution of the Earth in the context of the solar system dynamics

There are a variety of things that need to be studied if we want to understand how the Earth really works, and I have been approaching this issue from the field of mantle dynamics, as the mantle is the main driver for Earth’s evolution, interacting with all other components of the Earth system from the atmosphere to the core. 

Near-future targets of research include: the physics and chemistry of terrestrial magma ocean, the thermal evolution of the core, a new kind of geochemical box modeling, pattern formation in mantle convection, and the effect of a planetary magnetic field on the stability of the atmosphere. 

Software

Overview

This package provides an implementation of joint refraction and reflection travel-time tomography presented by Korenaga et al.[J. Geophys. Res., 105, 21591-21614, 2000]. Please read this paper before using this code (for joint gravity inversion, see Korenaga et al. [J. Geophys. Res., 106, 8853-8870, 2001].) At this moment, a user’s guide included in this distribution provides only the minimum technical details. If you have any suggestions, find bugs, or find errors in the user’s guide, please email me. 

Updated for GNU gcc-3.2 (April 2003)

Minor bug fix (August 2005)

Updated for GNU gcc-4.0 (February 2007)

Updated for GNU gcc-4.1 (June 2008)

Updated for GNU gcc-4.2 (December 2016)

Contact Info

jun.korenaga@yale.edu

+1(203) 432-7381

Office Address: 314 KGL

Mailing address: PO Box 208109, New Haven CT 06520-8109
Street address: 210 Whitney Ave, New Haven CT 06511

Publications

(** Collaboration with undergraduate student advisee) 
(* Collaboration with graduate student advisee)
(+ Collaboration with postdoctoral advisee)

**Fernandez, B. V., and J. Korenaga, “Markov chain Monte Carlo inversion for the rheology of orthopyroxene aggregates: Implications for Hadean mantle dynamics,” submitted.

Korenaga, J., “Scaling up the carbon storage potential of porous basaltic reservoirs by exhaustive carbonation,” submitted.

Marchi, S., and J. Korenaga, “The shaping of terrestrial planets by late accretions,” in review.

*Guo, M., and J. Korenaga, “Rapidly evolving ocean pH in the early Earth: Insights from global carbon cycles coupled with ocean chemistry,” in review.

+Modirrousta-Galian, D., and J. Korenaga, “The exobase-sonic point relationship in hydrodynamic planetary atmospheres,” submitted.

+Modirrousta-Galian, D., and J. Korenaga, “Giant impacts, photoevaporation, and the bimodality of exoplanet radii,” in revision.

*Larsen, E., J. Korenaga, and S. Marchi, “Impact-driven redox stratification of Earth’s mantle,” in revision.

Korenaga, J., and C. J. Spencer, “An evaluation of continental growth and early Earth tectonics: Observations and models,”  in Treatise on Geochemistry, 3rd ed.,  in press.

(** Collaboration with undergraduate student advisee) 
(* Collaboration with graduate student advisee)
(+ Collaboration with postdoctoral advisee)

+Modirrousta-Galian, D., and J. Korenaga, “The diffusion limit of photoevaporation in primordial planetary atmospheres,” Astrophys. J., 965, 97, 2024. 

*Ferrick, A. L., and J. Korenaga, “Scaling laws for mixed heated convection with pseudoplastic rheology: Implications for the bistability of tectonic mode,” J. Geophys. Res. Solid Earth, 128, e2023JB027869, https://doi.org/10.1029/2023JB027869, 2023. 

Korenaga, J., and S. Marchi, “Vestiges of impact-driven three-phase mixing in the chemistry and structure of Earth’s mantle,” Proc. Nat. Acad. Sci. USA, 120, e2309181120, 2023. 

Marchi, S., R. Rufu, and J. Korenaga, “Long-lived volcanic resurfacing of Venus driven by early collisions,” Nature Astron., 7, 1180-1187, https://doi.org/10.1038/s41550-023-02037-2, 2023. 

*Ferrick, A. L., and J. Korenaga, “Generalizing scaling laws for mantle convection with mixed heating,” J. Geophys. Res. Solid Earth, 128, e2023JB026398, https://doi.org/10.1029/2023JB026398, 2023. 

Korenaga, J., “Rapid solidification of Earth’s magma ocean limits early lunar recession,” Icarus, 400, 115567, 2023. 

*Guo, M., and J. Korenaga, “The combined Hf and Nd isotope evolution of the depleted mantle requires Hadean continental formation,” Sci. Adv., 9, eade2711, 2023. 

+Modirrousta-Galian, D., and J. Korenaga, “The three regimes of atmospheric evaporation for super-Earths and sub-Neptunes,” Astrophys. J., 943, 11, 2023. 

*Ferrick, A. L., and J. Korenaga, “Long-term core-mantle interaction explains W-He isotope heterogeneities,” Proc. Nat. Acad. Sci. USA, 120, e2215903120, 2023. 

*Ferrick, A. L., and J. Korenaga, “Defining Earth’s elusive thermal budget in the presence of a hidden reservoir,” Earth Planet. Sci. Lett., 601, 117893, 2023. 

**Mai, V. V., and J. Korenaga, “What controlled the thickness of continental crust in the Archean?” Geology, 50, 1091-1095, 2022. 

*Miyazaki, Y., and J. Korenaga, “Inefficient water degassing inhibits ocean formation on rocky planets: An insight from self-consistent mantle degassing models,” Astrobiology, 22, 713-734, 2022. 

*Guo, M., J. A. G. Wostbrock, N. J. Planavsky, and J. Korenaga, “Reconstructing  seawater δ18O and Δ’17O values with solid Earth system evolution,” Earth Planet. Sci. Lett., 592, 117637, 2022. 

*Miyazaki, Y., and J. Korenaga, “A wet heterogeneous mantle creates a habitable world in the Hadean,” Nature, 603, 86-90, 2022.

*Frazer, W. D., and J. Korenaga, “Dynamic topography and the nature of deep thick plumes,” Earth Planet. Sci. Lett., 578, 117286, 2022.

*Guo, M., and J. Korenaga, “A halogen budget of the bulk silicate Earth points to a history of early halogen degassing followed by net regassing,” Proc. Nat. Acad. Sci. USA, 118, e2116083118, 2021. 

Korenaga, J., “Was there land on the early Earth?” Life, 11, 1142. https://doi.org/10.3390/life11111142, 2021. 

Korenaga, T., J. Korenaga, H. Kawakatsu, and M. Yamano, “A new reference model for the evolution of oceanic lithosphere in a cooling Earth,” J. Geophys. Res. Solid Earth, 126, e2020JB021528, https://doi.org/10.1029/2020JB021528, 2021. 

Korenaga, J., “Hadean geodynamics and the nature of early continental crust,” Precambrian Res., 359, 106178, 2021. 

*Luo, Y., and J. Korenaga, “Efficiency of eclogite removal from continental lithosphere and its implications for cratonic diamonds,” Geology, 49, 438-441, 2021. 

*Miyazaki, Y., and J. Korenaga, “Dynamic evolution of major element chemistry in protoplanetary disks and its implications for Earth-enstatite chondrite connection,” Icarus, 361, 114368, https://doi.org/10.1016/j.icarus.2021.114368, 2021. 

+Rosas, J. C., and J. Korenaga, “Archean seafloors shallowed with age due to radiogenic heating in the mantle,” Nature Geosci., 14, 51-56, 2021. 

*Jain, C., and J. Korenaga, “Synergy of experimental rock mechanics, seismology, and geodynamics reveals still elusive upper mantle rheology,” J. Geophys. Res. Solid Earth, 125, e2020JB019896, https://doi.org/10.1029/2020JB019896, 2020. 

+Leng, K., J. Korenaga, and T. Nissen-Meyer, “3-D scattering of elastic waves by small-scale heterogeneities in the Earth’s mantle,” Geophys. J. Int., 223, 502-525, 2020. 

*Yuan, X., J. Korenaga, W. S. Holbrook, and P. B. Kelemen, “Crustal structure of the Greenland-Iceland Ridge from joint refraction and reflection seismic tomography,” J. Geophys. Res. Solid Earth, 125, e2020JB019847, https://doi.org/10.1029/2020JB019847, 2020. 

*Guo, M., and J. Korenaga, “Argon constraints on the early growth of felsic continental crust,” Sci. Adv., 6, eaaz6234, 2020. 

Korenaga, J., “Plate tectonics and surface environment: Role of the oceanic upper mantle,” Earth-Sci. Rev., 205, 103185, https://doi.org/10.1016/j.earscirev.2020.103185, 2020. 

*Miyazaki, Y., and J. Korenaga, “On the timescale of magma ocean solidification and its chemical consequences, 2. Compositional differentiation under crystal accumulation and matrix compaction,” J. Geophys. Res. Solid Earth, 124, 3399-3419, https://doi.org/10.1029/2018JB016928, 2019. 

*Miyazaki, Y., and J. Korenaga, “On the timescale of magma ocean solidification and its chemical consequences, 1. Thermodynamic database for liquid at high pressures,” J. Geophys. Res. Solid Earth, 124, 3382-3398, https://doi.org/10.1029/2018JB016932, 2019. 

*Jain, C., J. Korenaga, and S. Karato, “Global analysis of experimental data on the rheology of olivine aggregates,” J. Geophys. Res. Solid Earth, 124, 310-334, https://doi.org/10.1029/2018JB016558, 2019. 

*Servali, A., and J. Korenaga, “Oceanic origin of continental mantle lithosphere,” Geology, 46, 1047-1050, 2018. [See commentary by Claude Herzberg]

Bada, J. L., and J. Korenaga, “Exposed areas above sea level on Earth >3.5 Gyr ago: Implications for prebiotic and primitive biotic chemistry,” Life, 8, 55, doi:10.3390/life8040055, 2018. 

Korenaga, J., “Crustal evolution and mantle dynamics through Earth history,” Phil. Trans. R. Soc. A376, 20170408, http://dx.doi.org/10.1098/rsta.2017.0408, 2018. 

+Rosas, J. C., and J. Korenaga, “Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics,” Earth Planet. Sci. Lett., 494, 42-49, 2018. 

*Jain, C., J. Korenaga, and S. Karato, “On the grain-size sensitivity of olivine rheology, J. Geophys. Res., 123, 674-688, 2018. 

*Mondal, P., and J. Korenaga, “A propagator matrix method for the Rayleigh-Taylor instability of multiple layers: A case study on crustal delamination in the early Earth,” Geophys. J. Int., 212, 1890-1901, 2018. 

*Mondal, P., and J. Korenaga, “The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere,” Geophys. J. Int., 212, 1859-1867, 2018. 

Korenaga, J., “Estimating the formation age distribution of continental crust by unmixing zircon ages,” Earth Planet. Sci. Lett., 482, 388-395, 2018. 

*Miyazaki, Y., and J. Korenaga, “Chemical effects on vertical dust motion in early protoplanetary disks,” Astrophys. J., 849, 41, 2017. 

*Jain, C., J. Korenaga, and S. Karato, “On the yield strength of oceanic lithosphere,” Gephys. Res. Lett., 44, 9716-9722, https://doi.org/10.1002/2017GL075043, 2017. 

Korenaga, J., “Pitfalls in modeling mantle convection with internal heat production,” J. Geophys. Res. Solid Earth, 122, 4064-4085, doi:10.1002/2016JB013850, 2017. 

Korenaga, J., N. J. Planavsky, and D. A. D. Evans, “Global water cycle and the coevolution of Earth’s interior and surface environment,” Phil. Trans. R. Soc. A 375, 20150393, doi:10.1098/rsta.2015.0393, 2017. 

O’Rourke, J. G., J. Korenaga, and D. J. Stevenson, “Thermal evolution of Earth with magnesium precipitation in the core,” Earth Planet. Sci. Lett., 458, 263-272, 2017. 

Korenaga, J., “On the extent of mantle hydration caused by plate bending,” Earth Planet. Sci. Lett., 457, 1-9, 2017. 

Korenaga, T., and J. Korenaga, “Evolution of young oceanic lithosphere and the meaning of seafloor subsidence rate,” J. Geophys. Res. Solid Earth, 121, 6315-6332, doi:10.1002/2016JB013395, 2016.

Korenaga, J., “Can mantle convection be self-regulated?” Sci. Adv., 2, e160116, 2016.

+Cadio, C., and J. Korenaga, “Macroscopic strength of oceanic lithosphere revealed by ubiquitous fracture-zone instabilities,” Earth Planet Sci. Lett., 449, 295-301, 2016. 

Zhang, J., W. W. Sager, and J. Korenaga, “The seismic Moho structure of Shatsky Rise oceanic plateau, northwest Pacific Ocean,” Earth Planet. Sci. Lett., 441, 143-154, 2016. 

Korenaga, J., “Constraining the geometries of small-scale heterogeneities: A case study from the Mariana region,” J. Geophys. Res. Solid Earth, 120, 7830-7851, doi:10.1002/2015JB012432, 2015.

Korenaga, J., “Seafloor topography and the thermal budget of Earth,” in The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson, edited by G. R. Foulger, M. Lustrino, and S. D. King, GSA Special Paper 514 and AGU Special Publication 71, p.167-185, 2015. 

*Melendez, A., J. Korenaga, V. Sallares, A. Miniussi, and C. Ranero, “TOMO3D: 3-D joint refraction and reflection travel-time tomography parallel code for active-source seismic data - Synthetic test,” Geophys. J. Int., 203, 158-174, 2015. 

**O’Rourke, J. G., and J. Korenaga, “Thermal evolution of Venus with argon degassing,” Icarus, 260, 128-140, 2015. 

**Mullet, B. G., J. Korenaga, and S. Karato, “Markov Chain Monte Carlo inversion for the rheology of olivine single crystals,” J. Geophys. Res. Solid Earth, 120, 3142-3172, doi:10.1002/2014JB011845, 2015. 

Zhang, J., W. W. Sager, and J. Korenaga, “The Shatsky Rise oceanic plateau structure from two-dimensional multichannel seismic reflection profiles and implications for oceanic plateau formation,” in The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces, edited by C. R. Neal, W. W. Sager, T. Sano, and E. Erva, GSA Special Papers, v. 511, p.103-126, 2015. 

Nakanishi, M., W. W. Sager, and J. Korenaga, “Reorganization of the Pacific-Izanagi-Farallon triple junction in the Late Jurassic: Tectonic events before the formation of the Shatsky Rise,” in The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces, edited by C. R. Neal, W. W. Sager, T. Sano, and E. Erva, GSA Special Papers, v. 511, p.85-101, 2015. 

Condie, K., S. A. Pisarevsky, J. Korenaga, and S. Gardoll, “Is the rate of supercontinent assembly changing with time?” Precambrian Res., 259, 278-289, 2015. 

Yamamoto, J., J. Korenaga, N. Hirano, and H. Kagi, “Melt-rich lithosphere-asthenosphere boundary inferred from petit-spot volcanoes,” Geology, 42, 967-970, 2014. 

+Cadio, C., and J. Korenaga, “Resolving the fine-scale density structure of shallow oceanic mantle by Bayesian inversion of localized geoid anomalies,” J. Geophys. Res. Solid Earth, 119, 3627-3645, doi:10.1002/2013JB010840, 2014. 

Korenaga, J., “Teleseismic migration with dual bootstrap stack,” Geophys. J. Int., 196, 1706-1723, 2014. 

Korenaga, J., “Stacking with dual bootstrap resampling,” Geophys. J. Int., 195, 2023-2036, 2013.

Sager, W. W., J. Zhang, J. Korenaga, T. Sano, A. A. P. Koppers, M. Widdowson, and J. J. Mahoney, “An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean,” Nature Geosci., 6, 976-981, 2013. 

Korenaga, J., “Initiation and evolution of plate tectonics on Earth: Theories and observations,” Annu. Rev. Earth Planet. Sci., 41, 117-151, 2013. 

**O’Rourke, J. G., and J. Korenaga, “Terrestrial planet evolution in the stagnant-lid regime: Size effects and the formation of self-destabilizing crust,” Icarus, 221, 1043-1060, 2012. 

+Cadio, C., and J. Korenaga, Localization of geoid anomalies and the evolution of oceanic lithosphere: A case study from the Mendocino Fracture Zone,” J. Geophys. Res., 117, B10404, doi:10.1029/2012JB009524, 2012.

*Wirth, E. A., and J. Korenaga, Small-scale convection in the subduction zone mantle wedge,” Earth Planet. Sci. Lett., 357-358, 111-118, 2012. 

Korenaga, J., Plate tectonics and planetary habitability: Current status and future challenges,” Ann. N.Y. Acad. Sci., 1260, 87-94, 2012. 

Korenaga, J., and W. W. Sager, “Seismic tomography of Shatsky Rise by adaptive importance sampling,” J. Geophys. Res., 117, B08102, doi:10.1029/2012JB009248, 2012. 

**Padhi, C. M., J. Korenaga, and M. Ozima, “Thermal evolution of Earth with xenon degassing: A self-consistent approach,” Earth Planet. Sci. Lett., 341-344, 1-9, doi:10.1016/j.epsl.2012.06.013, 2012.

*Chu, X., and J. Korenaga, “Olivine rheology, shear stress, and grain growth in the lithospheric mantle: Geological constraints from the Kaapvaal craton,” Earth Planet. Sci. Lett., 333-334, 52-62, doi:10.1016/j.epsl.2012.04.019, 2012.

Korenaga, J., “Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth,” J. Geophys. Res., 116, B12403, doi:10.1029/2011JB008410, 2011. 

Katayama, I., and J. Korenaga, “Is the African cratonic lithosphere wet or dry?” in Volcanism and Evolution of the African Lithosphere, edited by L. Beccaluva, G. Bianchini, and M. Wilson, GSA Special Papers v. 478, p.249-256, 2011. 

**Rose, I. R., and J. Korenaga, “Mantle rheology and the scaling of bending dissipation in plate tectonics,” J. Geophys. Res., 116, B06404, doi:10.1029/2010JB008004, 2011. 

Korenaga, J., “Velocity-depth ambiguity and the seismic structure of large igneous provinces: A case study from the Ontong Java Plateau,” Geophys. J. Int., 185, 1022-1036, 2011. 

Korenaga, J., “On the likelihood of plate tectonics on super-Earths: Does size matter?“ Astrophys. J., 725, L43-46, 2010. 

Korenaga, J., “Scaling of plate-tectonic convection with pseudoplastic rheology,” J. Geophys. Res., 115, B11405, doi:10.1029/2010JB007670, 2010. 

**Fraeman, A. A., and J. Korenaga, “The influence of mantle melting on the evolution of Mars,” Icarus, 210, 43-57, 2010. 

+Kito, T., and J. Korenaga, “Cross-correlation weighted migration: Toward high-resolution mapping of mantle heterogeneities,” Geophys. J. Int., 181, 1109-1127, 2010. 

Herzberg, C., K. Condie, and J. Korenaga, “Thermal history of the Earth and its petrological expression,” Earth Planet. Sci. Lett., 292, 79-88, 2010. 

Korenaga, J., “How does small-scale convection manifest in surface heat flux?“ Earth Planet. Sci. Lett., 287, 329-332, 2009.

Korenaga, J., “A method to estimate the composition of the bulk silicate Earth in the presence of a hidden geochemical reservoir,” Geochim. Cosmochim. Acta, 73, 6952-6964, 2009. 

Korenaga, J., “Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting,” Geophys. J. Int., 179, 154-170, 2009. 

Korenaga, J., “Plate tectonics, flood basalts, and the evolution of Earth’s oceans,” Terra Nova, 20, 419-439, 2008. 

Korenaga, J., “Reply to comment on “Effective thermal expansivity of Maxwellian oceanic lithosphere”,” Earth Planet. Sci. Lett., 275, 403, 2008. 

Korenaga, J., “Urey ratio and the structure and evolution of Earth’s mantle,” Rev. Geophys., 46, RG2007, doi:10.1029/2007RG000241, 2008. 

Korenaga, J., “Comment on “Intermittent plate tectonics?”,” Science, 320, 1291a, 2008. 

Korenaga, T., and J. Korenaga, “Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening,” Earth Planet. Sci. Lett., 268, 41-51, 2008.  [GMT-formatted grid files for the distance and correlation maps]

Korenaga, J., and S. Karato, “A new analysis of experimental data on olivine rheology,” J. Geophys. Res., 113, B02403, doi:10.1029/2007JB005100, 2008. 

Korenaga, J., “Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics?“ J. Geophys. Res.,112, B05408, doi:10.1029/2006JB004502, 2007. 

Korenaga, J., “Eustasy, supercontinental insulation, and the temporal variability of terrestrial heat flux,” Earth Planet. Sci. Lett., 257, 350-358, 2007. [See discussion by David Stevenson at Nature’s Journal Club]

Korenaga, J., “Effective thermal expansivity of Maxwellian oceanic lithosphere,” Earth Planet. Sci. Lett., 257, 343-349, 2007. 

*Lyubetskaya, T., and J. Korenaga, “Chemical composition of Earth’s primitive mantle and its variance, 2, Implications for global geodynamics,” J. Geophys. Res., 112(B3), B03212, doi:10.1029/2005JB004224, 2007. 

*Lyubetskaya, T., and J. Korenaga, “Chemical composition of Earth’s primitive mantle and its variance, 1, Method and results,” J. Geophys. Res., 112(B3), B03211, doi:10.1029/2005JB004223, 2007.

Korenaga, J., “Archean geodynamics and the thermal evolution of Earth,” in Archean Geodynamics and Environments, edited by K. Benn, J.-C. Mareschal, and K. Condie, AGU Geophysical Monograph Series 164, p.7-32, 2006. 

Korenaga, J., “Why did not the Ontong Java Plateau form subaerially?” Earth Planet. Sci. Lett., 234, 385-399, 2005.

Korenaga, J., “Firm mantle plumes and the nature of the core-mantle boundary region,” Earth Planet. Sci. Lett., 232, 29-37, 2005. 

Korenaga, J., “Mantle mixing and continental breakup magmatism,” Earth Planet. Sci. Lett., 218, 463-473, 2004. 

Korenaga, J., and T. H. Jordan, “Physics of multiscale convection in Earth’s mantle: Evolution of sublithospheric convection,” J. Geophys. Res., 109, B01405, doi:10.1029/2003JB002464, 2004. 

Korenaga, J., and T. H. Jordan, “Linear stability analysis of Richter rolls,” Geophys. Res. Lett., 30, 2157, doi:10.1029/2003GL018337, 2003. 

Korenaga, J., and T. H. Jordan, “Physics of multiscale convection in Earth’s mantle: Onset of sublithospheric convection,” J. Geophys. Res., 108, 2333, doi:10.1029/2002JB001760, 2003. 

Hopper, J. R., T. Dalh-Jensen, W. S. Holbrook, H. C. Larsen, D. Lizarralde, J. Korenaga, G. M. Kent, and P. B. Kelemen, “Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening,” J. Geophys. Res., 108, 2269, doi:10.1029/2002JB001996, 2003. 

Korenaga, J., “Energetics of mantle convection and the fate of fossil heat,” Geophys. Res. Lett., 30, 1437, doi:10.1029/2002GL016179, 2003. 

Korenaga, J., and T. H. Jordan, “On `steady-state’ heat flow and the rheology of oceanic mantle,” Geophys. Res. Lett., 29, 2056, doi:10.1029/2002GL016085, 2002. 

Korenaga, J., and T. H. Jordan, “Onset of convection with temperature- and depth-dependent viscosity,” Geophys. Res. Lett., 29, 1923, doi:10.1029/2002GL015672, 2002. 

Korenaga, J., P. B. Kelemen, and W. S. Holbrook, “Methods for resolving the origin of large igneous provinces from crustal seismology,” J. Geophys. Res., 107, 2178, doi:10.1029/2001JB001030, 2002. 

Korenaga, J., and T. H. Jordan, “On the state of sublithospheric upper mantle beneath a supercontinent,” Geophys. J. Int., 149, 179-189, 2002. 

Korenaga, J., and T. H. Jordan, “Effects of vertical boundaries on infinite Prandtl number thermal convection,” Geophys. J. Int., 147, 639-659, 2001.

Holbrook, W. S., H. C. Larsen, J. Korenaga, T. Dahl-Jensen, I. D. Reid, P. B. Kelemen, J. R. Hopper, G. M. Kent, D. Lizarralde, S. Bernstein, and R. S. Detrick, “Mantle thermal structure and melting processes during continental breakup in the North Atlantic,” Earth Planet. Sci. Lett., 190, 251-266, 2001. 

Korenaga, J., W. S. Holbrook, R. S. Detrick, and P. B. Kelemen, “Gravity anomalies and crustal structure across the Southeast Greenland margin,” J. Geophys. Res., 106, 8853-8870, 2001. 

Korenaga, J., and P. B. Kelemen, “Major element heterogeneity in the mantle source of the North Atlantic igneous province,” Earth Planet. Sci. Lett., 184, 251-268, 2000. 

Korenaga, J., W. S. Holbrook, G. M. Kent, P. B. Kelemen, R. S. Detrick, H.-C. Larsen, J. R. Hopper, and T. Dahl-Jensen, “Crustal structure of the Southeast Greenland margin from joint refraction and reflection seismic tomography,” J. Geophys. Res., 105, 21,591-21,614, 2000. 

Simons, F. J., M. T. Zuber, and J. Korenaga, “Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis,” J. Geophys. Res., 105, 19,163-19,184, 2000. 

Korenaga, J., and P. B. Kelemen, “Melt migration through the oceanic lower crust: A constraint from melt percolation modeling with finite solid diffusion,” Earth Planet. Sci. Lett., 156, 1-11, 1998. 

Korenaga, J., and P. B. Kelemen, “Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust,” J. Geophys. Res., 102, 27,729-27,749, 1997. 

Korenaga, J., W. S. Holbrook, S. C. Singh, and T. A. Minshull, “Natural gas hydrates on the southeast U.S. margin: Constraints from full waveform and travel time inversions of wide-angle seismic data,” J. Geophys. Res.,102, 15,345-15,365, 1997. 

Korenaga, J., and R. N. Hey, “Recent dueling propagation history at the fastest spreading center, East Pacific Rise, 26° - 32° S,” J. Geophys. Res., 101, 18,023-18,041, 1996. 

Hey, R. N., P. D. Johnson, F. Martinez, J. Korenaga, M. L. Somers, Q. J. Huggett, T. P. LeBas, R. I. Rusby, and D. F. Naar, “Plate boundary reorganization at a large-offset rapidly propagating rift,” Nature, 378, 167-170, 1995. 

Korenaga, J., “Comprehensive analysis of marine magnetic vector anomalies,” J. Geophys. Res., 100, 365-378, 1995.

Korenaga, J., “Metamorphic myth” (News & Views), Nature Geosci., 9, 9-10, 2016. 

Korenaga, J., “Geophysical constraints on mechanisms of ocean plateau formation from Shatsky Rise, Northwest Pacific,” Cruise Report MGL 1206, 2012.

Korenaga, J., “Clairvoyant geoneutrinos“ (News & Views), Nature Geosci., 4, 581-582, 2011. 

Korenaga, J., and W. W. Sager, “Geophysical constraints on mechanisms of ocean plateau formation from Shatsky Rise, Northwest Pacific,” Cruise Report MGL 1004, 2010.

Burch, J. L., J. Goldstein, D. Rubie, D. J. Frost, T. H. Jordan, and J. Korenaga, “Frost, Goldstein, and Korenaga Awarded 2006 James B. Macelwane Medal,” Eos, 88, 43-45, 2007.

Korenaga, J., 「できる研究者になるための留学術」[How to Become an Independent Thinker], Tokyo, Kodansha, 2019.

Korenaga, J., 「絵でわかるプレートテクトニクス」 [An Illustrated Guide to Plate Tectonics], Tokyo, Kodansha, 2014.

Ozima, M, J. Korenaga, and Q.-Z. Yin, “The Earth: Its Birth and Growth,” 2nd ed., Cambridge, 2012.